
“book” — 2009/8/11 — 12:50 — page i — #1

Department of Computer Science

Series of Publications A

Report A-2009-0

Computing the Stochastic Complexity of Simple

Probabilistic Graphical Models

Tommi Mononen

To be presented in . . . text of a long permission notice. Text of
a long permission notice. Text of a long permission notice. Text
of a long permission notice. Text of a long permission notice.
Text of a long permission notice.

University of Helsinki

Finland

“book” — 2009/8/11 — 12:50 — page ii — #2

Contact information

Postal address:
Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: postmaster@cs.Helsinki.FI (Internet)

URL: http://www.cs.Helsinki.FI/

Telephone: +358 9 1911

Telefax: +358 9 191 51120

Copyright c© 2009 Tommi Mononen
ISSN 1238-8645
ISBN 000-00-0000-0 (paperback)
ISBN 000-00-0000-0 (PDF)
Computing Reviews (1998) Classification: G.1.0, G.2.1, G.3, H.1.1
Helsinki 2009
Example Printing House

“book” — 2009/8/11 — 12:50 — page iii — #3

Computing the Stochastic Complexity of Simple

Probabilistic Graphical Models

Tommi Mononen

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
tommi.mononen@cs.helsinki.fi

PhD Thesis, Series of Publications A, Report A-2009-0
Helsinki, ?? month ?? 2009, 57 + 54 pages
ISSN 1238-8645
ISBN 000-00-0000-0 (paperback)
ISBN 000-00-0000-0 (PDF)

Abstract

Minimum Description Length (MDL) is an information-theoretic principle
that can be used for model selection and other statistical inference tasks.
There are various ways to use the principle in practice. One theoretically
valid way is to use the normalized maximum likelihood (NML) criterion.
Due to computational problems, this approach has not been used very
often. This Thesis presents efficient floating-point algorithms that make it
possible to compute the NML for Multinomial, Naive Bayes and Bayesian
tree models. None of the presented algorithms rely on asymptotic analysis
and with the first two model classes we also discuss how to compute exact
rational number solutions.

Computing Reviews (1998) Categories and Subject
Descriptors:
G.1.0 General : numerical algorithms
G.2.1 Combinatorics
G.3 Probability and Statistics: statistical computing
H.1.1 Systems and Information Theory

General Terms:
statistical modelling, machine learning, data analysis

Additional Key Words and Phrases:
information theory, Bayesian networks, minimum description length,

iii

“book” — 2009/8/11 — 12:50 — page iv — #4

iv

generating function, algorithm

“book” — 2009/8/11 — 12:50 — page v — #5

Acknowledgements

Does not exist yet!

v

“book” — 2009/8/11 — 12:50 — page vi — #6

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Main Contributions . 4

2 Information Theory and Models 6

2.1 Information Theory, Stochastic Complexity and Modelling . 6

2.2 Bayesian Models . 9

2.3 Mathematical Tools for Computation 11

2.3.1 Generating Functions and Polynomials 12

2.3.2 Umbral Calculus . 15

2.3.3 Hypergeometric Series and Functions 17

2.3.4 Recurrence Equations and Non-Holonomic Functions 18

2.3.5 Polytopes . 20

3 Computing Multinomial Stochastic Complexity 23

3.1 Defininitions . 23

3.2 Recurrence Formulas . 24

3.3 Properties of the Normalizing Sum 28

3.4 Efficient Computation and Algorithms 31

3.5 Connection to the Birthday Problem 34

4 Computing Stochastic Complexity for Naive Bayes models 36

4.1 Definitions . 36

4.2 Recurrence Formulas . 37

4.3 Efficient Computation and Algorithms 39

5 Computing Stochastic Complexity for Bayesian Forests 41

5.1 Definitions . 41

5.2 Intuition behind the Algorithm 43

5.3 Computation and Algorithm 44

5.4 Computation of Inner Node Matrices 45

vi

“book” — 2009/8/11 — 12:50 — page vii — #7

Contents vii

6 Conclusions 51

References 53

Corrections 57

Reprints of Original Publications 59

“book” — 2009/8/11 — 12:50 — page viii — #8

Original Publications

This Thesis is based on the following publications, which are referred to in
the text as Papers 1-5.

1. Tommi Mononen and Petri Myllymäki. On the Multinomial Stochas-
tic Complexity and its Connection to the Birthday Problem. In Pro-
ceedings of the International Conference on Information Theory and
Statistical Learning, ITSL’08 (Las Vegas, Nevada, USA), pages 17-22,
CSREA Press, 2008.

2. Tommi Mononen and Petri Myllymäki. Computing the Multino-
mial Stochastic Complexity in Sub-Linear Time. In Proceedings of
the European Workshop on Probabilistic Graphical Models, PGM’08
(Hirtshals, Denmark), pages 209-216, 2008.

3. Tommi Mononen and Petri Myllymäki. On Recurrence Formulas
for Computing the Stochastic Complexity. In Proceedings of the In-
ternational Symposium on Information Theory and its Applications,
ISITA’08 (Auckland, New Zealand), pages 281-286, IEEE, 2008.

4. Tommi Mononen and Petri Myllymäki. Fast NML Computation for
Naive Bayes Models. In Proceedings of the 10th International Con-
ference on Discovery Science, DS’07 (Sendai, Japan), pages 151-160,
Springer, 2007.

5. Tommi Mononen and Petri Myllymäki. Computing the NML for
Bayesian Forests via Matrices and Generating Polynomials. In Pro-
ceedings of the 2008 IEEE Information Theory Workshop, ITW’08
(Porto, Portugal), pages 276-280, IEEE, 2008.

viii

“book” — 2009/8/11 — 12:50 — page 1 — #9

Chapter 1

Introduction

In this chapter, first we give an informal introduction to the topic area of
this Thesis. After that we summarize the main contributions of the author.

1.1 Motivation

Bayesian Networks are versatile probability models that can be used e.g. in
prediction and modelling tasks [14, 31]. Models can be constructed either
by hand using only prior knowledge or the best model can be found using an
algorithm working on given observed data. In the latter case we are talking
about machine learning — thus a computer is automatically searching in a
set of models that describes the data best. However, in the prediction case
we want our model to also predict properties of unseen future data correctly.
Thus machine learning algorithms need a scoring (model selection) criterion
that correctly evaluates the true goodness of a model.

For Bayesian networks there exists a Bayesian scoring criterion called
BDeu [5], which is often used for selecting the best Bayesian network for the
given data. The score can be considered to be a state-of-the-art score for
the purpose. However, it is not purely objective, as there is a free hyperpa-
rameter called equivalent sample size (ESS). Traditionally this parameter is
often set to 1. Due to recent development of exhaustive search algorithms,
it has been empirically observed that the value of this parameter affects the
criterion heavily [42]. One possible solution is of course to try to prove some
theoretically valid method for determining the value of this parameter [44].
However, in the following we instead take a different path and consider an
entirely different criterion that has its roots in information theory. This
information-theoretic criterion can be considered more objective as it has
no free parameters that need to be tuned.

1

“book” — 2009/8/11 — 12:50 — page 2 — #10

2 1 Introduction

The minimum description length (MDL) principle originates from the
ideas of Kolmogorov complexity. Kolmogorov complexity measures the com-
plexity of strings [27]. The complexity of a string is the length of the short-
est description (program) that produces the string and stops after that. In
real life, the Kolmogorov complexity cannot be computed for an arbitrary
string, because the found description cannot be proved to be the optimal
one: as the description set consists of all the possible programs in the
world, there may always be a program that gives even a shorter description
than the found one. The MDL principle, on the other hand, says that you
are allowed to constrain the set of possible probability models (programs)
[36, 13]. This constrained set can be for example a Bayesian network struc-
ture with free parameters. Now we can take a structure and our observed
data compressed (described) with the structure. Then in this fixed set we
are able to find the parameter setting that minimizes (in a certain sense to
be explained later) the length of the description. This minimum length is
called the stochastic complexity.

The intuition behind this complexity measure is quite straight forward.
If we have a very complex model, it can give a short description for the
data, but the description of the model itself is complicated (long). On the
other hand, if we have a simple model, it gives a long description for the
data. Hence, adding a model and the observed data into the same package
forces us to find the optimal complexity of the model. This also ties up the
model complexity to be dependent on data length. For big data, we can
allow a model to be more complex, because the complex model describes
the data part more efficiently. But for small data, a model has to be simple,
because otherwise the description of the model increases the length of the
whole description. Thus this kind of a criterion has internal over- and
under-fitting control.

There still remains the question of actual formulation of the stochastic
complexity. Several versions have been proposed by Rissanen during the
last decades [33, 34, 35]. At first the definition was based on the so-called
two-part-code, where the model complexity and the data complexity are
defined independently from each other. Then next version was based on the
marginal likelihood definition that takes an average solution over all models
(the BDeu score mentioned above is an example of marginal likelihood
scores). The latest definition is to use the normalized maximum likelihood
(NML) distribution (Shtarkov distribution [41]), which has been proven to
be worst-case optimal [35, 13]. Hence, the selected model gives the shortest
code among our set of models for worst-case data.

The NML-based stochastic complexity criterion has given very good

“book” — 2009/8/11 — 12:50 — page 3 — #11

1.1 Motivation 3

results in many application areas. In human genome compression the NML
code provides a state-of-the-art method [25, 26, 46]. In image denoising the
best NML method is almost as good as the best methods [38]. There exists a
histogram estimation method based on the NML that seems to produce very
believable histograms [21]. Finally, the factorized normalized maximum
likelihood (fNML) criterion for Bayesian networks has been reported to
beat the BDeu criterion [43]. The fNML is computational simplification of
the true stochastic complexity and therefore the fNML criterion can also
be seen as some kind of an approximation of the NML.

The hardest problem when utilizing the stochastic complexity approach
is how to overcome computational difficulties: normalized maximum like-
lihoods are hard to compute, because they involve a normalization term
which requires summing over all possible data tables that are of the same
size as the observed data table. There are three options: to compute the
sum exactly, to use sampling or to use asymptotic approximation. In this
Thesis we present new efficient methods for computing the normalizing
sums using the exact approach. We also present various new approaches
that may eventually lead to computationally even more efficient methods.
Even though the sampling approach may finally be the only option in the
case of complex models and small data sets, the exact results also support
this research, giving at least in some cases a yardstick to which approx-
imations can be compared. The asymptotic approximation approach is
probably not usable with small data sets, because in these cases the results
cannot be guaranteed to be the correct one or even close enough to the
correct one. Therefore for comparison purposes we must know the exact
values to avoid pointless and tremendous analytic analyses that just prove
the accuracy not to be very good.

The scope of this Thesis is to develop a computational method for
computing the stochastic complexity of certain simple probabilistic graph-
ical models. The work contains no comparative analysis between different
model selection criteria, but focuses only on stochastic complexity. The
true practical value of this work will show up later. In this Thesis we
first give efficient algorithms that compute the normalizing sum for a sin-
gle multinomial variable. The fastest algorithm is sub-linear. The exact
method can be considered to be efficient enough for almost all practical
uses. After this we formulate an algorithmic framework for the naive Bayes
case. For normal data sizes the algorithms based on this framework are
also fast enough. The last case is Bayesian Trees. For practical purposes
the algorithm is fast enough only for trees with binary variables.

“book” — 2009/8/11 — 12:50 — page 4 — #12

4 1 Introduction

1.2 Main Contributions

For easy access, below we summarize the main contributions of each paper.
In the following the list numbers refer to publication numbers.

1. The normalizing sum of a multinomial variable can be represented
using a confluent hypergeometric function. The new form appears to
be very fast to compute. This computationally simple representation
can also be used with mathematical software packages. We show
that the form is closely connected to certain moments of the famous
birthday problem.

2. Relying on the form in Paper 1, we use the hypergeometric represen-
tation to derive a sub-linear algorithm for computing the multinomial
stochastic complexity with fixed precision. We also have to assume
that the sufficient statistics are precomputed. The algorithm is based
on a relatively good upper bound that we derive in the paper.

3. We show that the known generating function for computing the multi-
nomial stochastic complexity is actually a family of marginal gener-
ating functions. We demonstrate that in general we have a bivariate
generating function, derive representation for the other marginal gen-
erating function family and give implications to recurrence formulas.
We also suggest that the same kind of bivariate generating functions
exists in the case of more complex models, based on our empirical
results.

4. We derive a generating function that can be used for computing
stochastic complexities of Naive Bayes Models. The generating func-
tion explains the previously known recurrence formulas and gives a
new framework for designing faster algorithms for the task.

5. An algorithm for computing the stochastic complexity of a Bayesian
forest using matrices is presented. Computation is made more efficient
using a generating polynomial approach with polytopes and reusing
already computed components. To the author’s best knowledge, the
algorithm is still the fastest known method for exact computation of
normalized maximum likelihood for Bayesian forests.

The author of this Thesis made the main contribution in all of these papers.
The rest of this Thesis is organized as follows: The next chapter gives

the required definitions and preliminary information that is essential for un-
derstanding the chapters that follow. Chapter 3 summarizes computational

“book” — 2009/8/11 — 12:50 — page 5 — #13

1.2 Main Contributions 5

main results with respect to a single multinomial variable. The results are
collected from papers 1-3. Computation of the stochastic complexity for
Naive Bayes models is presented in Chapter 4 and it is based on papers 1, 3
and 4. The stochastic complexity of the Bayesian tree model is considered
in Chapter 5. The main results are from Paper 5 and some minor discussion
originates from Paper 3. The concluding chapter ties up all the results in
a single package. The original publications are reprinted at the end of this
Thesis.

“book” — 2009/8/11 — 12:50 — page 6 — #14

Chapter 2

Information Theory and Models

In this chapter we introduce all the required basic concepts and mathe-
matical theory that is necessary for understanding the main results of this
Thesis. The first two sections establish the starting points of the research.
The third section introduces the mathematical machinery used.

2.1 Information Theory, Stochastic Complexity

and Modelling

Information theory is a theory of communication over a channel [7]. The
basic setting is the following: A sender wishes to send information using
the channel to some receiver. The sender wants to encode the data he is
sending in such a way that the receiver will be able to decode it and read
the original message. The sender wants to send as few bits as possible,
hence achieve the best possible compression for data. However, in the
true world channels are usually noisy, thus they are generating errors to
the data. This means that the sender has to merge extra bits to the sent
message, so that the receiver can infer the original compressed data even if
the channel has mutilated the compressed data. The study of these issues
belongs to classical information theory. Nowadays the ideas of information
theory have broadened to various application areas, such as into statistical
inference. In this Thesis we will not consider noise or other limitations that
a channel might cause, but we focus on the source coding problem. Thus,
we have fixed-length strings — our data — generated by some source, and
the sender has to encode the data using some coding method known by
the receiver. The sender encodes data using some code words so that more
frequent patterns existing in data should have shorter code words than less
frequent ones. In order to achieve any compression, the length of frequent

6

“book” — 2009/8/11 — 12:50 — page 7 — #15

2.1 Information Theory, Stochastic Complexity and Modelling 7

code words should obviously be shorter than the corresponding substrings
in data. On the other hand, infrequent code words are allowed to be longer
than original substrings.

A prefix code is such that in a set of code words, there is no code word
that is the prefix of another code word. Prefix codes have a very pleasant
property that we can just concatenate code words without any external bits
indicating the ending of a code word. In our statistical inference framework
we are only interested in lengths of the code words, not the actual code
words. The following inequality [7] defines the relationship between code
word lengths and existence of prefix codes:

Theorem 2.1 (Kraft Inequality): For any countable infinite set of code
words that form a prefix code, the codeword lengths LC(x) satisfy the Kraft
inequality

∑

x

2−LC(x) ≤ 1 (2.1)

Conversely, given any code lengths satisfying the Kraft inequality, we can
construct a prefix code.

A prefix code is complete, if there does not exist a shorter prefix code. This
means that a prefix code is complete if and only if the left hand side of the
Kraft inequality is 1.

We argued above that frequent patterns should have short codes. We
can say that the probability of a pattern is relative to the frequency of that
pattern and define

LC(x) = − log P (x). (2.2)

Our code word lengths are not integer values any more, but in fact this
does not make a big difference as argued in [13]. We also see that this code
can be interpreted to be complete by previous definitions.

Now finally we are ready to make a big leap and consider an information-
theoretic approach to probabilistic modeling. Let xn ∈ X n, where xn is a
sequence of length n and X n is the set of all sequences. A parametric proba-
bilistic model assigns a probability distribution over these sequences. Each
instantiation of the parameters defines a different probability distribution.
For each data sequence xn, there exists a parameter instantiation (distri-
bution) which gives for this particular sequence the maximal probability
— these parameters are called the maximum likelihood parameters for this
data. However, note that taking the maximum likelihood for each data
sequence does not constitute a probabilistic model as the sum of the prob-
abilities is greater than 1, which means that the Kraft inequality condition

“book” — 2009/8/11 — 12:50 — page 8 — #16

8 2 Information Theory and Models

is not fulfilled. However, there exists an easy solution: we can normalize
each individual maximum likelihood with a sum over all maximum likeli-
hoods (for all the data sets) and get the normalized maximum likelihood
(NML) distribution [13]. This distribution is also known as the Shtarkov
distribution.

Definition 1 The normalized maximum likelihood distribution using a para-
metric model M is

PNML(xn | M) =
P (xn | θ̂(xn),M)

∑

yn P (yn | θ̂(yn),M)
, (2.3)

where θ̂(xn) is a set of maximum likelihood parameters of the modelM for
data xn. The stochastic complexity (code length) can now be defined as

SC(xn | M) = − log PNML(xn | M). (2.4)

Let us look at the properties of the above definition. First, now each
sequence is mapped to some code word, and the length of this code word
is given by (2.4). However, there cannot be a single model that is best for
all data sets, but we are trying to get as close as we can with this kind
of a model [13]. For each data sequence, the maximum likelihood gives
obviously the theoretical limit we can try to reach (it cannot be exceeded,
as it is the maximum). A model (distribution) is considered to be universal,
if it gives almost as high probability for all the data sets as the best model
(i.e. the maximum likelihood model) for each data set gives. Redundancy
is the difference of code lengths between the best model P and our model
P̄ for given data. By selecting the data that maximizes this redundancy,
we get the worst-case redundancy REDmax. A model P̄ = {P̄ (1), P̄ (2), . . . }
is universal, if

lim
n→∞

REDmax(P̄
(n), P)

n
= 0. (2.5)

This means that redundancy can increase only sub-linearly with respect to
data size. Notice also that a universal model is considered to be a sequence
of distributions — one for each data size.

