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Abstract

The minimum description length (MDL) principle is a theoretically well-founded, general framework for performing model
class selection and other types of statistical inference. This framework can be applied for tasks such as data clustering, density
estimation and image denoising. The MDL principle is formalized via the so-called normalized maximum likelihood (NML)
distribution, which has several desirable theoretical properties. The codelength of a given sample of data under the NML distribution
is called the stochastic complexity, which is the basis for MDL model class selection. Unfortunately, in the case of discrete data,
straightforward computation of the stochastic complexity requires exponential time with respect to the sample size, since the
definition involves an exponential sum over all the possible data samples of a fixed size. As a main contribution of this paper, we
derive an elegant recursion formula which allows efficient computation of the stochastic complexity in the case of n observations
of a single multinomial random variable with K values. The time complexity of the new method is O(n + K) as opposed to
O(n logn logK) obtained with the previous results.
 2007 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most important problems in machine
learning and statistics is model class selection, which is
the task of selecting among a set of competing math-
ematical explanations the one that describes a given
sample of data best. The minimum description length
(MDL) principle developed in the series of papers [16–
18] is a well-founded, general framework for perform-
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ing model class selection and other types of statistical
inference. The fundamental idea behind the MDL prin-
ciple is that any regularity in data can be used to com-
press the data, i.e., to find a description or code of it
such that this description uses less symbols than it takes
to describe the data literally. The more regularities there
are, the more the data can be compressed. According to
the MDL principle, learning can be equated with find-
ing regularities in data. Consequently, we can say that
the more we are able to compress the data, the more we
have learned about it.

As codes and probability distributions are inherently
intertwined (see, e.g., [5]), an efficient code for a data
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set can be regarded as a probabilistic model yield-
ing a high probability (short codelength) to the data
at hand. Considering all possible models is not com-
putationally feasible, so in practice we have to restrict
ourselves to some limited set of probabilistic models.
Mathematically, a model class is defined as a set of
probability distributions indexed by a parameter vec-
tor. A universal model assigns a probability distribu-
tion for fixed-size data samples given a model class in
such a manner that the data is given a high probabil-
ity whenever there exists a distribution in the model
class that gives high probability to the data. In other
words, a universal model represents (or mimics) the be-
havior of all the distributions in the model class. The
model class selection task is then solved by choosing
the model class for which the associated universal dis-
tribution assigns the highest probability to the observed
data.

According to the MDL principle, the universal mod-
els are formalized via the normalized maximum likeli-
hood (NML) distribution [23,18], and the corresponding
codelength of a data sample under the NML distribution
is called the stochastic complexity (SC). Consequently,
MDL model class selection is based on minimization of
the stochastic complexity.

The NML distribution has several theoretical opti-
mality properties, which make it a very attractive can-
didate for performing model class selection and related
tasks. It was originally [18,2] formulated as a unique so-
lution to the minimax problem presented in [23], which
implied that NML is the minimax optimal universal
model. Later [19], it was shown that NML is also the
minimax optimal universal model in the expectation
sense. See Section 2 and [2,19,7,20] for more discus-
sion on the theoretical properties of the NML.

On the practical side, NML has been successfully
applied to several problems. We mention here some ex-
amples. First, in [14], NML was used for clustering of
multi-dimensional data and its performance was com-
pared to alternative approaches like Bayesian statistics.
The results showed that the performance of NML was
especially impressive with small sample sizes. Second,
in [21], NML was applied to wavelet denoising of dig-
ital images. Since the MDL principle in general can be
interpreted as separating information from noise, this
approach is very natural. Third, a scheme for using
NML for histogram density estimation was presented
in [13]. In this work, the density estimation problem
was regarded as a model class selection task. This ap-
proach allowed finding NML-optimal histograms with
variable-width bins in a computationally efficient way,

providing both the optimal number of bins and the loca-
tion of the bin borders.

For multinomial (discrete) data, the definition of the
NML distribution (and thus of the stochastic complex-
ity) involves a normalizing sum over all the possible
data samples of a fixed size. Unfortunately, in most
cases, the computation of this normalizing sum is in-
feasible. The topic of this paper is the derivation of
an efficient algorithm to calculate the stochastic com-
plexity in the case of multinomial data with K possible
values. The algorithm works in linear time with respect
to the sample size n.

The problem of computing the multinomial sto-
chastic complexity efficiently has been studied before.
In [10], a quadratic-time algorithm was presented. This
was later [9,12] improved toO(n logn logK). Although
the exponentiality of the computation was removed by
these algorithms, they are still superlinear with respect
to the size of the data. Furthermore, the practical value
of the O(n logn logK) algorithm is questionable due
to numerical instability problems, while the linear-time
algorithm presented in this paper can be easily imple-
mented without such problems.