The normalized maximum likelihood gives the smallest worst-case re-
dundancy among all the universal models [13]. It is therefore a minimax
optimal universal model and hence the worst case optimal. This property
is in fact very desirable, because with the worst case data we lose the least
against the best model. We also know that most of the sequences are in-
compressible, so this worst-case optimality can also be seen as average-case
optimality.

“book” — 2009/8/11 — 12:50 — page 9 — #17

2.2 Bayesian Models 9

We can use the stochastic complexity in model selection by computing
it with different parametric models. We compare these code lengths and
select the model, which has the shortest code length for the observed data.
The stochastic complexity then favors a simple good fitting model, thus it
is obeying the Occham’s razor principle: simple models are better. The
search problem is still left: how to find the best model from a huge set of
models. However, stochastic optimization methods and search algorithms
are not a subject of this Thesis and therefore in the sequel we omit further
discussion on that topic.

There exists yet a very interesting view point that favors the usage of the
normalized maximum likelihood in modelling: it is called indistinguishabil-
ity [3, 13]. In practice if we have very little data, we cannot reliably say
which one of the models (distributions) generated it. As we get more and
more data, we can rule out an increasing set of models. Generally speaking,
two models are indistinguishable, if we cannot rule the other out given the
data.

The volume of indistinguishable distributions around a given distribu-
tion is shrinking as the data size increases. In the limit indistinguishability
leads essentially to the same penalization as MDL (while truth lies in the
family) and this complexity can be interpreted to be related to a fraction
of distributions in the space of distributions that lie close to the truth.
Thus, a simple model has only a small amount of parameter settings that
can bring it close to the truth, as a complex model has many parameter
settings that bring it close to the truth. As we penalize according to the
volume of indistinguishable distributions, we are again ending up with the
Occham’s razor principle.

2.2 Bayesian Models

We adopt the language from statistics. A binary variable is a two-valued
variable and a multi-valued variable is called a multinomial variable. If
the variables are i.i.d. (independent and identically distributed), and we
compute the sum of binary variables, we have as a result a binomial variable
defining the binomial distribution. On the other hand a sum of statistical
multinomial i.i.d. variables is called a multinomially distributed variable
and it defines the multinomial distribution. This terminology may cause
some confusion, which we try to avoid.

We have only one data table and we are not considering different order-
ings of the rows that produce the same relative frequencies, the observed
ordering is enough. Hence, for a single variable (Figure 2.1) with L values

“book” — 2009/8/11 — 12:50 — page 10 — #18

10 2 Information Theory and Models

and observed data points xn = (x1, . . . , xn) the likelihood is

P (xn | Mmult(L)) = θh1
1 · · · θhL

L , (2.6)

where hk is a number of points assigned to the kth value [22] and θk is the
probability of the corresponding value. This does not define a multinomial
distribution (the multinomial coefficient is missing), because then we would
actually take all the data sets that have the same relative frequencies, and
we want only to compute the probability of the observed one. Probabilities
θk can be assigned several ways, but if we compute the observed relative
frequencies of each variable value, we get the highest possible likelihood for
our observed data. We denote these parameters by θ̂1, . . . , θ̂L and call them
maximum likelihood parameters.

Definition 2 The maximum likelihood for the observed data in the multi-
nomial case is

P (xn | θ̂(xn),Mmult(L)) =

(

h1

n

)h1

· · ·
(

hL

n

)hL

. (2.7)

Hence, this is the numerator of the NML for one node Bayesian network
(single multinomial variable). The denominator will be presented in Chap-
ter 3.

The naive Bayes model can be used for classification and clustering
tasks. The model has a class variable and m predictor variables of a multi-
nomial type (Figure 2.1). When represented as a Bayesian network, the
model is a two-layer tree where the class variable is the root node Y0 and
predictor variables are leaf nodes Y1, . . . , Ym that are independent of each
other given the value of the root variable [17]. Thus the joint probability
factorizes as

P (y) = P (y0)

m
∏

i=1

P (yi | y0), (2.8)

where yi is the value of the corresponding variable Yi. In the previous single
variable case, data was just a vertical vector of length n. Now we have a ta-
ble that has n rows and m+1 columns. We denote it by xn = (x1, . . . ,xn),
where each xj is a vector (xj,0, . . . , xj,m). The maximum likelihood param-
eters correspond to the observed relative frequencies, unconditional with
the root and conditional with the leaf variables.

Definition 3 The maximum likelihood for the Naive Bayes model can be
computed using the formula

P (xn | θ̂(xn),MNB) =
L
∏

k=1

(

hk

n

)hk m
∏

i=1

Ki
∏

v=1

(

fikv

hk

)fikv

, (2.9)

“book” — 2009/8/11 — 12:50 — page 11 — #19

2.3 Mathematical Tools for Computation 11

where hk is the number of vectors assigned to the kth value of the root
variable and fikv is the number of vectors, where the root variable (parent)
value is k and ith predictor variable has the value v [22].

As already mentioned, the Naive Bayes is actually a very simple two-
level tree (see Figure 2.1). If we have more levels, we get more complicated
trees.

A Bayesian tree is a directed acyclic graph, where each node has only
one parent node (Figure 2.1). We call node A the parent of node B, if node
B has an incoming directed arch from node A. Hence, every tree has only
one root node. For this model the joint probability factorizes as

P (y) =

s
∏

i=1

P (yi | yg(i)), (2.10)

where s is the number of variables and g(i) is the function that returns the
index of the parent node of node i.

Definition 4 The maximum likelihood for Bayesian trees is

P (xn | θ̂(xn),Mtree) =

s
∏

i=1

Kg(i)
∏

k=1

Ki
∏

v=1

(

fikl

fg(i),k

)fikl

, (2.11)

where fg(i),k is the number of vectors assigned to the kth value of the parent
node of i and Kg(i) is the number of values of the parent node of node i.

A Bayesian forest is a set of Bayesian trees. The maximum likelihood
of data can be computed taking the product of maximum likelihoods of
the trees in the forest. We only mention that there exist more complex
structures called Bayesian networks that are directed acyclic graphs. How-
ever, we are not computing stochastic complexity for these structures in
this Thesis and therefore we do not define them formally. The scope of
this Thesis is purely computational and there are very good introductory
texts on Bayesian networks, thus we are not broadening the view more than
necessary. Readers interested in the subject can revise for example [17].

This concludes the introduction of the model families. Stochastic com-
plexity formulas for each of these models are defined in the corresponding
chapters.

2.3 Mathematical Tools for Computation

Now we start presenting mathematical tools that are utilized to make com-
putation of the NML denominators efficient for the previous models.

“book” — 2009/8/11 — 12:50 — page 12 — #20

12 2 Information Theory and Models

Figure 2.1: Multinomial (left), Naive Bayes (middle) and Bayesian tree
(right) models. All graphs together can be interpreted as a forest with
three trees.

2.3.1 Generating Functions and Polynomials

Generating functions are powerful tools used in combinatorics and many
other areas [11]. The basic idea is that we have two presentations for
our target family of functions. The first one is a formal power series pre-
sentation, i.e. a generating function presentation, and the other one is a
closed-form presentation for the series (does not necessarily exist). We may
switch between these presentations and manipulate the form that happens
to allow a particular operation more easily. We are actually interested in
only the coefficients of a formal power series. These are the functions or
values that we want to compute.

In a single variable case we are interested in two different kinds of gener-
ating functions: an ordinary generation function (OGF) and an exponential
generating function (EGF). In the following we list the necessary properties
of both.

The ordinary generating function is a formal power series

G(z) =

∞
∑

k=0

akz
k, (2.12)

and we are interested in the coefficients a0, a1, . . . , which are the quanti-
ties we want to compute. We denote a sequence of coefficients by (an) =
(a0, a1, . . .) and the functions of k that gives coefficients by a(k). The vari-
able z is kind of a dummy variable. We usually never evaluate this function
G(z) by setting z to some value. If there is a closed-form presentation for
the above series, which we have in many interesting cases, we may utilize
it as well.

“book” — 2009/8/11 — 12:50 — page 13 — #21

2.3 Mathematical Tools for Computation 13

Let us go through some operations we can apply to ordinary generating
functions [11, 12]. We use the standard notation for coefficient extraction:
ak = [zk]G(z). If we multiply two ordinary generating functions G(z) and
F (z) and get

∞
∑

k=0

ckz
k = G(z)F (z) = (

∞
∑

k=0

akz
k)(

∞
∑

k=0

fkz
k), (2.13)

then the mth coefficient of the resulting series is defined by a discrete con-
volution formula:

cm =
m
∑

k=0

akfm−k. (2.14)

Hence, we achieve the resulting ordinary generating function by computing
the discrete convolution between sequences of coefficients (Cauchy prod-
uct). Using the same formula we can easily compute the powers of the
generating function G(z). We can achieve any power L by doing O(log L)-
discrete convolutions and using a combinatorial trick [22]: first take the
convolution of G(z) with itself to get G(z)2. After this take the convo-
lution of G(z)2 with itself to get G(z)4. This way we finally achieve any
L = 2i and the general case also goes similarly.

The exponential generating function is a formal power series

EG(z) =

∞
∑

k=0

bk

zk

k!
, (2.15)

where we are interested in coefficients b0, b1, . . . and denote the sequence of
coefficients by (bn) = (b0, b1, . . .). The functions of k that give coefficients
are denoted by b(k).

We use the standard notation for coefficient extraction: bk = [zk]EG(z).
Notice that we rule out here the factorial term in the denominator, so we are
not extracting ordinary formal power series coefficients, but the exponen-
tial ones. The resulting coefficients after multiplication of two exponential
generating functions EG(z) and EF (z) are defined by the binomial convo-
lution formula:

dm =

m
∑

k=0

(

m

k

)

bkhm−k, (2.16)

where (hn) is the coefficient sequence of EF (z). As in the ordinary case, we
can also raise EG(z) to higher positive integer powers by doing binomial
convolution several times.

“book” — 2009/8/11 — 12:50 — page 14 — #22

14 2 Information Theory and Models

As we are interested in computational issues, we may want to use com-
putationally more simple operations for ordinary generating functions. We
can write ak = bk

k! and this way present an exponential generating function
as the ordinary generating function. Thus even if we are dealing with ex-
ponential generating functions, we may handle these as ordinary ones. For
example this way we do not have to use the binomial convolution formula,
but we can just utilize the ordinary convolution formula. We can also take
a product of ordinary and exponential generating functions handling both
as ordinary ones.

The final operation we go through for single variable generating func-
tions is the Lagrange inversion formula (LIF)[37]. The idea is to write a
composition in such a way that we do not have the composition anymore.
Let A(z) be any formal power series and B(z) = b1z + b2z + · · · any formal
power series with b1 6= 0. Thus B(z) has to be an invertible formal power
series. Then the following is true:

[zn]A(B(z)) = [zn]A(z)B′(z)

(

B(z)

z

)−n−1

, (2.17)

where B(z) is the compositional inverse of B(z). Hence, we can transform
the composition into a product and still get the same coefficients as before.
The basic idea is that the right-hand side gives something that we can
handle more easily: if we know how to represent the coefficients of A(z)
and the coefficients of B′(z)(B(z)/z)−n−1, then we get the coefficients of the
original composite function by just using some convolution formula. Thus
if the complicated expression involving an inner function gives something
simple, for which we know the coefficient presentation, we achieve our goal
easily. There also exist other versions of the Lagrange inversion formula,
but as we use only this one later, we will not go through the other versions.

There exist many problems that can be solved with a one-variable func-
tion, but also many problems, which cannot. Therefore sometimes we also
need bivariate generating functions or even multivariate generating func-
tions [11] (the latter case is not relevant in this Thesis). We define only
a single exponential version of the bivariate generating function, and leave
ordinary and double exponential versions undefined.

Definition 5 The bivariate exponential generating function is a bivariate
formal power series:

BG(z, u) =

∞
∑

k=0

∞
∑

l=0

rk,l

zk

k!
ul. (2.18)

“book” — 2009/8/11 — 12:50 — page 15 — #23

2.3 Mathematical Tools for Computation 15

We can describe these coefficients in the form of an infinite table. This table
has marginals and we define that each row and each column is generated
by some marginal generating function. Furthermore these functions form a
family of horizontal generating functions and a family of vertical generating
functions. Each of these functions is a formal power series of a single
variable. The horizontal generating function (one-parameter) family is

MGk(u) =

∞
∑

l=0

rk,lu
l (2.19)

and the vertical generating function (one-parameter) family is defined by

MEG〈l〉(z) =

∞
∑

k=0

rk,l

zk

k!
. (2.20)

Hence, k is the row index and l is the column index, and to get a corre-
sponding marginal generating function from either of the families, we have
to fix either of the indices to some value. We can expand the presented
mathematical operations of ordinary and exponential generating functions
in a canonical way to these marginal generating functions.

We define multivariate generating polynomials to be multivariate poly-
nomials, whose coefficients encode some desired information. We can de-
note

PGj(X) =
∑

x∈X

axzx1
1 zx2

2 · · · z
xj

j , (2.21)

where x = (x1, . . . , xj) are vectors in a finite set of positive integer-valued
vectors X and ax:s are the coefficients. Variables z1 to zj are dummy
variables similar to the ones of generating functions.

In a way the generating polynomials glue both presentations together.
They are truncated (finite) formal power series as well as closed-form rep-
resentations of themselves. For these polynomials, we can do operations
such as take a product between two multivariate polynomials. This kind of
multiplication corresponds to a higher order convolution operation. Thus,
actually we are only interested in doing convolution operations between
different quantities, but for representational reasons we need all this ma-
chinery to simplify notation.

2.3.2 Umbral Calculus

In the previous section we introduced some basic generating function forms.
There is yet one form that we need to present. We define a generating

“book” — 2009/8/11 — 12:50 — page 16 — #24

16 2 Information Theory and Models

function of the form
∞
∑

k=0

sk,x

zk

k!
= A(z)exB(z), (2.22)

where
A(z) = a0 + a1z + a2z

2 + · · · (a0 6= 0) (2.23)

and
B(z) = b1z + b2z

2 + · · · (b1 6= 0), (2.24)

where we then denote the (compositional) inverse of B(t) by overline [37].
We use inverse series B(z) in the definition, because in Paper 1 we mainly
need B(t) and we do not have to then use overlines. Hence, two-variable co-
efficients sk,x form the sequence (s0,x, s1,x, . . .) called the Sheffer sequence.
The sequence is defined by the right-hand side. This means that a series
expansion of a closed form that is of the given form, defines a Sheffer se-
quence. Using the definition in the previous chapter we can interpret this
generating function to be actually a vertical generating function family of
the exponential type. However, for this generating function has been devel-
oped a theory of its own, called umbral calculus [37, 8]. Several important
polynomials belong into the Sheffer class: e.g. Hermite, Laguerre, Bernoulli
and Abel polynomials.

We defined the Sheffer sequence using (2.22). If A(z) = 1, we call the
sequence of coefficients an associated sequence. This case is simpler and in
fact this is the one we need. The sequence (sn,x) is said to be associated to
the functional B(t). This can in our framework be considered to be a fancy
way of saying that for the given class of exponential generating functions
we get coefficients mainly determined by the function B(t).

We only need one umbral calculus computational rule, Umbral com-
position [37]. As we mentioned in the previous section, we can handle a
composite function using the Lagrange inversion formula. However, for
this family of generating functions there is also a direct way to infer the
coefficients of the composite function.

Proposition 2.1 (Umbral composition)

If (pn,x) is associated to M(t) and
(qn,x) is associated to N(t) then

(
∑n

k=0 qn,kpk,x) is associated to N(M(t)), where qn,x =
∑n

k=0 qn,kx
k.

Hence, if we can represent each coefficient of the outer series as a finite
formal power series of xk, where k = 0 . . . n, then we have a way to describe
coefficients of the composite function.

“book” — 2009/8/11 — 12:50 — page 17 — #25

2.3 Mathematical Tools for Computation 17

2.3.3 Hypergeometric Series and Functions

Generalized hypergeometric series is a formal power series, where the ratio
of successive terms defines a rational function. If the series converges, we
call it the generalized hypergeometric function. But before we can formally
define these concepts, we have to define the so called shifted factorials [37]:
The falling factorials are

xk = x(x− 1) · · · (x− k + 1) (2.25)

and the rising factorials are of the form

xk = x(x + 1) · · · (x + k − 1). (2.26)

At this point we actually need only rising factorials to present hypergeomet-
ric series, but falling factorials are utilized later in the Thesis and therefore
we defined them also at the same time. The generalized hypergeometric
series is

∞
∑

k=0

ck

zk

k!
=

∞
∑

k=0

ak
1a

k
2 · · · ak

p

bk
1b

k
2 · · · bk

q

zk

k!
, (2.27)

where p is the number of rising factorial terms in the numerator and q is the
number of rising factorials in the denominator [12]. In the general setting
ai and bj can be for example complex numbers, but in our combinatorial
task we need only integer values later. We can denote the above using the
standard notation

pFq

(

a1, a2, . . . , ap

b1, b2, . . . , bq

∣

∣

∣

∣

z

)

. (2.28)

Perhaps the most important property of the generalized hypergeometric
series is that the ratio of successive coefficients (of exponential function) is
a rational function:

ck+1

ck

=
(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)
. (2.29)

We have been discussing generalized hypergeometric series, because
mathematical software packages have implementations for the general form.
The word “generalized” has been added for historical reasons. If we simply
say hypergeometric function or hypergeometric series, we mean the function

2F1

(

a1, a2

b1

∣

∣

∣

∣

z

)

. (2.30)

“book” — 2009/8/11 — 12:50 — page 18 — #26

18 2 Information Theory and Models

and its series expansion. Solutions for the hypergeometric differential equa-
tion

z(1 − z)y′′ + (b1 − (a1 + a2 + 1)z)y′ − a1a2y = 0 (2.31)

can be described using hypergeometric functions. This equation has three
singular points. If two of three points merge, solutions can be given using
confluent hypergeometric functions 1F1 and 2F0 [2, 1]. The latter function
class is the one we will be using later, although we do not have to use the
differential equation connection. Hence, we are using the series that can be
written as

2F0

(

a1, a2

—

∣

∣

∣

∣

z

)

=
∞
∑

k=0

ak
1a

k
2

zk

k!
. (2.32)

If some of the ai:s are negative integer values, then the series is finite and
converges. This happens in our case, and we can therefore talk about
hypergeometric functions.

2.3.4 Recurrence Equations and Non-Holonomic Functions

Recurrence equations define the relation between coefficients of some series.
Although there exist many different types of recurrence equations, in this
Thesis we are only interested in the linear ones. Let our function of interest
be

G(z) =

∞
∑

k=0

akz
k, (2.33)

which is a formal power series. We define a linear homogeneous recurrence
equation to be

p0(i)ai + p1(i)ai+1 + · · ·+ pr(i)ai+r = 0, (2.34)

where pk(i) is the kth polynomial in one variable and r is a finite positive
integer value [32, 47]. Some of the functions pk(i) must be non-zero. We
denoted coefficients of the series by ai. The above equation must apply for
all coefficients in the sequence. By solving ai+r from the above equation, we
get a recurrence formula, which can be used for computing coefficients of
the series. However, the r first coefficients (initial values) must be computed
first, before the recurrence formula can be used.

We have already given one example of a linear homogeneous recurrence
of the first order: generalized hypergeometric functions. The ratio of suc-
cessive terms is a rational function. We can easily see that (2.29) can be
written in the form of a recurrence equation.

“book” — 2009/8/11 — 12:50 — page 19 — #27

2.3 Mathematical Tools for Computation 19

We define that, if there exists a finite homogeneous linear recurrence for
a coefficient sequence, it is P-recursive [28]. On the other hand, if we have
the corresponding series, then there exists a linear differential equation

qm(z)G(m)(z) + · · ·+ q2(z)G′′(z) + q1(z)G′(z) + q0(z)G(z) = 0 (2.35)

with a finite number of terms and the series (function) is D-finite. It hap-
pens that in a single variable case a closed-form is D-finite if and only if the
coefficient sequence is P-recursive. Notice that the smallest possible orders
of these two equations do not have to be the same. In some cases they are
and in other cases they are not.

We call a function and its coefficient sequence holonomic, if they are D-
finite and P-recursive. The opposite term is non-holonomic, which means
there does not exist either a recurrence or differential equation in the single
variable case.

The function G(z) has been so far an ordinary generating function.
However, we know that G(z) is holonomic if and only if its exponential
counterpart (EGF) is holonomic [4]. Here we have to notice that in both
cases we are talking about coefficients of a formal power series, thus coef-
ficients are ak and ak

k! .
In the multivariate case the situation is a bit more complicated. The

following introduction is based on [28]. First we define the single variate
case another way: A single variable formal power series is holonomic, if the
infinite set of all derivatives of G(z) span a finite dimensional vector space
over the field of rational functions in z. Now the multidimensional version
is analogous, but instead of derivatives we talk about partial derivatives.
This leads to the following:

Proposition 2.2 G(z) is D-finite if and only if G(z) satisfies a system of
linear partial differential equations, one for each j = 1, . . . ,m, of the form
{

qj,mj
(z)

(

∂

∂zj

)mj

+ qj,mj−1(z)

(

∂

∂zj

)mj−1

+ · · ·+ qj,0(z)

}

G(z) = 0,

(2.36)
where qi,mh

(z) is a multivariate polynomial and z = (z1, . . . , zm).

Hence, we have a linear differential equation with respect to every variable.
This leads to a thought that maybe we have the same kind of relationship
in the multivariate case between differential and recurrence equations as
in the single variable case. Unfortunately this is not the case, but we
can still create a relationship by setting additional restrictions for the set
of admissible recurrence equations. This leads to the following system of
recurrences:

“book” — 2009/8/11 — 12:50 — page 20 — #28

20 2 Information Theory and Models

Proposition 2.3 Let the sequence ai, i = (i1, . . . , im) satisfy a system of
recursions, one for each j = 1, . . . ,m, of the form

p
(j)
0 (ij)ai +

rj
∑

l=1

p
(j)
l (i1, . . . , im)ai1,...,ij−l,...,im = 0, (2.37)

where the p
(j)
0 are nonzero polynomials of one variable. Then the sequence

of ai1,...,im is holonomic.

So, we have the restriction that the first polynomials p
(j)
0 (ij) are just poly-

nomials of one variable. If we do not make this restriction, we may have a
valid system of recurrences, but they do not have the corresponding holo-
nomic formal power series. However, for the opposite direction we do not
need any restrictions.

Proposition 2.4 If the sequence ai is holonomic, then it satisfies a system
of recurrences, one for each j = 1, . . . ,m, of the form

rj
∑

l=0

p
(j)
l (i1, . . . , im)ai1,...,ij−l,...,im = 0. (2.38)

We can see that the relationship is asymmetric.
The nice thing about these recurrence equations is that they can be

seen as recurrence equations of marginal generating families. In the two-
variable case the two recurrence equations are valid of course for horizontal
and vertical generating function families.

We still need one important property of multivariate holonomic power
series: If a multivariate formal power series is holonomic, then all sections
of it are, too. The section of G(z) is a power series with fewer variables,
where some of the original variables are fixed to a certain value:

G1,...,s
is+1,...,im

(z1, . . . , zs) =
∑

i1,...,is

ai1,...,imzi1
1 · · · zis

s . (2.39)

Hence, if we find one section that is non-holonomic, then the original
formal power series is also non-holonomic.

2.3.5 Polytopes

We are utilizing polytopes together with the previously presented generat-
ing polynomials. As we take a product of two multivariate generating poly-
nomials with all terms positive, we get a multivariate polynomial, which

“book” — 2009/8/11 — 12:50 — page 21 — #29

2.3 Mathematical Tools for Computation 21

has more terms than the original ones. We are interested only in some co-
efficients of this new polynomial and therefore other terms may not be used
at all. We want to minimize the computational effort and avoid computing
unnecessary terms. Polytopes are multidimensional convex bodies, which
we can use as “cages”: we have to compute all the terms inside a cage, but
none of the outside. In the following we define the problem more rigorously.

Each term of the multivariate generating polynomial can be mapped
into a unique point of the space N

k. For example, if we take a term

axzx1
1 zx2

2 · · · z
xk

k , (2.40)

we can map it by setting the value ax to the point (x1, . . . , xk). Using
this method we can map all the terms of the given multivariate generating
polynomial. The multiplication is defined by the ordinary multidimensional
convolution formula

cy =

y1
∑

x1=0

· · ·
yk
∑

xk=0

ax · by−x, (2.41)

where cy is the coefficient of the product polynomial. Terms ax and by−x

are coefficients of the polynomials to be multiplied. Now the idea is to say
that we need to know only coefficients of integer points (y1, . . . , yk) that
belong to some set S. We can select a multidimensional convex body so
that each of the points in set S is inside the body that we call a polytope.

We have two different ways to describe a polytope [48]. The first one is
to define a convex hull over a finite set of points (V-polytope). The second
method is to define a bounded H-polyhedron, which is called H-polytope.
The H-polyhedron can be defined via an intersection of a finite number of
closed half spaces:

{f1,iy1 + f2,iy2 + · · · + fk,iyk ≤ s | i = 1 . . . r}, (2.42)

where some of the multipliers fj,i may be identically zero and s has some
boundary value. The number of half spaces is some number r. Depending
on the case, either description can be more simple than the other. Also we
need different algorithms depending on which one of the presentations we
choose. We should always select the presentation that leads to a simpler
algorithm for a given task. In this Thesis we use only the half-space descrip-
tion and call the body simply a polytope. An integer lattice is formed by all
integer points inside the given polytope (Figure 2.2). As we already defined
above, these or some set of these are only the points that are relevant to
us.

“book” — 2009/8/11 — 12:50 — page 22 — #30

22 2 Information Theory and Models

Figure 2.2: A polytope with the integer lattice.

We are only interested in some coefficients and therefore the general
idea is to do a restricted multiplication of multivariate generating functions
inside polytopes. This reduces the computational effort in our setting.

“book” — 2009/8/11 — 12:50 — page 23 — #31

Chapter 3

Computing Multinomial

Stochastic Complexity

In this chapter we show how to compute the stochastic complexity for a sin-
gle multinomial variable. In our setting multinomial variables correspond
with nodes of Bayesian network models. We will see later that we need
the stochastic complexity of these basic components also with more com-
plex models. First we define the multinomial stochastic complexity. Then
we introduce a more general setting for the computation using bivariate
generating functions instead of the previously used single variable gener-
ating function. After that, we will present new methods to compute the
denominator of NML in the multinomial case.

3.1 Defininitions

As we saw earlier, stochastic complexity can be computed by taking a
negative logarithm of the normalized maximum likelihood (Theorem 1).
Thus computation reduces to computation of the NML. For those models,
for which we can easily compute the maximum likelihood, also computation
of the numerator is straightforward. We defined the NML numerator of a
single multinomial variable already in (2.6). In the multinomial case it takes
linear time with respect to data size to compute it. We have to go through
the observed data once, because otherwise it is impossible to compute the
relative frequencies exactly. On the other hand, if the relative frequencies
are given, the task is trivial.

Later on, we use the term sufficient statistics [9], when we are refer-
ring to the relative frequencies. Thus, relative frequencies contain all the
relevant information from the observed data that is needed to fix all free

23

“book” — 2009/8/11 — 12:50 — page 24 — #32

24 3 Computing Multinomial Stochastic Complexity

parameters of a parametric model uniquely. Sufficient statistics can be seen
as the original data packed losslessly with respect to a model family. In
this Thesis we adopt the convention where a model structure (which defines
the number of parameters and their meaning) is called (parametric) model,
and for us a model family is a set of model structures — e.g. all Bayesian
trees.

Now we are ready to define the NML denominator, which is much harder
to compute than the previously presented numerator. The denominator
(the normalizing constant or the multinomial normalizing sum) is

CMN (L, n) =
∑

h1+···+hL=n

n!

h1! · · ·hL!

L
∏

k=1

(

hk

n

)hk

, (3.1)

where L is the number of values of the variable and n is the size of observed
data [22]. The multinomial model family is denoted by the subscript MN .
Using the definition directly, we need to compute a sum of O(nL) terms.
This can be easily reduced to O(nL−1) using a simple parameter substitu-
tion trick that can be seen more easily from the most common definition
of the binomial normalizing sum:

CMN (2, n) =

n
∑

k=0

(

n

k

)(

k

n

)k (n− k

n

)n−k

, (3.2)

where h1 = k and h2 = n − k. One of the sums is in fact redundant,
because of the requirement that all the counts hi sum to n. Notice that
the binomial normalizing sum is actually a somewhat misleading name,
albeit a very convenient one: we should be talking about binary variable
normalizing sums as we are computing the maximum likelihood for binary
variables, not for the variables that define binomial distributions. However,
the sum is exactly the same for both cases and the binomial normalizing
sum is not as cumbersome to use as the binary variable normalizing sum,
therefore we are using the word ’binomial’.

Next we are going to discuss recurrence formulas for computing the
desired sum CMN (L, n). After that we tackle the efficient presentation for
the sum and show some useful properties of it. Finally we concretize the
results by giving algorithms and computation methods.

3.2 Recurrence Formulas

We start by introducing generating functions that can be used for deriving
new results for the computation of the denominator. This idea itself is

“book” — 2009/8/11 — 12:50 — page 25 — #33

3.2 Recurrence Formulas 25

not new, as the best existing results [19, 20, 45] have been derived using a
generating function that we define later. However, in this Thesis we define
a more general setting — the bivariate generating function, which provides
new results.

Definition 6 The bivariate generating function for computing the multi-
nomial normalizing sums is

f(z, u) =

∞
∑

L=0

∞
∑

n=0

CMN (L, n)nn zn

n!
uL =

T (z)− 1

T (z)− 1 + u
, (3.3)

where T (z) is a tree function.

The right-hand side is only seemingly closed form, because the definition
of the tree function [19] is

T (z) =

∞
∑

n=1

nn−1 zn

n!
(3.4)

and it has no closed form. It also has a very simple connection to Lambert’s
W function [6] from physics: T (z) = −W (−z), which may be more familiar
to some readers. Using this bivariate generating function we can compute
the previously presented horizontal and vertical generating function fami-
lies.

The one-parametric vertical generating function family is previously
known. Some of the previous authors simply use the name generating
function for the whole family [24]. The family is defined by

f 〈L〉(z) =

∞
∑

n=0

CMN (L, n)nn zn

n!
=

(

1

1− T (z)

)L

(3.5)

with free parameter L. There are many highly useful results that can be
derived using this closed form.

The one-parametric horizontal generating function family is previously
unknown, although there is for example a simple recurrence formula over
the coefficients.

Theorem 3.1 The horizontal generating function family for the multino-

“book” — 2009/8/11 — 12:50 — page 26 — #34

26 3 Computing Multinomial Stochastic Complexity

mial normalizing sum with the free parameter n is of the form

f0(u) =
1

1− u
and (3.6)

fn(u) =
∞
∑

L=0

CMN (L, n)nnuL (3.7)

= nnu

(

1 +

(

u

1− u

) n
∑

L=0

n!

nL(1− u)L(n− L)!

)

. (3.8)

The (closed) form may look awkward, but if we fix n and expand, we get
rational generating functions (Paper 3). This means that we have functions
with a finite representation unlike in the vertical case.

Let us look at computational issues. Each generating function has the
desired CMN (L, n) attached to the terms and therefore we want to compute
the coefficients as efficiently as possible. Furthermore, with more complex
models, we usually start by computing the table of CMN (L, n) all the way
to some fixed L and n. Hence, with practical models it is not enough to
compute just one normalizing sum. This kind of problems are commonly
solved with dynamic programming. We need two recurrence formulas: one
going over L (horizontal family) and the other going over n (vertical family).
For this purpose, there must be the corresponding recurrence equations.

There is a well-known recurrence formula over L, and many experimen-
tal model selection applications are already using it. This formula [16, 20],
in the form of a homogeneous linear recurrence equation, is

(L− 2)CMN (L, n) + (2−L)CMN (L− 1, n) + (−n)CMN (L− 2, n) = 0 (3.9)

and it is valid for all L ≥ 0 and a for fixed data size n > 0. The equation
also works for the case n = 0, because the second term goes to zero and
CMN (L, 0) = 1 for all L. This same equation is valid for the whole horizon-
tal family. When used as a recurrence formula, it needs two initial values
at the beginning: CMN (1, n) equals one for all n and the other value can be
computed using for example (3.2). The formula can be proven using rather
simple calculus of the one-parametric generating function family (vertical
family) [20].

There exists also a standard way to construct a recurrence formula for
a given rational generating function. The particular form of our rational
generating functions gives another recurrence equation (Paper 3):

n+1
∑

j=0

(

n + 1

j

)

(−1)jCMN (L− j, n) = 0. (3.10)

“book” — 2009/8/11 — 12:50 — page 27 — #35

3.2 Recurrence Formulas 27

We can write this using the backward difference operator ∇. Defining
∇LCMN (L, n) = CMN (L, n)− CMN (L− 1, n), the previous recurrence gets
form

(∇L)n+1CMN (L, n) = 0, (3.11)

where (∇L)n+1 means applying the operator n + 1 times with respect to
variable L.

Notice that the number of terms in this recurrence is depending on data
size n, which means that the recurrence is not related to the family, but
to single members of the horizontal family. However, the recurrence seems
to have a very pleasant property: we can always leap over any constant
number of terms and the recurrence is still valid. Thus, CMN (L− j, n) can
be replaced with CMN (L − b · j, n), where b is a positive non-zero integer
value. Using this property, we can utilize an increasing leap size and this
way compute the multinomial normalizing sum for arbitrary large values
of L. This kind of algorithm has no value in our framework, but may be
valuable for some other purposes.

What about the recurrence equation over n? Unfortunately, for the ver-
tical family as a whole, nobody has managed to find one. In fact, there does
not exist a good solution even for single members of the family. Knuth and
Pittel have presented one in [19], but it takes all the previous coefficients to
compute the next one. The formula also changes parameter L to L−2 in the
same time. We showed in Paper 3 that the bivariate generating function is
non-holonomic, because it has a non-holonomic section f 〈1〉(z). Therefore,
there cannot be a linear homogeneous recurrence formula for the vertical
family. Otherwise the bivariate generating function would be holonomic
as well as the non-holonomic section. We also argued that because we do
not have a linear homogeneous recurrence for the sequence CMN (L, n)nn, a
recurrence cannot exist for the sequence of CMN (L, n) over n either. This
argument, however, later appeared to be incorrect. Let us look at

∞
∑

n=0

∞
∑

L=0

A(L, n)nn zn

n!
uL, (3.12)

where A(L, n) = 1 for all n and L. Now each vertical generating func-
tion is equal to f 〈1〉(z). However, A(L, n) satisfies the homogeneous linear
recurrence equation

A(L, n)−A(L, n− 1) = 0. (3.13)

Here we selected A(L, n) to be a constant, but for example the function
(L − 1)n + 1 could have been used as well. For setting L = 1, we find our

“book” — 2009/8/11 — 12:50 — page 28 — #36

28 3 Computing Multinomial Stochastic Complexity

known non-holonomic section. However, this function has the second order
homogeneous linear recurrences for both families.

The practical side of the non-holonomicity results is that automatic
algorithms that are using the vertical generating function family, the bi-
variate generating function or the corresponding sequences of these, cannot
find a homogeneous linear recurrence. However, such a recurrence for the
sequence of CMN (L, n) over n has not been found by any of the tested al-
goritms either. Notice also that discrete convolution is done over sequences
that are known to be non-holonomic and nothing gets cancelled. These
observations strongly suggest that there may not exist such a recurrence.

3.3 Properties of the Normalizing Sum

Our task is usually to compute a table of normalizing sums (as mentioned
before), but there does not exist any known efficient recurrences over n.
Let us start from a different view: how to compute each CMN (L, n) as effi-
ciently as possible without a recurrence. The whole table can be computed
obviously in time O(n2+nL), by computing the binomial normalizing sums
first and then using the linear recurrence formula over L. If we want to
compute just one normalizing sum, it takes time O(n + L). This is the
quantity that we are trying to make as small as possible. Using an asymp-
totic approximation formula [23], we can achieve time complexity O(nL)
for computing the whole table as each term CMN(L, n) takes only a con-
stant time to compute. This base line is our unreachable lower bound also
for the exact computation methods.