Several approximation schemes for computing the
multinomial stochastic complexity have also been sug-
gested. The accuracy of the approximations was studied
empirically in [10], where it was observed that the er-
ror of the traditional Bayesian Information Criterion
(BIC) [22] and Rissanen’s asymptotic expansion [18]
can be substantial, especially with small sample sizes
or if the number of values K is large, while the Szpan-
kowski approximation introduced in [10] was found to
be very accurate. However, the task of computing the
exact stochastic complexity has theoretical significance
in itself. What is more, it is not clear how to extend
the Szpankowski approximation beyond the multino-
mial case, while the exact computation methods can be
directly applied in more complex cases, like the clus-
tering model class discussed in [14]. Therefore, in the
following we concentrate only on the exact computa-
tion of the stochastic complexity.

This paper is structured as follows. In Section 2 we
discuss the basic properties of the MDL principle and
the NML distribution. In Section 3 we instantiate the
NML distribution for the multinomial model class. We
will also shortly discuss the previous stochastic com-
plexity computation algorithms. The topic of Section 4
is to derive the so-called regret generating function,
which is then in Section 5 used as a basis for the new,
linear-time algorithm. Finally, Section 6 gives some
concluding remarks.
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2. Properties of MDL and NML

The MDL principle has several desirable properties.
Firstly, it automatically protects against overfitting in
the model class selection process. Secondly, there is no
need to assume that there exists some underlying “true”
model, while most other statistical frameworks do. The
model class is only used as a technical device for con-
structing an efficient code for describing the data. MDL
is also closely related to Bayesian inference but there
are some fundamental differences, the most important
being that MDL is not dependent on any prior distribu-
tion, it only uses the data at hand. For more discussion
on the theoretical motivations behind the MDL princi-
ple see, e.g., [18,2,26,19,7,20].

MDL model class selection is based on minimization
of the stochastic complexity. In the following, we give
the definition of the stochastic complexity and then pro-
ceed by discussing its theoretical properties.

Let xn = (x1, . . . ,xn) be a data sample of n out-
comes, where each outcome xj is an element of some
space of observations X . The n-fold Cartesian prod-
uct X × · · · × X is denoted by X n, so that xn ∈ X n.
Consider a set Θ ⊆ Rd , where d is a positive integer.
A class of parametric distributions indexed by the el-
ements of Θ is called a model class. That is, a model
classM is defined as

M=
{
P(· | θ): θ ∈ Θ

}
. (1)

Denote the maximum likelihood estimate of data xn

for a given model classM by θ̂(xn,M), i.e., θ̂(xn,M)

= arg maxθ∈Θ{P(xn | θ)}. The normalized maximum
likelihood (NML) distribution [23] is now defined as

PNML(xn |M) = P(xn | θ̂(xn,M))

C(M, n)
, (2)

where the normalizing term C(M, n) in the case of dis-
crete data is given by

C(M, n) =
∑

yn∈X n

P
(
yn | θ̂(yn,M)

)
, (3)

and the sum goes over the space of data samples of
size n. If the data is continuous, the sum is replaced by
the corresponding integral.

The stochastic complexity of the data xn given a
model classM is defined via the NML distribution as

SC(xn |M) = − logPNML(xn |M)

= − logP
(
xn | θ̂(xn,M)

)

+ logC(M, n), (4)

and the term logC(M, n) is called the minimax regret
or parametric complexity. The minimax regret can be

interpreted as measuring the logarithm of the number
of essentially different (distinguishable) distributions in
the model class. Intuitively, if two distributions assign
high likelihood to the same data samples, they do not
contribute much to the overall complexity of the model
class, and the distributions should not be counted as dif-
ferent for the purposes of statistical inference. See [1]
for more discussion on this topic.

The NML distribution (2) has several important the-
oretical optimality properties. The first one is that NML
provides the unique solution to the minimax problem
posed in [23],

min
P̂

max
xn

log
P(xn | θ̂(xn,M))

P̂ (xn |M)
, (5)

so that the minimizing P̂ is the NML distribution, and
the minimax regret

logP
(
xn | θ̂(xn,M)

)
− log P̂ (xn |M) (6)

is given by the parametric complexity logC(M, n). This
means that the NML distribution is the minimax optimal
universal model with respect to the model classM, but
note that the NML distribution itself typically does not
belong to the model class.

A related property of NML involving expected regret
was proven in [19]. This property states that NML also
solves

min
P̂

max
g

Eg log
P(xn | θ̂(xn,M))

P̂ (xn |M)
, (7)

where the expectation is taken over xn and g is the
worst-case data generating distribution. The minimax
expected regret is also given by logC(M, n).