The first representation for the multinomial normalizing sum can be
derived using the vertical generating function family. The function family
can be interpreted to be a composite function. For this composite function
we apply the Lagrange inversion and binomial convolution formulas, which
gives as a result the following theorem (Paper 1):

Theorem 3.2 The multinomial normalizing sum can be written as

CMN (L, n) =

n
∑

k=0

(

n

k

)

(L− 1)k

nk
, (3.14)

where n ≥ 1, L ≥ 1 and n,L ∈ N.

This theorem practically says that as we are just interested in positive inte-
ger points of the normalizing sum, then the computation formula simplifies
a great deal. This new form consists of only one sum and the rising facto-
rial notation hides one product. An almost similar-looking, but less optimal

“book” — 2009/8/11 — 12:50 — page 29 — #37

3.3 Properties of the Normalizing Sum 29

form for our purposes, can be derived using the previously mentioned um-
bral calculus. The idea is to notice that the vertical generating function
family is a composition of two functions that are associated sequence form.
Then the second form can be found using the umbral composition formula
(Paper 1).

We can also represent the formula in Theorem 3.2 in another way using
confluent hypergeometric functions (Paper 1):

Theorem 3.3 A hypergeometric presentation for the multinomial normal-
izing sum is

CMN (L, n) = 2F0

(

L− 1,−n
—

∣

∣

∣

∣

− 1

n

)

. (3.15)

The hypergeometric form can be interpreted to be function 2F0 with pa-
rameters L−1 and −n evaluated at the point − 1

n
. Thus each function with

a fixed positive integer parameter L − 1 gives a value of the normalizing
sum only in one point (Figure 3.1). Although hypergeometric functions are
presented via infinite sums, the parameter −n causes each sum to consist
only of n + 1 terms and all the other terms are equal to zero.

4

2 6

3

0

108

va
lu

e

n

2

0

5

31 9

1

4 5 7

Figure 3.1: The solid line gives the values of binomial sums and dotted lines
are hypergeometric functions. The x-axis goes over n instead of − 1

n
for achieving

better separation between curves.

“book” — 2009/8/11 — 12:50 — page 30 — #38

30 3 Computing Multinomial Stochastic Complexity

The normalizing sum (3.15) has terms that can be written in the form

mk =
(L− 1)k

k!
· n

k

nk
(3.16)

and if L = 2, the rising factorial is equal to the factorial (Paper 2), and
the first part disappears. We denote the terms of this more simple case
by bk. A closer look at these terms reveals that in the two-valued case the
sequence of the terms go rapidly to zero. This can be seen for example in
the ratio of successive terms:

bk

bk−1
=

n− k + 1

n
. (3.17)

As double precision floating-point numbers can only present arbitrary val-
ues by finite precision, a question arises: how many terms of the finite sum
are needed to get a result with a given precision. After some mathematical
analysis we get the answer:

Theorem 3.4 Given precision in digits (d) and data size n, the index t of

the last needed term for the binomial case is
⌈

2 +
√

−2n ln(2 · 10−d − 100−d)
⌉

.

This is an upper-bound approximation, which means that if we sum t + 1
first terms, we can be sure that we achieve the wanted precision. The
approximation also seems to be reasonably tight as presented in Paper 2
(Figure 3.2). In fact, although minor changes to the proof would give even
a tighter bound, these changes would not cause any noticeable effect in
practice. The main consequence of this result is the observation that the
required number of terms to achieve the precision d is O(

√
dn). This means

that in practice we always need only a sub-linear number of terms. Next
we take a closer look at a more complicated multinomial case. The ratio of
successive terms in the multinomial case is

mk

mk−1
=

(n− k + 1)(k + L− 2)

nk
, (3.18)

which is more complex than the binomial ratio. The terms mk are first
getting bigger instead of getting smaller as the terms bk. However, as in
Figure 3.3, we can plot the multinomial terms and it can be easily seen that
they form a unimodal function. The peak is moving to the right, if L has
bigger values. Thus we can interpret that in the binomial case, the peak is
located at k = 0, because the first term is the biggest one. This behavior
implicates that in the multinomial case there is an interval of indices of

“book” — 2009/8/11 — 12:50 — page 31 — #39

3.4 Efficient Computation and Algorithms 31

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 200000 400000 600000 800000 1e+06

rig
ht

 b
ou

nd

data size

Figure 3.2: Terms needed for 16 (above) and 7 digit precisions with given data
size. Actual approximations are shown as a thick solid line. Thin dotted lines
represent optimal index values.

terms, which we have to compute in order to achieve certain precision d.
However we have also the very efficient recurrence equation (3.9) that can
be used for computing multinomial normalizing sums if the binomial sums
are known. In fact, this recurrence method can be easily seen to be a more
efficient way to compute multinomial normalizing sums than the direct ratio
method using (3.18). Although deriving the left and right index bounds
for the multinomial case holds some mathematical curiosity, we gain no
increase in computational efficiency and therefore the derivation is left for
someone else to do.

Now we are ready to collect all the observations and present efficient
algorithms based on them.

3.4 Efficient Computation and Algorithms

There is a need for two different type of algorithms that compute multino-
mial normalizing sums: We are interested in efficient computation methods
that give exact rational number answers as well as in algorithms that give
floating-point answers. The first type of methods are used for research pur-

“book” — 2009/8/11 — 12:50 — page 32 — #40

32 3 Computing Multinomial Stochastic Complexity

k
0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000

Value

0

0,2

0,4

0,6

0,8

1,0

Figure 3.3: The first 8000 terms of the trinomial (left) and the scaled 15-nomial
(right) normalizing sums when data size (n) is one million.

poses. To develop the latter type of methods, we have to know the correct
answers. The latter type is of course much faster and is used in actual
model selection tasks.

We can compute rational number solutions easily using standard mathe-
matical software packages — for example Maple (Paper 1). Let the number
of data points be 100 and the number of bins (number of the values of the
multinomialvariable) be 4. The exact value of the multinomial normalizing
sum can be computed in this case by writing

simplify(subs([L=4,n=100],hypergeom([L-1,-n],[],-1/n)));

and also the floating-point solution can be achieved by replacing the com-
mand simplify with the command evalf.

Usually the stochastic complexity criterion is coded using some pro-
gramming language as a part of a model selection software. In this case
the following sub-linear scheme for computing the denominator of the NML
should be utilized:

“book” — 2009/8/11 — 12:50 — page 33 — #41

3.4 Efficient Computation and Algorithms 33

ComputeC_MN(d,n,L){

sum=1; b=1;

t=2+ceiling(sqrt(2*n*(-(log(2)-d*log(10))

-log(1-exp(-d*log(100)+d*log(10)-log(2))))));

for k from 1 to t{

b=(n-k+1)/n*b;

sum=sum+b;

}

sum_old=1;

for k from 3 to L{

sum_new=sum+n/(L-2)*sum_old;

sum_old=sum;

sum=sum_new;

}

return sum;

}

Computation of the index t differs from the formula in Theorem 3.3. The
reason is that direct usage of the formula causes some underflows and to
avoid this we need to modify the formula using logarithmic tricks. The
achieved time complexity for computing an (n × L)-table of normalizing
terms is now O(n log n + nL) against previous O(n2 + nL).

The same algorithmic ratio method can also be used for computing
exact rational number solutions: we can just sum all n + 1 terms instead
of t + 1 terms. Also the floating-point operations must be overloaded with
rational number operations. The true time complexity of the algorithm
rises quite high as these new operations are applied.

The simple algorithm does not fulfill requirements of scientific comput-
ing in the floating-point case, because the presented elementary operations
make some floating-point errors and therefore the theoretical precision is
not achieved. However, in Paper 2 we empirically showed that the total
resulting error is not very significant and therefore in practice the simple
code can be utilized. There is a very simple coding trick to truly achieve
precision d: we should use higher precision floating-point numbers and cut
the tail digits. Empirically it seems that even for the data size of 1012, with

“book” — 2009/8/11 — 12:50 — page 34 — #42

34 3 Computing Multinomial Stochastic Complexity

the double precision floating-point numbers it is enough to cut about the 6
last digits. The exact analysis confirming previous empirical results should
be done in the future. A very interesting open question is how many digits
we actually need in order to make the required difference between different
models of some model family. The answer could be utilized to optimize the
performance of a searching algorithm in a model selection task.

If the number of data points is very high and we need to compute a table
of normalizing sums, even the sub-linear algorithm can be too slow. In this
case we can use the previously known asymptotic approximation that was
already mentioned in the beginning of the previous section. The asymptotic
approximation is originally a result derived to compute the minimax redun-
dancy of memoryless sources by Szpankowski [45]. A memoryless source
generates a new data point each time without using information of previous
generated points. However, this approximation happens to be the same as
the logarithm of normalizing sums. The approximation is very good even
with moderate data sizes, but still the requirements of scientific computing
are not fulfilled. The given precision cannot be chosen or guaranteed even
in theory. As we will see later, with more complicated models we have
to use the discrete convolution formula over sequences of multinomial nor-
malizing sums. This kind of operations will cause errors to cumulate and
therefore usage of this approximation would give unpredictable results.

3.5 Connection to the Birthday Problem

The multinomial normalizing sum has a connection to the birthday prob-
lem. The birthday problem can be seen as a process, where we take a
new person at each step and look at his birthday and compare birthdays
of persons picked at preceding steps [10]. The process stops if two persons
have the same birthday. Now we can set a question: How many people on
average do we need so that at least two of them have the same birthday?
Let n be a number of possible labels. In the classical setting n is set to 365
and each label corresponds to one day of the year. The probability that
the process ends at step k is

P (n)(X = k) =
(k − 1)nk−1

nk
. (3.19)

An intuitive explanation of the numerator can be seen as choosing k −
1 distinct birthdays and when you pick the kth person, you have k − 1
possibilities to hit an already selected one. Now we get the answer to the

“book” — 2009/8/11 — 12:50 — page 35 — #43

3.5 Connection to the Birthday Problem 35

presented question by calculating the expectation

E(n)(X) =

n+1
∑

k=2

kP (n)(X = k). (3.20)

In the classical case we have E(365)(X) ≈ 24.6166. The answer is counter-
intuitive and that is why this problem is also known as the birthday para-
dox. There is a method called birthday attack [29], which uses the men-
tioned property. The basic idea is to replace a legitimate message with a
fraudulent message by doing minor modifications to both messages so that
the digital signatures of both messages coincide. This way the legitimate
message can be changed later to the fraudulent message. The birthday
paradox causes matching signatures to be easier to find than what the
intuition says.

We can compute the previous expectation also by using a binomial
normalizing sum. In fact, there is one-to-one correspondence (Paper 1):

E(n)(X) = CMN (2, n). (3.21)

This immediately raises the question about an equivalent pair for the multi-
nomial normalizing sum. We need to define a new concept first: The rising
factorial moments. For the birthday problem these are

E(n)(Xm) = E(n)(X(X + 1) · · · (X + m− 1)) (3.22)

and the sought relationship between the multinomial normalizing sums and
these can be written as

E(n)(Xm) = m!CMN (m + 1, n). (3.23)

Using this equation and the results for normalizing sums, we can write
trivial results for computing the rising factorial moments for the birthday
problem (Paper 1). There might also be some methods or results developed
for the birthday problem framework that can be useful in our side. An
especially interesting question is whether there are connections between
normalizing sums for trees and application areas of the birthday problem.

“book” — 2009/8/11 — 12:50 — page 36 — #44

Chapter 4

Computing Stochastic Complexity

for Naive Bayes models

In this chapter we propose a general framework for computing the normal-
izing sums for Naive Bayes models. We also present recurrence formulas
that can be used for the computation.

4.1 Definitions

Naive Bayes models can be utilized in prediction, classification and cluster-
ing tasks. We already introduced this model class in Chapter 2.2 and also
showed how to compute the maximum likelihood for it. Now we focus on
the computation of the NML normalizing sum in this case. The original
formula is not shown here, because it is relatively complicated and not eas-
ily interpretable. We only present the generating function here, and further
details on how to derive this generating function, can be found in [22] and
Paper 4.

Definition 7 The basic series for the Naive Bayes model is of the form

E =
∞
∑

n=0

CMN (K1, n) · · · CMN (Km, n)nn zn

n!
, (4.1)

where the terms CMN (·, ·) are the multinomial normalizing sums of the cor-
responding predictor variables and by Ki we denote the number of values
(bins) of the ith predictor variable.

Raising the basic series to some power L, where L is the number of values
of the class (root) variable, we get a power form of the sought exponential
generating function. By expanding this form we have

36

“book” — 2009/8/11 — 12:50 — page 37 — #45

4.2 Recurrence Formulas 37

EL =

(

∞
∑

n=0

CMN (K1, n) · · · CMN (Km, n)nn zn

n!

)L

(4.2)

=
∞
∑

n=0

CNB(L,K1, . . . ,Km, n)nn zn

n!
, (4.3)

where the Naive Bayes normalizing sum is denoted by CNB(). Thus in the
basic series L = 1 and this corresponds to Naive Bayes models, where the
class variable has only one value.

Let us take a closer look at Formulas (4.2) and (4.3). If we write the
multinomial generating function in the same form, we have

(

∞
∑

n=0

nn zn

n!

)L

=
∞
∑

n=0

CMN (L, n)nn zn

n!
. (4.4)

These two forms look quite similar. However, in the Naive Bayes case we
do have a product of multinomial sums in the coefficients. The expansion
in both cases can be made using convolution formulas the way we described
in Section 2.3.1.

4.2 Recurrence Formulas

In the multinomial case there exist many efficient computation methods for
computing normalizing sums. The Naive Bayes case is more complex, and
despite research efforts truly effective recurrence methods are still missing.
It is not known, for example, whether there exists any recurrence formula
for the ’horizontal’ generating function. Actually in the Naive Bayes case
there is no natural horizontal generating function, because the model has
more than two parameters. We still choose to call a generating function
that goes over L a horizontal generating function, because it seems to have
the same kind of qualities with the horizontal generating function in the
multinomial case. However, there exist two recurrence formulas. In the
following we first present a modification to the known recurrence method
and derive a new recurrence that can be very effective in a certain case.

There is a known recurrence method for computing the normalizing
sum for Naive Bayes models [22]. A similar formula also applies in the
multinomial case. This suggests that in fact this method is just based on
utilization of the exponential convolution formula. For the Naive Bayes the

“book” — 2009/8/11 — 12:50 — page 38 — #46

384 Computing Stochastic Complexity for Naive Bayes models

recurrence is of form

CNB(L,K1, . . . ,Km, n) =

n
∑

k=0

(

n

k

)(

k

n

)k (n− k

n

)n−k

· CNB(L∗,K1, . . . ,Km, k) CNB(L− L∗,K1, . . . ,Km, n − k). (4.5)

This is just a modified exponential convolution formula for two basic series
raised to powers L∗ and L−L∗. the two extra terms after the binomial mul-
tiplier are related to removal of the multiplying term nn, which is present
in the basic series coefficients. The recurrence above gives us a new nor-
malizing sum when given two normalizing sums. However, if we use this
formula, we unnecessarily compute extra terms that cancel nn terms all
the time. For the sake of efficiency, we should use the Naive Bayes basic
series and the discrete convolution formula (2.14) for computation. When
the needed term is computed, we can cancel the term nn

n! by multiplying
and get the corresponding normalizing sum.

It appears that there may exist yet another recurrence (Paper 3) similar
to (3.11):

(∇L)n+1CNB(L,K1, . . . ,Km, n) = 0. (4.6)

This claim is however purely based on empirical tests, and we have not
mathematically derived the horizontal generating functions for Naive Bayes
models. If the claim is true, it means that the denominators of the gener-
ating functions (closed form) must be identical to the horizontal generating
functions in the multinomial case. In fact these generating functions can be
easily found using the Maple software: First compute the initial values for
the recurrence and suppose that recurrence applies. Then use the Maple
command rectodiffeq and after that solve the resulting equation.

What is most interesting is that a similar kind of recurrence is not valid
only for the root variable, but it seems to work also for the leaf variables.
In this case it takes the form

(∇Ki
)n+1CNB(L,K1, . . . ,Ki, . . . ,Km, n) = 0. (4.7)

Both of these recurrences also allow us to jump over fixed and equal sized
intervals. For example we can satisfy recurrence equations just by taking
every third coefficient. The undesired fact is that when using these recur-
rence formulas, we need to compute initial values proportional to data size.
However, usually in practical applications the number of data vectors is
greater than the number values of a variable. This observation makes these
recurrence formulas useless in our framework, but it does not mean that
they are useless in all frameworks. In the future they may still directly or
indirectly prove to be useful.

“book” — 2009/8/11 — 12:50 — page 39 — #47

4.3 Efficient Computation and Algorithms 39

4.3 Efficient Computation and Algorithms

We start by first introducing methods for exact computation in the Naive
Bayes case (Paper 1). Writing the power form of the generating function
(formula (4.2)) using Maple notation, we get the first one hundred terms
by writing

simplify(series((1+sum(hypergeom([-n,3],[],-1/n)

*hypergeom([-n,4],[],-1/n)*n**n/n!

*z**n,n=1..infinity))**2,z,100));

Here we have two predictor variables with 4 and 5 values and a binary class
variable. The size of data is 100 data vectors. The first term is separated
from the series and replaced according to the definition with the value 1,
as otherwise we would be dividing with zero.

The computation can be done also by coding the previous method using
some programming language. The following general scheme (Paper 4) can
be used for computing the normalizing sum:

1. Compute a table of multinomial terms. The size of the table
is (n+1)× (maxi Ki). Use the proposed sub-linear algorithm
when computing with floating-point numbers.

2. Compute the coefficients of a Naive Bayes basic series.

3. Use some algorithm to raise the basic series to the power of
L.

4. Extract the normalizing sums from the formal power series
coefficients by multiplying the kth coefficient by k!

kk .

The most time-consuming part of this algorithm is phase 3. However,
there exists a method called the Miller formula [15]. If we use this formula,
we can raise a truncated formal power series with any real power and it
always takes the same number of basic operations, thus we need to do only
O(n2) multiplications. This is quite an amazing result, since the operational
cost is the same whether we take a product of a basic series by itself or raise
the basic series to the power of 106. The Miller formula can be formalized
in the form of the following proposition [18].

Proposition 4.1 (The Miller formula) If two formal power series are
V (z) = 1 +

∑∞
k=1 vkz

k and W (z) =
∑∞

k=0 wkz
k and W (z) = (V (z))α,

α ∈ R, then w0 = 1 and wn =
∑n

k=1

(

(α+1
n

)k − 1
)

vkwn−k.

“book” — 2009/8/11 — 12:50 — page 40 — #48

404 Computing Stochastic Complexity for Naive Bayes models

This formula can be utilized only when computing exact solutions using
rational numbers, because with floating-point numbers and almost with all
Naive Bayes structures the Miller method seems to be unstable (Paper 4).
There may exist some stable algorithm, that does phase 3 in O(n2) multi-
plications also in the floating-point case, but we are not aware of such an
algorithm. The fastest stable method that we know is the normal sequen-
tial multiplication method using the discrete convolution formula. Notice
that instead of O(L) series multiplications we need only O(log2 L) series
multiplications, if we use sub-results, as we already mentioned previously.
For example when computing E8, the algorithm starts by computing E · E .
Then it computes E2 · E2 and finally E4 · E4, which gives the desired result.
Using this type of a procedure we can achieve any integer power L. This
of course means that the total number of multiplications is O(n2 log2 L).

“book” — 2009/8/11 — 12:50 — page 41 — #49

Chapter 5

Computing Stochastic Complexity

for Bayesian Forests

In this chapter we will show how to compute the normalizing sums for
Bayesian forests. The task is much harder than in the multinomial or
Naive Bayes cases. In the previous cases the generating functions and
power forms were known. Now we do not have the generating function, but
we have to mainly do computation over all valid sufficient statistics and to
use generating polynomials.

First we start by defining the problem, then we motivate and give in-
sight on how to solve the computational problem and finally we present an
algorithm for the task. There is also some discussion about accelerating
the computation using various computational tricks.

5.1 Definitions

Sufficient statistics must be represented in some way. We use k-compositions
[40] and k-partitions (Paper 5). A k-composition is a partition of a positive
integer n into k bins (k positive integers that sum up to n). For example
(7, 3, 1), (2, 6, 3) and (0, 0, 11) are 3-compositions of 11. On the other hand,
if the ordering of bins does not matter, we are actually talking about k-
partitions. All 3-compositions of 2 are (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0),
(1, 0, 1) and (0, 1, 1), but there are only two 3-partitions of 2: (2, 0, 0)
and (1, 1, 0). Thus the number of k-compositions is a magnitude of k-
factorial more than the number of k-partitions. For a given k-partition
x = (x1, . . . , xk), the corresponding number of k-compositions is given by

m(x) =
k!

∏

w∈x µw(x)!
, (5.1)

41

“book” — 2009/8/11 — 12:50 — page 42 — #50

42 5 Computing Stochastic Complexity for Bayesian Forests

where µw(x) = |u : xu = w| tells us how many times a value w appears in
a k-partition x [30]. For example for a 5-partition (3, 3, 2, 2, 0) there exists

5!
2!2!1! = 30 5-compositions, because there are 2 twos and 2 threes and 1
zero.

After these definitions we can define the problem-specific c()-function
as in Paper 5. We rewrite the definition of the multinomial normalizing
sum (3.1) in a new way:

CMN (k, n) =
∑

x1+···+xk=n

c((x1, . . . , xk)), (5.2)

where the sum goes over the set of all k-compositions of data size n. Notice
that k is equal to the previously mentioned L, but as k-compositions is the
generally used term, we shall from now on use k instead of L. An exact
formula for the c-function is

c((x1, . . . , xk)) =
(
∑k

i=1 xi)!
∏k

i=1(xi!)

k
∏

j=1

(

xj
∑k

i=1 xi

)xj

. (5.3)

Next we define a conditional version of c-function and for a while we talk
about splittings — without defining whether they are k-compositions or
k-partitions. An intuition behind this function is that the data is already
split in k bins and we want to compute a c-function value of new splitting
given the present one. Hence, the unconditional c-function can be written
as c((x1, . . . , xk) | (n)) = c((x1, . . . , xk)), which means that originally all
data are in the same bin. The conditional c-function is

c((x1, . . . , xk)|(y1, . . . , yl)) =
∑

Z∈Z

l
∏

i=1

c(z1i, . . . , zki), (5.4)

where Z is a matrix with marginals (x1, . . . , xk) and (y1, . . . , yl), and the
terms zij are elements of a matrix Z. All elements are positive integer
values. Set Z is the set of those matrices Z which satisfy the given marginals
(row and column sums):

Z =

z11 · · · z1l

...
. . .

...
zk1 · · · zkl

x1
...

xk

y1 · · · yl

The product of c-functions in (5.4) corresponds to one valid path from the
present composition to a new composition. Each c-function of the product

“book” — 2009/8/11 — 12:50 — page 43 — #51

5.2 Intuition behind the Algorithm 43

corresponds splitting the data from one of the present bins to new bins (bin
by bin). The sum outside collects all possible independent paths (Figure
5.1).

5 3 3 3

7 4 3

7

3

4

* *

**

+ + + + ...

c((3,2,2,0))

c((1,1,0,2))

c((1,0,1,1))

c((5,2,0,0))

c((0,1,3,0))

c((0,0,0,3))

+

Figure 5.1: Visualization of (5.4) with a couple of example paths. Data size is
14.

5.2 Intuition behind the Algorithm

Let us start with an example tree T , whose structure is (B ← A→ C → D).
We also consider first only k-compositions, because they are simpler to
handle. The normalizing sum for the given tree T is

CF (T) =
∑

t

∑

s

∑

u

∑

v

c(fA
t)c(fB

u |fA
t)c(fC

s |fA
t)c(fD

v |fC
s), (5.5)

where fX
i is the ith k-composition of variable X. Notice that the given

notation hides the data size n and the number of bins k. The sums go
over all possible sufficient data of each variable — all the k-compositions.
The items of the formula compose like probabilities to unconditional and
conditional terms. Conditional c-functions are taking the parent node’s
l-composition and turning it into the target node’s k-composition.

“book” — 2009/8/11 — 12:50 — page 44 — #52

44 5 Computing Stochastic Complexity for Bayesian Forests

We get more efficient computation by rearranging the sum formula
above. First we can make the observation that

∑

u

c(fB
u |fA

t) =

l
∏

i=1

CMN (k, yi), (5.6)

where yi is the number of data points in the ith bin of the parent variable A,
which has l bins. The result comes from the fact that we have l bins to split
and we can do these independently, as we do not have any fixed target k-
composition. Therefore the result corresponds to a product of multinomial
normalizing sums. We use a shorthand notation

∨

fX = (x1, . . . , xk)1 ∨
· · ·∨ (x1, . . . , xk)b, where b is a number of k-compositions of n. The symbol
∨

means that we accept any valid sufficient statistics for node X. Now
(5.6) has the form

c(
∨

fB|fA
t). (5.7)

Using this we can write
∑

t

c(fA
t)c(

∨

fB|fA
t)
∑

s

c(fC
s |fA

t)c(
∨

fD|fC
s), (5.8)

where s is the index over node A compositions and t is the index over node
C compositions. So far we have only used k-compositions, but we can easily
say that the sums go over indexes of k-partitions. In this case we have to
multiply c-functions by the previously presented m-functions. For example

CMN (k, n) =
∑

i

c(fX
i) =

∑

j

m(qX
j)c(qX

j), (5.9)

where i goes over k-compositions of X and j goes over k-partitions of X.
The latter sum of course has less terms. Now (5.8) can be written using the
matrix form and the previous modification as CF (T) = RA(LA

B⊙(MA
C LC

D)),
where ⊙ is the term-wise product (Hadamard product) between matrix
elements, R is a horizontal root node vector, M is an inner node matrix
and L is a vertical leaf node vector (Paper 5). We shall present these
components and operations in the next section.

5.3 Computation and Algorithm

Let X be the name of a node and Y be the name of its parent. Node X
has k values and node Y has l values. We also assume that node X has p
k-partitions and node Y has d l-partitions. The root node component is

RX =
[

m(qX
1) · c(qX

1) · · · m(qX
p) · c(qX

p)
]

, (5.10)

“book” — 2009/8/11 — 12:50 — page 45 — #53

5.4 Computation of Inner Node Matrices 45

the inner node component is of the form

MY
X =

m(qX
1) · c(qX

1 |qY
1) · · · m(qX

p) · c(qX
p |qY

1)
...

. . .
...

m(qX
1) · c(qX

1 |qY
d) · · · m(qX

p) · c(qX
p |qY

d)

(5.11)

and the leaf node component is

LY
X =

∑p
i=1 m(qX

i) · c(qX
i |qY

1)
...

∑p
i=1 m(qX

i) · c(qX
i |qY

d)

. (5.12)

The root node component is trivial to compute using the definition. The
leaf node component is easy to compute using observations (5.6) and (5.9).
The hard part is the inner node component, but we leave further discussion
on this topic until the next section.

After the components have been computed for nodes of the given forest,
we can compute the normalizing sum of the forest doing simply a matrix
computation. The computation is started from the leaf components and
continues level-wise until we end up at the root nodes. The operation
between siblings is the term-wise product and between a parent and a
child the normal matrix multiplication. The operation between root nodes
(trees) is also the term-wise product as we can interpret them to be siblings
without a parent (Figure 5.3). For example the normalizing sum for the
forest S=(B ← A → C → D, E → F) with two trees, can be written
as CF (S) = (RA(LA

B ⊙ (MA
C LC

D))) ⊙ (RELE
F). A pseudo-code for the basic

algorithm is given as Algorithm 5.2.

As the computation is done from leaves to roots, the heaviest operations
are matrix-vector-multiplications, which can be performed in quadratic
time. The result of this operation is a vector and therefore also the next
operation is at most a matrix-vector-multiplication. Notice that the sizes
of the matrices are determined by the number of k- and l-partitions. A
real computational obstacle is still the computation time of the inner node
matrices — the topic, which we will discuss next.

5.4 Computation of Inner Node Matrices

The definition of the inner node matrix does not really show us how to com-
pute it efficiently. The first observation is that if we remove the m-functions,
all the inner node matrices are actually sections of a bigger general matrix,

“book” — 2009/8/11 — 12:50 — page 46 — #54

46 5 Computing Stochastic Complexity for Bayesian Forests

ComputeNormalizingTerm(bayesforest){

ComputeRootVectors(bayesforest);

ComputeLeafVectors(bayesforest);

ComputeInnerMatrices(bayesforest);

foreach(tree){

go through all nodes level-by-level starting from leaves{

case: the node X is a leaf node{

set corresponding leaf vector L to the leaf node X;

}

case: the node X is an inner node{

V <- take the termwise product of already computed

child vectors of the node X;

W <- multiply corresponding inner matrix M with the product vector V;

set the result vector W to the inner node X;

}

case: the node X is a root node{

V <- take the termwise product of already computed

child vectors of the node X;

w <- multiply corresponding root vector R with the product vector V;

set value of the tree normalizing sum (w) to the root node X;

}

}

}

return(the product of tree normalizing sums (all w values) in root nodes);

}

Algorithm 5.2: A pseudo-code for computing the normalizing sum for a
forest.

which we call the core inner node matrix (Paper 5). Later we simply say
the core matrix.

First we have to fix the right ordering among partitions so that every
matrix (and vector) has partitions in the same order. Otherwise sections
consist only of arbitrary k-partitions and also multiplication operations
compute arbitrary things. We choose the ordering to be the following:
first, order k-partitions into blocks with respect to the number of zero bins
(starting with the maximum number of zeros). It means that partitions
in each block have the same number of zero bins. Then order each block
according to the inverse lexicographic ordering.

The core matrix has to consist of all terms c(qi | qj) that are needed
for computation at any node in the corresponding forest. We define the
general form of the core matrix to be

CM =

c(q
max(X)
1 |qmax(Y)

1) · · · c(q
max(X)
P |qmax(Y)

1)
...

. . .
...

c(q
max(X)
1 |qmax(Y)

D) · · · c(q
max(X)
P |qmax(Y)

D)

, (5.13)

where q
max(X)
i and q

max(Y)
j are K- and L-partitions. Value D is the number

“book” — 2009/8/11 — 12:50 — page 47 — #55

5.4 Computation of Inner Node Matrices 47

A

B C

D

E

F

* *

*

*

— ⊙ —

— ⊙ —

Figure 5.3: The operation between a parent and a child is the ordinary
matrix multiplication (*) and between siblings the term-wise product (⊙).

of L-partitions, where L is the maximum number of values that any inner
node’s parent has in the forest and P is the number of K-partitions, whereK
is the maximum number of values any inner node has in the forest. The idea
is now to take one by one all the needed sections of this matrix (Figure 5.4)
and multiply every matrix element by its corresponding m-function value.
In this way every inner node matrix can be achieved efficiently and there
is no need to compute the same elements several times. There still remains
one question: how to compute the core matrix itself efficiently? For that
we need generating polynomials and polytopes as we proposed in Paper 5
and we revise the idea again here.

Generating polynomials that we use have c-functions as coefficients. We
define them to be

P 0
k = 1 and (5.14)

P u
k =

∑

x1+x2+···+xk=u

c((x1, . . . , xk))z
x1
1 zx2

2 · · · z
xk

k , (5.15)

where u is less or equal to the data size. We take the product of these
polynomials with respect to some parent node’s l-partition (y1, . . . , yl):

T
(y1,...,yl)
k = P y1

k P y2

k · · ·P
yl

k (5.16)

and by extracting a coefficient with respect to the node’s k-partition, we
get the desired value of the conditional c-function:

c((x1, . . . , xk)|(y1, ..., yl)) = [zx1
1 · · · z

xk

k]T
(y1,...,yl)
k . (5.17)

In fact we can read all values of a single core matrix row from the same
product polynomial. However, the multiplication process also creates many

“book” — 2009/8/11 — 12:50 — page 48 — #56

48 5 Computing Stochastic Complexity for Bayesian Forests

Figure 5.4: Core matrix with values max(Y) = max(X) = 3 and n = 70 plotted.
Brighter pixel means bigger value, but for structural visibility purposes the picture
has been made brighter using image processing. Different regions are clearly visible:
2x2-partitions in the upper left corner, 2x3- and 3x2-partitions on up right and on
the left and 3x3 is the big area int the bottom right corner. Areas 1x1, 1x2 and
2x1 are not visible in the picture, because they are only one pixel wide.

terms that do not correspond to any desired value. We can reduce the
number of nuisance terms by truncating the multiplication process by using
restricting polytopes.

The first step in the polytope description is to observe that although
we have k-parameters that are (x1, . . . , xk), we only need k−1 parameters,
because every k-composition sums into the same value — namely n. One
parameter is therefore irrelevant and we need only k − 1 parameters to
represent each of our k-compositions. After this we map c(x1, . . . , xk) to the
coordinate (x2, . . . , xk). Thus we omit the biggest term x1, in k-partition
representation, to make our term space as small as possible during the
multiplication process.

Restricting polytopes consists of two different kinds of inequalities. The

“book” — 2009/8/11 — 12:50 — page 49 — #57

5.4 Computation of Inner Node Matrices 49

first type is

0 ≤ xi ≤
⌊n

i

⌋

, (5.18)

where i goes from 2 to k. This defines a restricting hyper-rectangle that con-
sists of all required terms, because two-sided inequalities define the biggest
possible number of data points that each bin can have in the k-partition
representation.

The second type of inequalities describe additional restrictions, which
are also caused by the fact that according to our representation, bin values
are obeying the decreasing order. They describe situations where several
bins have the same number of data points. All the inequalities are achieved
by finding valid splittings between bins of k-partition and multiplying them
by a number of xi:s in each group. For example, 4-partitions have three
different splittings {x1x2|x3x4, x1x2|x3|x4, x1x2x3|x4}, where vertical bars
mean borders between different groups. Notice that as the count x1 is
redundant, there cannot be a split between x1 and x2, so x1 and x2 are
always in the same group. We get the following three inequalities:

2x2 + 2x4 ≤ n, 2x2 + x3 + x4 ≤ n, 3x3 + x4 ≤ n. (5.19)

Together all these inequalities define the wanted polytope. All the points
of the integer lattice are needed and none of the points outside the lattice.

The only remaining question is how to do the multiplication. Let us
do multiplication using two polytopes P1 and P2. The polytope formed
in this process is a result polytope and denoted by P. We get the value
of the given result polytope lattice point (v1, . . . , vr), where r = k − 1, by
computing

P(v1, . . . , vr) =
v1
∑

w1=0

· · ·
vr
∑

wr=0

P1(w1, . . . , wr) · P2(v1 − w1, . . . , vr − wr), (5.20)

which is naturally a higher order discrete convolution formula. The formula
is used for all the points inside the corresponding polytopes. The terms
outside are just ignored and therefore equal to zero.

The final big modification to make computation more efficient is to take
advantage of symmetries. This part was not described in Paper 5 due to lack
of space. Our integer lattice points are actually k-compositions, not only
k-partitions. Now changing the order of bins gives us the same conditional
c-function values. Thus inside the polytope there are many equal values
on different sides of the symmetry axes. For example in the 3-partitions

“book” — 2009/8/11 — 12:50 — page 50 — #58

50 5 Computing Stochastic Complexity for Bayesian Forests

case we have a symmetry axis x2 = x3 and for example lattice points (2, 1)
and (1, 2) have the same c-function value (Figure 5.5). The algorithm can
utilize these axes so that if some of these points are already computed, the
algorithm does not compute the same result again using (5.20).

x = x2 3

(9,9)(0,9)

(0,0)

(14,0)

x2

x3

c((12,10,6))

Figure 5.5: An example of a symmetry inside the polytope, where we have three
bins and 28 data vectors.

Even with these enhancements the algorithm has no use in most real-
life cases. A rough upper-bound approximation of efficiency says that the
number of basic operations (ordinary sums and products) is O(n2K+L−3 +
HnK+L−2), where H is the number of inner nodes in the forest, K is the
maximum number of values that any inner node has and L is the maximum
number of values that any inner node’s parent has. Probably a better way
to compute the normalizing sum for more complicated structures is to use a
Monte Carlo simulation as suggested in paper [39]. However, the proposed
floating-point algorithm is useful in the binary case with time complexity
O(n3), because MC simulation cannot give results with full floating-point
precision. Another possible use for this proposed algorithm is to verify the
correctness of other simulation algorithms developed in the future.

Our final observation is that a recurrence analogous to (4.7) for the
Naive Bayes normalizing sum based on rational generating functions seem
to work also for the leaf variables. Our implementation does not allow us
to test the recurrence in a case of root or inner node variables. This obser-
vation raises open questions and may eventually lead to the development
of more useful algorithms.