3. NML for the multinomial model class

In the following, we will assume that our problem
domain consists of a single discrete random variable X

with K values, and that our data xn = (x1, . . . , xn) is
multinomially distributed. Without loss of generality,
the space of observations X can be assumed to be the
set {1,2, . . . ,K}. We denote the multinomial model
classes byMK and define

MK =
{
P(X | θ): θ ∈ ΘK

}
, (8)

where ΘK is the simplex-shaped parameter space

ΘK =
{
θ = (θ1, . . . , θK): θk ! 0, θ1 + · · · + θK = 1

}
,

(9)

with θk = P(X = k | θ), k = 1, . . . ,K.
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It is well known (see, e.g., [10,14]) that the maxi-
mum likelihood parameters for the multinomial model
class are given by θ̂(xn,MK) = (h1/n, . . . , hK/n),
where hk is the frequency (number of occurrences) of
value k in xn. The NML distribution (2) for the model
classMK is then given by

PNML
(
xn |MK

)
=

∏K
k=1(hk/n)hk

C(MK,n)
, (10)

where

C(MK,n) =
∑

yn

P
(
yn | θ̂(yn,MK)

)

=
∑

h1+···+hK=n

n!
h1! · · ·hK !

K∏

k=1

(
hk

n

)hk

. (11)

In the following, we will simplify the notation by writ-
ing C(K,n) instead of C(MK,n).

It is clear that the maximum likelihood term in (10)
can be computed in linear time by simply sweeping
through the data once and counting the frequencies hk .
However, the normalizing sum C(K,n) (and thus also
the parametric complexity logC(K,n)) involves a sum
over an exponential (in K) number of terms. Conse-
quently, the time complexity of computing the multino-
mial stochastic complexity is dominated by (11).

In [10,14] a recursion formula for removing the ex-
ponentiality of C(K,n) was presented. This formula is
given by

C(K1 + K2, n) =
∑

r1+r2=n

n!
r1!r2!

(
r1

n

)r1
(

r2

n

)r2

· C(K1, r1) · C(K2, r2), (12)

which holds for all K1,K2 ! 1. A straightforward al-
gorithm based on this formula was then used to com-
pute C(K,n) in time O(n2 logK). See [10,14] for more
details.

In [9,12] the quadratic-time algorithm was improved
to O(n logn logK) by writing (11) as a convolution-
type sum and then using the Fast Fourier Transform al-
gorithm. However, the relevance of this result is unclear
due to severe numerical instability problems it produces
in practice.

Although the previous algorithms have succeeded in
removing the exponentiality of the computation of the
multinomial stochastic complexity, they are still super-
linear with respect to n. In the next two sections we will
derive a novel, linear-time algorithm for the problem.

4. The regret generating function

The mathematical technique of generating functions
turns out to be the key element in the derivation of the
new, efficient algorithm for computing the multinomial
stochastic complexity. We start by reviewing some basic
facts about generating functions.

One of the most powerful ways to analyze a sequence
of numbers is to form a power series with the elements
of the sequence as coefficients. The resulting function is
called the generating function of the sequence. Generat-
ing functions can be seen as a bridge between discrete
mathematics and continuous analysis. They can be used
for, e.g., finding recurrence formulas and asymptotic ex-
pansions, proving combinatorial identities and finding
statistical properties of a sequence. Good sources for
further reading on generating functions are [25,6].

The (ordinary) generating function of a sequence
(an)

∞
n=0 = (a0, a1, a2, . . .) is defined as the series

A(z) =
∑

n!0

anz
n, (13)

where z is a dummy symbol (or a complex variable).
The importance of generating functions is that the func-
tion A(z) is a compact representation of the whole se-
quence (an)

∞
n=0. By studying this function we can get

important information about the sequence, such as the
exact or asymptotic form of the coefficients.

Our goal now is to find a computationally useful
form for the generating function of the sequence

(
C(K,n)

)∞
n=0 =

(
C(K,0),C(K,1),C(K,2), . . .

)
.

(14)

A similar problem was studied in [24], and our deriva-
tion mostly follows it. Let us first consider the se-
quence (nn/n!)∞n=0. As in [24], we denote the function
generating this sequence by B(z). Squaring B(z) yields

B2(z) =
( ∑

h1!0

h
h1
1

h1!
zh1

)
·
( ∑

h2!0

h
h2
2

h2!
zh2

)

=
∑

n!0

( ∑

h1+h2=n

nn

n!
n!

h1!h2!
h

h1
1 h

h2
2

nh1+h2

)
zn

=
∑

n!0

nn

n! C(2, n)zn. (15)

Thus, the function B2(z) generates the sequence
( nn

n! C(2, n))∞n=0. By basic combinatorics, it is straight-
forward to generalize this to
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BK(z) =
∑

n!0

nn

n!

[ ∑

h1+···+hK=n

n!
h1! · · ·hK !