“book” — 2009/8/11 — 12:50 — page 51 — #59

Chapter 6

Conclusions

In this Thesis we have presented methods for computing the normaliza-
tion sums of the normalized maximum likelihood (NML) in the case of
simple Bayesian network models — single multinomial, Naive Bayes and
Bayesian Forest models. Without efficient computation methods of nor-
malizing sums, we cannot use NML-based model selection in practical ap-
plications. Several case studies have shown that the NML criterion chooses
good models even with small data sets. If the fundamental information-
theoretic base is accepted, the criterion can be seen to give an objective
method, without any subjective parameters, for model selection.

We presented how to compute the normalizing sums for the multinomial
and Naive Bayes models using Maple. For the multinomial normalizing
sum we developed a fast fixed precision sub-linear algorithm for floating-
point computation. For the Naive Bayes normalizing sums we defined a
computational framework based on basic series and exponentiation of it.
For the normalizing sums of Bayesian tree models we presented a method
that uses matrix components. If the core matrix for a given data size is
computed and stored, model search can be done relatively fast, because the
problem of computing the normalizing sum factorizes efficiently to matrix
components. The main task is then to do ordinary matrix computation,
unfortunately, with huge matrices. We also developed an algorithm for core
matrix computation that is using generating polynomials and polytopes.

This Thesis gives some new directions for future work. The most impor-
tant subject of research is of course actual the performance of the stochastic
complexity in model selection with real life-data sets. These tests can now
be performed also with Bayesian trees. We also initiated the discussion on
fixed precision computation in the most simple case. This framework can
also be expanded for more complex models. Related to this, a very impor-
tant question that we did not answer is, what is the optimal precision given

51

“book” — 2009/8/11 — 12:50 — page 52 — #60

52 6 Conclusions

data size and a multinomial model? Optimal in this case means the small-
est possible precision that gives the correct answer by the NML criterion.
A very promising direction for efficient computation of normalizing sums is
Monte Carlo simulation and the previous question about optimal precision
is highly relevant also in this case. Another open issue is how to expand
the matrix component framework for general Bayesian networks. This may
not be interesting for application purposes, but it gives more information
about the problem and also gives correct answers that can be compared
with the results given by approximation and simulation methods. A more
elaborate analysis could be done also for core matrices: is there some good
approximation for the values of the elements or can they be computed even
more efficiently? Finally, the initial questions that inspired also this re-
search concern the problem of finding the generating functions and efficient
recurrence formulas for more complex probabilistic graphical models.

“book” — 2009/8/11 — 12:50 — page 53 — #61

References

[1] M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical
Functions. Dover Publications, Inc., New York, 1970.

[2] G.B. Arfken and H.J. Weber. Mathematical Methods for Physicists.
Academic Press, 4th edition, 1995.

[3] V. Balasubramanian. MDL, Bayesian inference, and the geometry of
the space of probability distributions. In P. Grünwald, I.J. Myung, and
M. Pitt, editors, Advances in Minimum Description Length: Theory
and Applications, pages 81–98. The MIT Press, 2006.

[4] C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy,
and D. Gouyou-Beauchamps. Generating functions for generating
trees. Discrete Mathematics, 246(1-3):29–55, March 2002.

[5] W. Buntine. Theory refinement on Bayesian networks. In
B. D’Ambrosio, P. Smets, and P. Bonissone, editors, Proceedings of
the Seventh Conference on Uncertainty in Artificial Intelligence, pages
52–60. Morgan Kaufmann Publishers, 1991.

[6] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E.
Knuth. On the Lambert W function. Advances in Computational
Mathematics, 5:329–359, 1996.

[7] T. Cover and J. Thomas. Elements of Information Theory. John Wiley
& Sons, New York, NY, 1991.

[8] A. Di Bucchianico. Introduction to umbral calculus. 1998. Lecture
notes. Unpublished.

[9] E. Dudewicz and S. Mishra. Modern Mathematical Statistics. John
Wiley & Sons, 1988.

[10] W. Feller. An Introduction to Probability Theory and Its Applications.
John Wiley & Sons, 3rd edition, 1968.

53

“book” — 2009/8/11 — 12:50 — page 54 — #62

54 References

[11] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge
University Press, 2009.

[12] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics
(second edition). Addison-Wesley, 1994.

[13] P. Grünwald. The Minimum Description Length Principle. MIT Press,
2007.

[14] D. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian
networks: The combination of knowledge and statistical data. Machine
Learning, 20(3):197–243, September 1995.

[15] P. Henrici. Automatic computations with power series. Journal of the
ACM, 3(1):11–15, January 1956.

[16] S. Janson, D.E. Knuth, T. Uczak, and B. Pittel. The birth of the giant
component. Random Structures and Algorithms, 4(3):233–358, 1993.

[17] F. Jensen. An Introduction to Bayesian Networks. UCL Press, London,
1996.

[18] D.E. Knuth. The Art of Computer Programming, vol. 2 / Seminumer-
ical Algorithms (third edition). Addison-Wesley, 1998.

[19] D.E. Knuth and B. Pittel. A recurrence related to trees. Proceedings
of the American Mathematical Society, 105(2):335–349, 1989.

[20] P. Kontkanen and P. Myllymäki. A linear-time algorithm for com-
puting the multinomial stochastic complexity. Information Processing
Letters, 103(6):227–233, 2007.

[21] P. Kontkanen and P. Myllymäki. MDL histogram density estimation.
In M. Meila and S. Shen, editors, Proceedings of the Eleventh Interna-
tional Conference on Artificial Intelligence and Statistics, March 2007.

[22] P. Kontkanen, P. Myllymäki, W. Buntine, J. Rissanen, and H. Tirri.
An MDL framework for data clustering. In P. Grünwald, I.J. Myung,
and M. Pitt, editors, Advances in Minimum Description Length: The-
ory and Applications. The MIT Press, 2006.

[23] P. Kontkanen, H. Wettig, and P. Myllymäki. NML computation algo-
rithms for tree-structured multinomial Bayesian networks. EURASIP
Journal on Bioinformatics and Systems Biology, 2007.

“book” — 2009/8/11 — 12:50 — page 55 — #63

References 55

[24] P. Kontkanen, H. Wettig, and P. Myllymäki. Nml computation algo-
ritms for tree-structured multinomial Bayesian networks. EURASIP
Journal on Bioinformatics and Systems Biology, 2007.

[25] G. Korodi and I. Tabus. An efficient normalized maximum likelihood
algorithm for DNA sequence compression. ACM Trans. Inf. Syst.,
23(1):3–34, 2005.

[26] G. Korodi and I. Tabus. Normalized maximum likelihood model of
order-1 for the compression of dna sequences. In Proceedings of the
2007 Data Compression Conference, Snowbird, Utah, USA, March
2007.

[27] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and
Its Applications. Springer Verlag, 1997.

[28] L. Lipshitz. D-finite power series. Journal of Algebra, 122:353–373,
1989.

[29] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography. CRC Press LLC, 1997.

[30] A. Orlitsky, N. Santhanam, K. Viswanathan, and J. Zhang. On mod-
eling profiles instead of values. In Proceedings of the 20th Conference
in Uncertainty in Artificial Intelligence, 2004.

[31] J. Pearl. Causality: Models, Reasoning and Inference. Cambridge
University Press, 2000.

[32] M. Petkovsek, H. S. Wilf, and D. Zeilberger. A=B. AK Peters, Ltd.,
1996.

[33] J. Rissanen. Modeling by shortest data description. Automatica,
14:445–471, 1978.

[34] J. Rissanen. Stochastic complexity. Journal of the Royal Statistical
Society, 49(3):223–239 and 252–265, 1987.

[35] J. Rissanen. Fisher information and stochastic complexity. IEEE
Transactions on Information Theory, 42(1):40–47, January 1996.

[36] J. Rissanen. Information and Complexity in Statistical Modeling.
Springer, 2007.

[37] S. Roman. The Umbral Calculus. Dover, 2005.

“book” — 2009/8/11 — 12:50 — page 56 — #64

56 References

[38] T. Roos. Statistical and Information-Theoretic Methods for Data-
Analysis. PhD thesis, Report A-2007-4, Department of Computer
Science, University of Helsinki, 2007.

[39] T. Roos. Monte carlo estimation of minimax regret with an application
to mdl model selection. In Proceedings of the IEEE Information Theory
Workshop, Porto, Portugal, May 2008.

[40] F. Ruskey. Combinatorial Generation. Unpublished.

[41] Yu.M. Shtarkov. Universal sequential coding of single messages. Prob-
lems of Information Transmission, 23:3–17, 1987.

[42] T. Silander, P. Kontkanen, and P. Myllymäki. On sensitivity of the
MAP Bayesian network structure to the equivalent sample size param-
eter. In R. Parr and L. van der Gaag, editors, Proceedings of the 23rd
Conference on Uncertainty in Artificial Intelligence, pages 360–367.
AUAI Press, 2007.

[43] T. Silander, T. Roos, P. Kontkanen, and P. Myllymäki. Factorized
normalized maximum likelihood criterion for learning bayesian net-
work structures. In Proceedings of the 4th European Workshop on
Probabilistic Graphical Models (PGM-08), pages 257–264, Hirtshals,
Denmark, 2008.

[44] H. Steck. Learning the bayesian network structure: Dirichlet prior
vs. data. In Proceedings of the 24th Conference on Uncertainty in
Artificial Intelligence (UAI), July 2008.

[45] W. Szpankowski. Average case analysis of algorithms on sequences.
John Wiley & Sons, 2001.

[46] I. Tabus and G. Korodi. Genome compression using normalized maxi-
mum likelihood models for constrained markov sources. In Proceedings
of the 2008 IEEE Information Theory Workshop, Porto, Portugal, May
2008.

[47] J. Wimp. Computation with Recurrence Relations. Pitman Publishing
Ltd., 1984.

[48] G. M. Ziegler. Lectures on Polytopes. Springer, 2007.

“book” — 2009/8/11 — 12:50 — page 57 — #65

Corrections

Paper 1

Equation (3): SC(xn | M) = − log. . .

Page 20, row 9: . . . equivalent to nnC(L, n) by. . .

Page 20, 2nd col, row 8: . . . the solutions of these new confluent hy-
pergeometric equations can be defined using confluent . . .

Page 20, 2nd col, Proof of Theorem 3: . . . all the extra sum . . .

Paper 3

Equation (15): p0(i)a(i) + p1(i)a(i + 1) + · · ·+ pr(i)a(i + r) = 0,
i, r ∈ N,

Page 285, 2nd col, row 3: g(x1, . . . , xm) =
∑

i1,··· ,im
a(i1, . . . , im)xi1

1 · · · xim
m

Page 285, 2nd col, row 7: g1,...,s
is+1,...,im

(x1, . . . , xs) =
∑

i1,...,is
a(i1, . . . , im)xi1

1 · · · xis
s

Proof of Theorem 2: f1
1 (z) =

∑∞
n=0 C(1, n)nn zn

n! = · · · (x1 = z, x2 =
u)

Theorem 3:
∑r2

l=0 pl(L, n) C(L, n− l) (n−l)n−l

(n−l)! = 0

Proof of Theorem 3: . . . sequence C(L, n)nn

n! is . . .

Correction of an consequence of Theorem 3: For the vertical fam-
ily there cannot be a homogeneus linear recurrence equation, but this in
fact does not prove that the same applies also for the sequence of C(L, n)
over the variable n (The wrong consequence is mentioned in Abstract and
Conclusions).

57

Paper 1

Tommi Mononen and Petri Myllymäki:

On the Multinomial Stochastic Complexity and its Con-
nection to the Birthday Problem

In Proceedings of the International Conference on Information The-
ory and Statistical Learning, ITSL’08 (Las Vegas, Nevada, USA),
pages 17-22, CSREA Press, 2008.

c©2008 CSREA Press. Reprinted with permission.

On the Multinomial Stochastic Complexity and its

Connection to the Birthday Problem

Tommi Mononen

Helsinki Institute for Information Technology

Helsinki, Finland

tommi.mononen@hiit.fi

Petri Myllymäki

Helsinki Institute for Information Technology

Helsinki, Finland

petri.myllymaki@hiit.fi

Abstract—The Minimum Description Length (MDL) is an
information-theoretic principle that can be used for model selec-
tion and other statistical inference tasks. A central concept in this
framework is stochastic complexity, defined nowadays for a given
parametric model class via the Normalized Maximum Likelihood
(NML) distribution. In this paper we focus on the parametric
model class of a single multinomial variable, as this case forms
a very important building block for more complex models. We
show that the computationally demanding normalization term of
the multinomial NML can be written in a simple and effective
form by using tools of umbral calculus. The time complexity
of computing the exact form is O(n), where n is the number
of data points. We also give two different descriptions for
the normalization term using sets of confluent hypergeometric
functions, show an interesting connection between the birthday
problem and our problem, and demonstrate how the results can
be exploited in practice.

Index Terms—Minimum description length, normalized max-
imum likelihood, birthday problem, umbral calculus, confluent
hypergeometric function.

I. INTRODUCTION

Stochastic complexity (SC) is an information-theoretic

model selection criterion, which can be seen as a theoreti-

cal instantiation of the minimum description length (MDL)

principle [15], [7]. Intuitively speaking, the basic idea is that

the best model for the data is the one which results in the

shortest description for the data together with the model. There

are many proposed ways to define the stochastic complexity

formally; one theoretically solid way is to use the normalized

maximum likelihood (NML) distribution.

In the following, let M denote a parametric model, θ̂(xn)
the maximum likelihood parameters of the model and x

n a

matrix of observations (from a discrete alphabet). The NML

distribution is defined as

PNML(xn | M) =
P (xn | θ̂(xn),M)

∑

yn P (yn | θ̂(yn),M)
(1)

=
P (xn | θ̂(xn),M)

C(M, n)
, (2)

where in the numerator we have the maximum likelihood of

our observed data and in the denominator we have the sum

of maximum likelihoods over all the discrete data sets of the

same size [19] (denoted in the sequel by C(M, n)).

One way to define the stochastic complexity is to take

negative logarithm of (2). This gives us the formula

SC(M|xn) = − log
P (xn | θ̂(xn),M)

C(M, n)
. (3)

The basic model selection task is to compute the value

of this model selection criterion for parametric models of

different complexity and choose the one for which this value

is minimized given the observed data.

The single multinomial variable model is an important

building block for building more complex models for discrete

data (see e.g. [13], [17]). For computing the NML in this

case, we have to be able to calculate the numerator and the

denominator of (2) in the multinomial case. In the following,

we simplify the notation and leave out M: the model is
implicitly defined by the number of values of the multinomial

variable, denoted by L. The numerator is now

P (xn | θ̂(xn), L) =

L
∏

k=1

(

hk

n

)hk

, (4)

where hk is a number of data points assigned to the kth value.

The denominator is

C(L, n) =
∑

h1+···+hL=n

n!

h1! · · ·hL!

L
∏

k=1

(

hk

n

)hk

, (5)

which is the sum of maximum likelihoods and summation goes

over every possible data of length n. The time complexity of

computing the denominator using the definition is O(nL−1),
which is a very heavy operation. However, there exists a so

called exponential generating function (EGF) whose coeffi-

cients represent every normalizing term given the number of

outcomes L. The generating function is

∞
∑

n=0

C(L, n)nn zn

n!
=

(

∞
∑

n=0

nn zn

n!

)L

=

(

1

1− T (z)

)L

, (6)

where T (z) is called a tree function [9], [8]. This func-
tion has a close relation to Lambert’s W-function, given by

T (z) = −W (−z). The W-function has numerous applications
in mathematics and physics [3]. The generating function has

been used for proving an recurrence formula, which can be

17

used to compute the normalizing terms efficiently [12]:

C(1, n) = 1, (7)

C(2, n) =

n
∑

k=0

(

n

k

)(

k

n

)k (
n− k

n

)n−k

and (8)

C(L, n) = C(L− 1, n) +

(

n

L− 2

)

C(L− 2, n). (9)

The time complexity for computing one normalizing term is

therefore O(n + L).
The main target of this paper is to show that for the

multinomial normalizing term there is also a direct and com-

pact representation which can be directly used with existing

mathematical software packages. What is more, using this new

form we can reduce in the floating point computations the time

complexity to O(n). We also show that the classic birthday
problem [4] has a very close connection to the NML, and

therefore any method used in solving one of the two problems

can be transferred easily to the other problem. The birthday

problem itself has many application areas such as random

mappings and population estimation [14].

Although our final form for the multinomial normalizing

term is quite simple, we need quite heavy mathematical tools

to prove the result. We start by introducing the needed basic

tools of umbral calculus.

II. UMBRAL CALCULUS

Umbral calculus gives us a collection of efficient tools for

solving certain kind of combinatorial problems. We are not

giving a general introduction to umbral calculus, but we are

just introducing tools, that are relevant in the derivation of our

results. We also omit the mathematically more neater operator

notation [18] and use Roman’s notation [16], because we find

it more accessible.

If we have polynomials of binomial or convolution type,

we can derive seemingly complicated results using general

tools of umbral calculus. For example Donald Knuth kind of

rediscovered the umbral calculus in his hands-on article [8].

The next definition gives us the class of problems for which

we can apply these tools:

Definition 1 A sequence (sn(x)) = (s0(x), s1(x), . . .) is
called Sheffer sequence iff its generating function has the form

∑

∞

k=0 sk(x) zk

k! = A(z)exB(z),

where

A(z) = a0 + a1z + a2z
2 + · · · ,

B(z) = b1z + b2z
2 + · · ·

are formal power series and coefficient a0 6= 0 and coefficient
b1 6= 0.

Luckily our generating function is even simpler and therefore

we can use a subclass of Sheffer sequences called associated

sequences.

Definition 2 If A(z) = 1 we say that Sheffer sequence is
associated sequence. Now (sn(x)) is associated to the inverse
function of B(z), which we call functional and denote by
B(t).

We show two examples to clarify our basic concepts. We

present the rising factorial polynomials and Abel polynomials

[16].

We denote the rising factorial polynomial by

(x

a

)k

=
(x

a

)(x

a
+ 1
)

· · ·
(x

a
+ k − 1

)

. (10)

We will later need only the rising factorial polynomials with

a = 1, so we restrict our example to this special case. The
generating function for these rising factorial polynomials is

∞
∑

k=0

pk(x)
zk

k!
=

∞
∑

k=0

xk zk

k!
=

(

1

1− z

)x

(11)

= ex(− ln(1−z)) = exR(z), (12)

where sequence of pn(x) = xn is called associated sequence,

because the generating function is in that form. The sequence

of pn(x) is associated to the backward difference functional
R(t) = 1 − e−t. We get this functional by computing the

inverse function of R(z) = − ln(1− z).
Our second polynomial family is the Abel polynomials.