·
K∏

k=1

(
hk

n

)hk
]
zn

=
∑

n!0

nn

n! C(K,n)zn, (16)

which generates ( nn

n! C(K,n))∞n=0. The extra nn/n! term
does not pose any problem, since it clearly can be can-
celed at the end of computation. Therefore this gen-
erating function can be used instead of the generating
function of (14), and we call it the regret generating
function.

However, there is no closed-form formula for B(z)

and little is known about the function in general. There-
fore, we will write the function BK(z) in a differ-
ent, more useful form using the so-called Cayley’s
tree function T (z) [8,4], which generates the sequence
(nn−1/n!)∞n=1:

T (z) =
∑

n!1

nn−1

n! zn. (17)

This sequence counts the rooted labeled trees [3], hence
the name of the function.

The connection between T (z) and B(z) is easy to de-
rive (see [24]), and it is given by B(z) = 1/(1 − T (z)).
Consequently, the regret generating function can be
written as

BK(z) = 1
(1 − T (z))K

. (18)

5. The linear-time algorithm

In this section, we will derive an elegant recurrence
for the C(K,n) terms based on the regret generating
function BK(z). At the end of the section, this recur-
rence is then used as a basis for the new, linear-time al-
gorithm for computing the multinomial stochastic com-
plexity.

We start by proving the following lemma:

Lemma 1. For the tree function T (z), it holds that

zT ′(z) = T (z)

1 − T (z)
. (19)

Proof. A basic property of the tree function is the func-
tional equation T (z) = zeT (z) (see, e.g., [8]). Differen-
tiating this equation yields

T ′(z) = eT (z) + T (z)T ′(z), (20)

zT ′(z)
(
1 − T (z)

)
= zeT (z), (21)

from which (19) follows. !

Now we can proceed to the main result of this paper:

Theorem 2. The C(K,n) terms follow the recurrence

C(K + 2, n) = C(K + 1, n) + n

K
· C(K,n). (22)

Proof. We start by multiplying and differentiating (16)
as follows:

z · d

dz

∑

n!0

nn

n! C(K,n)zn = z ·
∑

n!1

n · nn

n! C(K,n)zn−1

=
∑

n!0

n · nn

n! C(K,n)zn. (23)

On the other hand, by manipulating (18) in the same
way, we get

z · d

dz

1
(1 − T (z))K

= z · K
(1 − T (z))K+1 · T ′(z)

= K

(1 − T (z))K+1 · T (z)

1 − T (z)
(24)

= K

(
1

(1 − T (z))K+2 − 1
(1 − T (z))K+1

)

= K

( ∑

n!0

nn

n! C(K + 2, n)zn

−
∑

n!0

nn

n! C(K + 1, n)zn

)
, (25)

where (24) follows from Lemma 1. Comparing the co-
efficients of zn in (23) and (25), we get

n · C(K,n) = K ·
(
C(K + 2, n) − C(K + 1, n)

)
, (26)

from which the theorem follows. !

An alternative proof of Theorem 2 is given in [11],
where the so-called tree polynomials [8] are used. The
proof given here, however, is shorter and more elegant.

It is now straightforward to write a linear-time al-
gorithm for computing the multinomial stochastic com-
plexity SC(xn |MK) based on Theorem 2. The process
is described in Algorithm 1. The time complexity of the
algorithm is clearly O(n + K), which is a major im-
provement over the previous methods. The algorithm is
also very easy to implement and does not suffer from
any numerical instability problems.
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1: Count the frequencies h1, . . . , hK from the
data xn

2: Compute the likelihood
P

(
xn | θ̂(xn,MK)

)
= ∏K

k=1
(hk

n

)hk

3: Set C(1, n) = 1
4: Compute

C(2, n) = ∑
r1+r2=n

n!
r1!r2!

( r1
n

)r1
( r2

n

)r2

5: for k = 1 to K − 2
6: Compute

C(k + 2, n) = C(k + 1, n) + n
k · C(k, n)

7: end for
8: Output SC(xn |MK)

= − logP
(
xn | θ̂(xn,MK)

)
+ logC(K,n)

Algorithm 1. The linear-time algorithm for computing SC(xn |MK).

6. Conclusion

In this paper we have derived a recursive formula
for the exponential sums that appear in the definition of
the normalized maximum likelihood distribution. Based
on this formula, we presented the first linear-time algo-
rithm for exact computation of the multinomial stochas-
tic complexity. Besides being a theoretically important
result, the new algorithm has also already been applied
for efficient NML-optimal histogram density estimation
in [13].

In the future, our plan is to extend the current work
to more complex model classes such as Bayesian net-
works [15]. Even if it turns out that the regret generating
function is not available in these cases, we believe that
the current framework might still be useful in deriving
accurate approximations of the stochastic complexity.
Another natural area of future work is to apply the re-
sults of this paper to practical tasks such as classifica-
tion.
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