They are of the form

x(x − bn)n−1, (13)

where b is a non-zero constant. Again we make restriction b =
−1, because we need this case later. The generating function
of these restricted polynomials is

∞
∑

k=0

qk(x)
zk

k!
=

∞
∑

k=0

x(x + k)k−1 zk

k!
= (14)

ex(−W (−z)) = exS(z), (15)

where the sequence of qn(x) = x(x+n)n−1 is the associated

sequence type and W (z) is previously mentioned Lambert’s
W-function. The associated sequence (qn(x)) is associated to
Abel functional S(t) = te−t, which is the inverse function of

S(z) = −W (−z) = T (z).
We will need both of these polynomial classes later in

proving the theorem 1. The following proposition shows us

what kind of sequence we get by taking a composition of two

generating functions of associated sequence type.

Proposition 1 (Umbral composition)

(pn(x)) is associated to M(t) and
(qn(x)) is associated to N(t) then

(
∑n

k=0 qn,kpk(x)) is associated to N(M(t)),
where qn(x) =

∑n

k=0 qn,kxk.

As the proposition says, we have to expand each coefficient

of the outer series as a finite sum from 0 to n to achieve the

composition series.

18

III. MULTINOMIAL NORMALIZING TERMS

Now we are ready to prove two theorems. The first one is

for connecting existing results to our problem and the second

one gives a neater but equivalent form, which we prefer to use

later on. The result of the first theorem has been mentioned

(without a formal proof) also in [8], [9].

Theorem 1 The multinomial normalizing term has a formula

C(L, n) =
n−1
∑

k=0

(

n− 1

k

)

Lk+1n−1−k,

where Lk+1 = L(L + 1) · · · (L + k) is a rising factorial and
n ≥ 1, L ≥ 1 and n, L ∈ N.

Proof: First we have to do some standard mathematical

operations for the generating function to get it right form:

(

1

1− T (z)

)L

= e
L ln(1

1−T (z)).

From this form we can see that there must be an associated

sequence, because A(z) = 1 and the generating function is
otherwise in the sought form. We denote the inverse of the

functional by F (z) = ln
(

1
1−T (z)

)

. Now we have to find out

the functional by inverting this function:

t = ln

(

1

1− T (z)

)

et =
1

1− T (z)

T (z) = 1− e−t

z = (1− e−t)e−(1−e−t).

We notice that F (t) is the composite functional:

F (t) = S(R(t)) = (1− e−t)e−(1−e−t),

where

R(t) = 1− e−t and S(t) = te−t.

These functionals we already discussed: R(t) is the backward
difference functional, which is associated to rising factorial

polynomials pn(x) = xn. Functional S(t) is Abel functional,
which is associated to Abel polynomials qn(x) = x(x+n)n−1.

We can use the umbral composition to get the sequence

associated to F (t).
First we have to figure out the finite sum of qn,k terms,

which produces qn(x) term. We can do this by relaying on
the binomial theorem [6]:

qn(x) = x(x + n)n−1 = x

n−1
∑

k=0

(

n− 1

k

)

xknn−1−k

=

n−1
∑

k=0

(

n− 1

k

)

nn−1−kxk+1 =

n−1
∑

k=0

qn,k+1x
k+1.

As we now know the qn,k-terms, we can use the umbral

composition. However, first notice that qn,0 = [x0]qn(x) = 0,
because there is no constant term in the sum. Let us use the

umbral composition:

n
∑

k=0

qn,kpk(L) =

n
∑

k=1

qn,kpk(L) =

n−1
∑

k=0

qn,k+1pk+1(L)

=

n−1
∑

k=0

(

n− 1

k

)

nn−1−kLk+1 = nnC(L, n).

Finally we divide the both sides of last equality by nn.

To prove our second theorem, we need first to introduce the

Lagrange inversion formula. There are many different versions

of this formula, but we prefer the third one presented in [16].

Proposition 2 The Lagrange inversion formula is

[zn]G(H(z)) = [zn]G(z)H ′(z)

(

H(z)

z

)

−n−1

,

where G(z) is any formal power series and H(z) is any formal

power series with the zero constant term.

By using this formula we can now easily achieve the desired

nice form:

Theorem 2 The multinomial normalizing term can be written

as

C(L, n) =

n
∑

k=0

(

n

k

)

(L− 1)
k

nk
,

where n ≥ 1, L ≥ 1 and n, L ∈ N.

Proof: Although the two forms do not look so different,

it might be the case that it is easier to prove also this second

form starting from the generating function. And this we will

do. We want to apply the Lagrange inversion formula, so we

start by looking the generating function:

[zn]

(

1

1− T (z)

)L

= [zn]

(

1

1−H(z)

)L

= [zn]G(H(z)),

thus we get

G(z) =

(

1

1− z

)L

and H(z) =
z

ez
.

The function H(z) is the inverse of the tree function. Now we
can apply the Lagrange inversion formula:

[zn]

(

1

1− T (z)

)L

= [zn]G(z)H ′(z)

(

H(z)

z

)

−n−1

= [zn]

(

1

1− z

)L

e−z(1− z)

(

z

zez

)

−n−1

= [zn]

(

1

1− z

)L−1

enz.

19

We notice that now we have a product of two functions and

we can separately look at their formal power series:

(

1

1− z

)L−1

=

∞
∑

k=0

(L − 1)
k zk

k!
=

∞
∑

k=0

pk(L− 1)
zk

k!
and

enz =

∞
∑

k=0

nk zk

k!
=

∞
∑

k=0

vk(n)
zk

k!
.

The final step is just to apply the binomial convolution [16]

to get the nth coefficient of (16):

n
∑

k=0

(

n

k

)

pk(L− 1) vn−k(n) =

n
∑

k=0

(

n

k

)

(L− 1)
k
nn−k

= nn

n
∑

k=0

(

n

k

)

(L− 1)k

nk
,

which is of course equivalent to nnC(L, k) by (6).
When we use the falling factorial polynomials

xk = x(x − 1) · · · (x − k + 1), (16)

together with the result of the previous theorem, we get

n
∑

k=0

(

nk

nk
·
(L− 1)

k

k!

)

. (17)

It is easy to see that we can meet the time complexity O(n)
without any approximation steps. In the case L = 2, terms of
this sum are in the Ramanujan Q-function form [11], [5].

In the next chapter we show a connection between these two

forms and confluent hypergeometric functions. The description

via hypergeometric functions also supports the claim that the

form of Theorem 2 is neater.

IV. NORMALIZING TERMS VIA HYPERGEOMETRIC

FUNCTIONS

In the previous section we showed how to compute the

normalizing term of a multinomial variable. We gave two

different looking, but equal formulas. Now we show that these

formulas can be presented via generalized hypergeometric

functions. The motivation for doing this is that most mathe-

matical software packages have built-in libraries for handling

this kind of functions. These hypergeometric forms are also

easier to remember and they are also more convenient when

constructing more complex formulas.

A generalized hypergeometric function is of form

∞
∑

k=0

ckzk = pFq

(

a1, a2, · · · , ap

b1, b2, · · · , bq

∣

∣

∣

∣

z

)

=
∞
∑

k=0

a1
ka2

k · · · ap
k

b1
kb2

k · · · bq
k

zk

k!
,

where ai:s and bj :s are complex numbers [6]. Constant p is

the number of rising factorial terms in the numerator and q

is the number of rising factorial terms in the denominator.

The notation pFq indicates the general structure of a given

generalized hypergeometric function. These functions have

a nice property that coefficients of successive terms of a

hypergeometric series can be defined as a ratio. This ratio

is

ck+1

ck

=
(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)(k + 1)
.

The solutions of the hypergeometric differential equation are

hypergeometric functions 2F1. If the hypergeometric differ-

ential equation is degenerated so that two singularities are

merged together, the solutions of this new confluent hyper-

geometric equation are confluent hypergeometric functions of

type 1F1 and 2F0 [2].

Our target is to show that each multinomial normalizing

term can be written as a confluent hypergeometric function

2F0 evaluated in a certain point, but first we need to look at

two well known rising factorial identities.

Proposition 3 The rising factorial of a negative integer num-

ber (−x) can be written as (−x)
k

= (−1)k(x − k + 1)
k
.

Proposition 4 The rising factorial of a positive integer num-

ber x can be written using factorials as xk = (x+k−1)!
(x−1)! .

We can now prove the connection between the NML nor-

malizing term and confluent hypergeometric functions. First

we convert the result in Theorem 1 into hypergeometric form

by using the previous propositions and other basic operations.

Theorem 3 The first form represented via a confluent hyper-

geometric function is C(L, n) = L
n 2F0

(

L + 1,−n + 1
—

∣

∣

∣

∣

− 1
n

)

.

Proof:

C(L, n) =

n−1
∑

k=0

(

n− 1

k

)

Lk+1n−1−k (18)

=
1

n

n−1
∑

k=0

(n− 1)!

k!(n− k − 1)!
Lk+1

(

1

n

)k

(19)

=
1

n

n−1
∑

k=0

(n− k)
k
Lk+1 (1

n
)k

k!
(20)

=
1

n

n−1
∑

k=0

(−1)k(−n + 1)
k
Lk+1 (1

n
)k

k!
(21)

=
L

n

n−1
∑

k=0

(−n + 1)k(L + 1)k (− 1
n
)k

k!
(22)

=
L

n
2F0

(

L + 1,−n + 1
—

∣

∣

∣

∣

−
1

n

)

. (23)

In step (20) we used Proposition 4 and in step (21) we used

Proposition 3. In the last step we move from the finite sum

to the infinite sum. As (−n + 1)
k
is zero for every integer k

bigger than n− 1, also all the external sum terms are.
This result essentially says that we can compute the nor-

malizing term C(L, n) by taking the confluent hypergeometric
function 2F0(L+1,−n+1;−; z) and evaluating it in the point

20

z = − 1
n
. Unfortunately we have also the multiplier L

n
in front

of our function.

We can now ask what happens if we do the same simplifi-

cation with our second formula. It appears that it gives a very

similar result except that the irritating multiplier disappears:

Theorem 4 The second form represented via a confluent

hypergeometric function is C(L, n) = 2F0

(

L− 1,−n

—

∣

∣

∣

∣

− 1
n

)

.

Proof: Omitted (quite similar to the previous proof).

The two previous theorems give us an identity which seems

to be quite hard to prove with straightforward manipulation

as the two sets of confluent hypergeometric functions are

different.

Theorem 5 Given n ≥ 1, L ≥ 1 and n, L ∈ N, the following

is true: 2F0

(

L− 1,−n

—

∣

∣

∣

∣

− 1
n

)

= L
n 2F0

(

L + 1,−n + 1
—

∣

∣

∣

∣

− 1
n

)

.

Proof: Nothing to prove anymore.

We will need the identity later with the birthday problem,

and also we need the following definition [1]:

Definition 3 2F0

(

a, 1 + a− b

—

∣

∣

∣

∣

− 1
z

)

= zaU(a, b, z), where

U(a, b, z) is the hypergeometric (Kummer’s) U-function.

Using this definition we can for example write the result of

Theorem 4 also in the form nL−1U(L−1, L+n; n), but then
we are again facing an annoying multiplier. This is the reason

why we prefer the 2F0-notation, although some may argue that

the U -function notation would be a more natural choice.

V. CONNECTION TO THE BIRTHDAY PROBLEM

The birthday problem (paradox) is a well-known and classi-

cal problem of probability theory [4]. The basic idea is just to

answer the following question: How many people on average

we need so that at least two of them have the same birthday?

(also other questions exist). In general we can compute the

probability that if we already know k − 1 distinct birthdays,
what is the probability that the kth person’s birthday is some

of these. This probability is

P (n)(X = k) =
(k − 1)nk−1

nk
=

(k − 1)n!

nk(n− k + 1)!
, (24)

where n is the number of days. In the birthday problem n

is usually 365. To answer the question, we must compute

the expected value. Surprisingly the answer is as low as 25,

because E(X)=24,6166. It is shown [14] that in general the
expectation can be computed for example using formula

E(X) =
n!

nn

n
∑

k=0

nk

k!
=
(e

n

)n

Γ(n + 1, n), (25)

where Γ(α, x) is the incomplete gamma function. This same
formula gives us also the value of the binomial normalizing

term, which can be easily seen by starting from Theorem 2:

C(2, n) =

n
∑

k=0

(

n

k

)

1k

nk
=

n
∑

k=0

(

n

k

)

k!

nk
= n!

n
∑

k=0

1

(n− k)!nk

=
n!

nn

n
∑

k=0

nn−k

(n− k)!
=

n!

nn

n
∑

k=0

nk

k!
.

So the binomial normalizing term is identical to the ex-

pectation of the birthday problem, and it is natural to ask

whether there is a similar counterpart in the birthday problem

framework for the multinomial normalizing term as well. In

the following we show that the counterpart is given by the

rising factorial moments.

The rising factorial moments can be utilized in computation

of the variance and other central moments as represented in

[14]. These rising factorial moments for the birthday problem

can be computed using formula

E(Xm) = E(X(X + 1) · · · (X + m− 1)) (26)

= (m + 1)!nm+1U(m + 2, m + n + 2; n), (27)

where U(a, b; z) is the hypergeometric U-function.

Proposition 5 The connection between the multinomial nor-

malizing term and the rising factorial moments of the birthday

problem is defined by the identity E(Xm) = m!C(m + 1, n).

Proof:

E(Xm) =

(

m!

m!

)

(m + 1)!nm+1U(m + 2, n + m + 2, n)

= m!

(

m + 1

n

)

nm+2U(m + 2, n + m + 2, n)

= m!

(

m + 1

n

)

2F0

(

m + 2,−n + 1
—

∣

∣

∣

∣

−
1

n

)

(28)

= m!C(m + 1, n).

We applied Theorem 3 to the form (28), to get the result.

We can now immediately notice two important implications.

First, the recurrence formula (9) is suitable also in the compu-

tation of the rising factorial moments of the birthday problem.

The modified recurrence formula is

E(Xm) = mE(Xm−1) + nmE(Xm−2). (29)

The second implication is that by Theorems 2 and 5, the rising

factorial moments of the birthday problem can be computed

also using formula

E(Xm) = m!

n
∑

k=0

(

n

k

)

mk

nk
. (30)

Other implications we leave to the reader to derive. However,

we mention one approximation result, which may not be well-

known in the area of the birthday problem and the related ap-

plications: Szpankowski has derived an approximation formula

for the redundancy rate of memoryless sources [20] and this

formula has been later noticed to be also an approximation

of the logarithm of the multinomial normalizing term [10].

21

It is quite accurate for large n. One might consider to use

this approximation formula in cases where even the presented

O(n)-formulas are too slow to use.

VI. APPLICATIONS

Below we will show some examples illustrating how to

easily compute the NML normalizing terms using Maple

software. Our second hypergeometric form turns out to be

particularly nice in this respect, as we can just write one

function notation without any external multipliers. We give

three examples that have practical significance.

In the first example let us consider a multinomial variable

with four values and 100 data points. The exact value of the
normalizing term can be computed by writing

simplify(subs([L=4,n=100],hypergeom([-n,L-1],[],-1/n)));

The second example is the so called Naive Bayes model,

which is frequently applied in classification problems. The

task is to predict the value of a target variable (class variable)

using the observed features (values of predictor variables). The

normalizing term generating function in the Naive Bayes case

can be written in the power form as

(

∞
∑

n=0

C(K1, n) · · · C(Km, n)nn zn

n!

)L

, (31)

where n is number of data vectors, L is the number of values in

the class variable, Ki is the number of values in the predictor

variable i and m is the number of predictor variables [13].

If we for instance consider a model where we have a binary

class variable and two predictor variables with four and five

outcomes, we can write the generating function in Maple and

expand it to series: for example the hundred first terms of the

generating function of the normalizing term can be computed

by

simplify(series((1+sum(hypergeom([-n,3],[],-1/n)

*hypergeom([-n,4],[],-1/n)*n**n/n!

*z**n,n=1..infinity))**2,z,100));

Each of these resulting coefficients must be multiplied

by n!
nn to get the normalizing terms. If one has more than

two predictor variables, then the product will contain more

confluent hypergeometric functions.

The third example is Bayesian network model selection

with the so called factorized NML (fNML) criterion [17].

The fNML criterion can be used for learning general Bayesian

networks (DAGs). In this case we can directly utilize our hy-

pergeometric form in the exact computations of the local NML

distributions, using standard mathematical software packages

as shown above.

VII. CONCLUSIONS

Using the tools of umbral calculus, we were able to derive a

computationally simple form for the multinomial normalizing

term of the NML distribution. We also showed its relation to

hypergeometric functions, which allows us to efficiently uti-

lize the built-in hypergeometric function libraries of standard

mathematical software packages. Using these results, exact

as well as floating-point values of the multinomial NML can

now be computed fast and efficiently. This allows many non-

trivial applications of NML model selection. We also found

a complete relationship between our problem and the well-

known birthday problem: this result has potentially a high

impact on both problem domains and their application areas,

as research results can be now transferred between the two

domains.

ACKNOWLEDGMENT

This work was supported in part by the Academy of Finland

under the project Civi and by the Finnish Funding Agency

for Technology and Innovation under the projects Kukot and

PMMA. In addition, this work was supported in part by

the IST Programme of the European Community, under the

PASCAL Network of Excellence.

REFERENCES

[1] M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical
Functions. Dover Publications, Inc., New York, 1970.

[2] G.B. Arfken and H.J. Weber. Mathematical Methods for Physicists.
Academic Press, 4th edition, 1995.

[3] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth.
On the Lambert W function. Advances in Computational Mathematics,
5:329–359, 1996.

[4] W. Feller. An Introduction to Probability Theory and Its Applications.
John Wiley & Sons, 3rd edition, 1968.

[5] P. Flajolet, P.J. Grabner, P. Kirschenhofer, and H. Prodinger. On
Ramanujan’s Q-function. Journal of Computational and Applied Math-
ematics, 58:103–116, 1995.

[6] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics
(second edition). Addison-Wesley, 1994.

[7] P. Grünwald. The Minimum Description Length Principle. MIT Press,
2007.

[8] D.E. Knuth. Convolution polynomials. Mathematica Journal, 2(4):67–
78, Fall 1992.

[9] D.E. Knuth and B. Pittel. A recurrence related to trees. Proceedings of
the American Mathematical Society, 105(2):335–349, 1989.

[10] P. Kontkanen, W. Buntine, P. Myllymäki, J. Rissanen, and H. Tirri.
Efficient computation of stochastic complexity. In C. Bishop and
B. Frey, editors, Proceedings of the Ninth International Conference
on Artificial Intelligence and Statistics, pages 233–238. Society for
Artificial Intelligence and Statistics, 2003.

[11] P. Kontkanen and P. Myllymäki. Analyzing the stochastic complexity
via tree polynomials. Technical Report 2005-4, Helsinki Institute for
Information Technology (HIIT), 2005.

[12] P. Kontkanen and P. Myllymäki. A linear-time algorithm for computing
the multinomial stochastic complexity. Information Processing Letters,
103(6):227–233, 2007.

[13] T. Mononen and P. Myllymäki. Fast NML computation for naive Bayes
models. In V. Corruble, M. Takeda, and E. Suzuki, editors, Proceedings
of the Tenth International Conference on Discovery Science, October
2007.

[14] P.N. Rathie and P. Zörnig. On the birthday problem: Some generalization
and applications. International Journal of Mathematics and Mathemat-
ical Sciences, 2003(60):3827–3840, 2003.

[15] J. Rissanen. Information and Complexity in Statistical Modeling.
Springer, 2007.

[16] S. Roman. The Umbral Calculus. Dover, 2005.
[17] T. Roos, T. Silander, P. Kontkanen, and Myllymäki P. Bayesian

network structure learning using factorized NML universal models. In
Information Theory and Applications Workshop, San Diego, CA, January
2008.

[18] G.-C. Rota. Finite Operator Calculus. Academic Press, 1975.
[19] Yu.M. Shtarkov. Universal sequential coding of single messages.

Problems of Information Transmission, 23:3–17, 1987.
[20] W. Szpankowski. Average case analysis of algorithms on sequences.

John Wiley & Sons, 2001.

22

Paper 2

Tommi Mononen and Petri Myllymäki:

Computing the Multinomial Stochastic Complexity in Sub-
Linear Time

In Proceedings of the European Workshop on Probabilistic Graph-
ical Models, PGM’08 (Hirtshals, Denmark), pages 209-216, 2008.

Computing the Multinomial Stochastic Complexity in Sub-Linear Time

Tommi Mononen and Petri Myllymäki

Helsinki Institute for Information Technology (HIIT), Finland

{firstname}.{lastname}@hiit.fi

Abstract

Stochastic complexity is an objective, information-theoretic criterion for model selection. In this

paper we study the stochastic complexity of multinomial variables, which forms an important

building block for learning probabilistic graphical models in the discrete data setting. The fastest

existing algorithms for computing the multinomial stochastic complexity have the time complex-

ity of O(n), where n is the number of data points, but in this paper we derive sub-linear time

algorithms for this task using a finite precision approach. The main idea here is that in practice

we do not need exact numbers, but finite floating-point precision is sufficient for typical statistical

applications of stochastic complexity. We prove that if we use only finite precision (e.g. double

precision) and precomputed sufficient statistics, we can in fact do the computations in sub-linear

time with respect to data size and have the overall time complexity of O(
√

dn + L), where d is

precision in digits and L is the number of values of the multinomial variable. We present two

fast algorithms based on our results and discuss how these results can be exploited in the task of

learning the structure of a probabilistic graphical model.

1 Introduction

Stochastic complexity (SC) is an information-

theoretic model selection criterion, which can be

seen as a theoretical instantiation of the mini-

mum description length (MDL) principle (Rissa-

nen, 2007; Grünwald, 2007). Intuitively speaking,

the basic idea is that the best model for the data

is the one which results in the shortest description

for the data together with the model. This princi-

ple gives us a non-informative, objective criterion

for model selection, but there are many ways to de-

fine the stochastic complexity formally; one theoret-

ically solid way is to use the normalized maximum

likelihood (NML) distribution. Recent results sug-

gest that this criterion performs very well in the task

of learning Bayesian network structures (Roos et al.,

2008).

In the following, letM denote a parametric prob-

abilistic model, and θ̂(xn) the maximum likelihood
parameters of the model given a matrix of observa-

tions xn. The NML distribution is defined as

PNML(xn | M) =
P (xn | θ̂(xn),M)

∑

yn P (yn | θ̂(yn),M)
, (1)

where in the numerator we have the maximum like-

lihood of our observed data and in the denominator

we have the sum of maximum likelihoods (denoted

in the sequel by C(M, n)) over all the discrete data
sets of size n (Shtarkov, 1987).

Let us define the stochastic complexity as the

negative logarithm of (1):

SC(xn | M) = − log
P (xn | θ̂(xn),M)

C(M, n)
. (2)

The basic model selection task is to compute the

value of this model selection criterion for paramet-

ric models of different complexity and choose the

one for which this value is minimized, given the ob-

served data.

The single multinomial variable model is an im-

portant building block for building more complex

probabilistic graphical models for discrete data. For

this reason we want to able to compute the NML

for multinomial variables as efficiently as possible.

In the following, we simplify our notation and leave

outM: the model is implicitly defined by the num-
ber of values of the multinomial variable, denoted

209

by L. The numerator is now

P (xn | θ̂(xn), L) =
L
∏

k=1

(

hk

n

)hk

, (3)

where hk is a number of data points assigned to the

kth value. We expect in this paper that sufficient

statistics is known and computing (3) takes there-

fore only time O(L). The denominator is

C(L, n) =
∑

h1+···+hL=n

n!

h1! · · ·hL!

L
∏

k=1

(

hk

n

)hk

,

which is a sum of maximum likelihoods so that the

summation goes over every possible data of length

n.

Although using the definition directly for com-

puting the multinomial normalizing sum in the de-

nominator is not computationally feasible, several

algorithms for doing this inO(n) time have been re-
cently developed (Kontkanen and Myllymäki, 2007;

Mononen and Myllymäki, 2008b). In this paper we

show that our earlier theoretical results presented

in (Mononen and Myllymäki, 2008b) can be used

for constructing algorithms that compute C(L, n) in
sub-linear time with any desired (finite) precision.

We start by briefly reviewing the relevant earlier re-

sults and then show how they can be exploited in

deriving new ultra-fast algorithms.

2 Known Properties of the Normalizing

Sums

In Mononen and Myllymäki (2008b) we proved that

the multinomial normalizing sum can be described

as a confluent hypergeometric function evaluated at

a certain point. We showed that we can write the

hypergeometric presentation also in another simple

form using falling and rising factorial polynomials.

The falling factorial polynomials are of the form

xk = x(x− 1) · · · (x− k + 1), (4)

and the rising factorial polynomials are

xk = x(x + 1) · · · (x + k − 1). (5)

The binomial normalizing sum is then

C(2, n) =

n
∑

k=0

bk =

n
∑

k=0

nk

nk
, (6)

and the general multinomial normalizing sum can

be written as

C(L, n) =

n
∑

k=0

mk =

n
∑

k=0

nk (L− 1)k

nkk!
. (7)

As these forms spin off from hypergeometric forms,

and a hypergeometric series has the property that

there exist a simple ratio of consecutive terms, we

know that also (6) and (7) have this property. We

will introduce these ratios later in sections 3.1 and

4.1 and use them in the computations.

It is known that the binomial normalizing sum

equals to the expectation of the birthday problem

with the mapping: data size is equal to the number

of days (Mononen and Myllymäki, 2008b). We will

use an approximation derived for this expectation

later in our proof.

There is a recurrence formula for computing the

multinomial normalizing sum as the value of the

corresponding binomial normalizing sum is known

(Kontkanen and Myllymäki, 2007):

C(L, n) =C(L− 1, n) +
n · C(L− 2, n)

L− 2
, (8)

and C(1, n) is defined to be 1 for every n. This for-

mula can be effectively used for linear time compu-

tation of multinomial normalizing sums.

3 The Binomial Normalizing Sum

3.1 Properties of the Sum Terms

Let us start by plotting the terms of (6). We can

immediately observe that the first terms of the sum

give the greatest impact and most of the terms are

very small (see Figure 1). All the terms are positive

and getting closer to the zero, because the ratio of

successive terms of (6) is

bk

bk−1
=

n− k + 1

n
. (9)

Now the natural question is, how many terms do we

need, if we want to compute the normalizing sum

and use for example double precision. We study this

question more closely in section 3.2, but in loose

terms the number of needed terms is proportional

to the square root on n, which promises sub-linear

time performance.

210

k
0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000

Value

0

0,2

0,4

0,6

0,8

1,0

Figure 1: Magnitude of the first 8000 terms of the
binomial normalizing sum when the data size (n) is

one million.

However, first we have to quantify how to mea-

sure the precision. We measure in the standard way

the error we make when pruning the sum: we com-

pute the tail sum and compare it to the whole sum.

Thus we compute a relative error. However, be-

cause setting the desired relative error directly is

quite cumbersome, we rather compute it in digits:

it much easier just to say that we need e.g. 7 digit

precision. More precisely, we define that for posi-

tive real numbers p and q, where p ≤ q and p, q ≥ 1,
the precision in digits is

⌊

− log10

(

q − p

q

)⌋

. (10)

So if the target q is for example 1.100000 and
the approximation p is 1.099999, the precision is
⌊6.04139⌋. So although only the first digit is the
same, the precision in digits according to the defini-

tion above is 6. But if we round p after the sixth

digit, we get 1.10000. This means that although
the precision in digits does not tell all the time how

many correct digits we have, it is still very close to

what we want. Next we do an upper bound approxi-

mation of the last required term of the binomial nor-

malizing sum for achieving some fixed precision.

3.2 Proof of the Right Bound

There is no known closed form solution for (6). To

compute the precision, we have to compute the sum

starting from some br to all the way to the the term

bn. As said before, we are interested in this tail sum,

because it tells us how big an error we make, if we

stop computing the sum after the term br−1. Al-

though the terms of the sum look simple, they are a

bit tricky to handle, and therefore we perform sev-

eral upper bound approximations for the terms. Up-

per bound approximations are of course required,

because we want to be sure that whatever bound we

get, it must give the promised result. We also move

from the discrete sum to an integral presentation,

because it makes things simpler in this case.

Next we give in a row four propositions needed

for proving the index bound of the binomial sum.

After the propositions we prove the mentioned

bound, which we call the right index bound (in the

multinomial case also the left bound exists).

Proposition 1. We have the following upper bound

approximation for the term bk:

nk

nk
≤
(

1− k − 1

2n

)k−1

,where 1 ≤ k ≤ n.

Proof. We prove that the ratio of both sides is bigger

than one. Let us look at the ratio:

(

1− k−1
2n

)k−1

nk

nk

=
n · nk−1

(

n− 1
2
(k−1)

n

)k−1

nk
(11)

=
(n − 1

2 (k − 1))k−1

(n− 1) · · · (n− k + 1)
(12)

=
k
∏

r=2

n− 1
2(k − 1)

n− r + 1
=

k
∏

r=2

ar. (13)

Now we just look at the product of pairwise terms

defined by

arak−r+2 =
(n− 1

2(k − 1))2

(n− r + 1)(n − k + r − 1)
=

Nr

Dr

.

We want to prove that each of these pairwise terms

is bigger than 1. However, we can equivalently sub-
tract the denominator from the numerator and re-

quire the result to be bigger than 0, because both are
always positive in our range. The result is

Nr −Dr =n +
1

4
k2 − rk +

1

2
k + r2

− 2r +
5

4
. (14)

We take the derivate of this difference with respect

to k and get the minimum point k = 2r − 1. Sub-
stituting this in (14), we notice that the result is

211

n−r+1, which is always bigger than 0 in our range.
This means that also the pairwise terms must be al-

ways bigger than 1, which implies that the proposi-
tion must be true for even number of terms ar.

If we have an odd number of terms ar, then we

have to still prove that the median term is also bigger

than 1. The median term is

a k

2
+1 =

2n − k + 1

2n− k
. (15)

This cannot be smaller than 1, because n≥k≥0.

Proposition 2. The following inequality is true for
k
2n

< 1:

(

1− k

2n

)k

≤ e−
k
2

2n .

Proof. Take the natural logarithm of both sides of

the inequality and use the known logarithm inequal-

ity ln(1+x) ≤ x, which is valid for all x > −1.

Proposition 3. Because bk is a continuous mono-

tonically decreasing function inside the interval

[0, n], the discrete volume (the sum) corresponds to
the upper Riemann sum with intervals of length one.

Hence we can give the following inequality:

n
∑

k=0

bk ≤ 1 +

∫ n

k=1
bk−1dk.

Proof. Our integral is always bigger than the given

upper sum, because on the right hand side we

shifted our function in such way that every discrete

column is always entirely below the curve. The size

of the first column is 1, which is the first term on the
right hand side.

Proposition 4. The following inequality holds:

erf (x) ≥
√

1− e−x2
,

when x ≥ 0 and

erf (x) =
2√
π

∫ x

t=0
e−t2dt.

Proof. First suppose x ≥ 0. Let us now modify the
inequality:

erf (x) ≥
√

1− e−x2
(16)

(erf (x))2 + e−x2 − 1 ≥ 0 (17)

Denote the left hand side by h(x) and take the
derivative of it:

h′(x) =
2e−x2

(2erf (x)− x
√

π)√
π

. (18)

We can see that all the roots in our range are solu-

tions for the equation

2erf (x)− x
√

π = 0, (19)

erf (x) =

√
π

2
x. (20)

As the error function is a convex function between 0
and infinity and the right hand side of (20) is a linear

function, there can be only two solutions. The first

one is x = 0, where h(0) = 0, and the other one
is x ≈ 0.8982. The second solution is a positive
maximum point. As we have

lim
x→∞

h(x) = (1)2 + 0− 1 = 0, (21)

this means that h(x) must be always positive in the
range, which completes our proof.

Finally we are now ready to introduce our main

theorem giving the right bound approximation:

Theorem 1. Given precision in digits (d)

and data size n, the right index bound

t for the binomial normalizing sums is
⌈

2 +
√

−2n ln(2 · 10−d − 100−d)
⌉

.

Proof. First we approximate the upper bound of the

partial binomial normalizing sum from 0 to r:

r
∑

k=0

nk

nk
≤ 1 +

r
∑

k=1

(

1− k − 1

2n

)k−1

(22)

≤ 1 +
r
∑

k=1

e−
(k−1)2

2n (23)

≤ 2 +

∫ r

k=2
e−

(k−2)2

2n (24)

= 2 +

√

nπ

2
erf

(

r − 2√
2n

)

= F (r) (25)

Previous inequality steps follow easily from propo-

sitions 1, 2 and 3. Now we can express the precision

in digits (d) with the equation

− log10

(

F (n)− F (r)
√

nπ
2

)

= d, (26)

212

where the denominator inside the logarithm is a

lower bound approximation for the binomial nor-

malizing sum. For example Laplace’s method gives

for (6) the approximation (Flajolet and Sedgewick,

2005):

C(2, n) =

√

nπ

2
+

2

3
+O

(

1√
n

)

. (27)

By omitting the constant term, we get our lower

bound approximation for the denominator, which is

valid for all data sizes (exact proof omitted). Thus

we have

− log10

√

nπ
2 −

√

nπ
2 erf

(

r−2√
2n

)

√

nπ
2

 = d (28)

− log10

(

1− erf
(

r − 2√
2n

))

= d. (29)

We replaced the first error function in (26) with its

supremum value 1 and got (28). If we solve r, we

have

r = 2 +
√

2n ·R, (30)

where

R = erf−1(1− 10−d). (31)

The final task is now to approximate the inverse of

the error function (Winitzky, 2008). We need this

for approximating R to get a nice, clean and com-

putable bound. First we compute the Taylor approx-

imation:

g(x) = ln(1− erf(x)2) ≈ − 4

π
x2 +O(x4). (32)

We need only the first non-zero term for our pur-

pose. The approximation is then

erf(x) =
√

1− eg(x) ≈
√

1− e−
4x2

π , (33)

and it is good enough as our tests later show. This is

not a lower bound approximation, but we need one,

because we invert the approximating function. A

little dirty trick solves our problem. We just change

the multiplier 4 to π (Proposition 4). This new func-

tion can be easily inverted and the result therefore is

erf−1(u) =
√

− ln(1− u2). (34)

The final step is to set u = 1 − 10−d and we have

the result

R ≈
√

− ln(1− (1− 10−d)2) (35)

=
√

− ln(2 · 10−d − 100−d). (36)

We continue approximating R, because for the

time complexity reasons, we need a simplified form

to see the magnitude of this term. We easily see that

√

− ln(2 · 10−d − 100−d) ≤
√

− ln(10−d) (37)

=
√

d ln(10), (38)

and therefore the required number of terms is

O(
√

dn).

The index bound seems to be quite good. In Fig-

ure 2 we have plotted optimal indexes and indexes

given our bound with respect to data size n. We

chose precisions so that they correspond approxi-

mately to single and double precision floating-point

numbers. If n is one million, the index error is about

+250 in both cases. The single precision error is a
bit larger than the double precision error, because

the index bound is getting tighter as precision in-

creases.

4 The Multinomial Normalizing Sum

4.1 Properties of the Sum Terms

As we already saw, the ratio of the terms of the bino-

mial normalizing sum is a simple rational function.

In the multinomial case the ratio is the function

mk

mk−1
=

(n− k + 1)(k + L− 2)

nk
. (39)

Let us look at the terms of the multinomial normal-

izing sum. Figure 3 suggest that there is the biggest

term and if we look at the term function, we see that

it is unimodal. The next theorem and its proof give

formal justifications for these claims.

Theorem 2. The index of the biggest term

of the multinomial normalizing sum is
⌊

1
2

(

3− L +
√

L2 + (4n− 2)L− 8n + 1
)⌋

.

213

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 200000 400000 600000 800000 1e+06

ri
g
h
t
b
o
u
n
d

data size

Figure 2: Terms needed for 16 (above) and 7 digit

precisions with given data size. Actual approxima-

tions are shown as thick solid line. Thin dotted lines

represent optimal index values.

Proof. We have to solve the equation

mk

mk−1
= 1 (40)

with respect to k. In other words, we are interested

in values of real-valued k, where two consecutive

sum terms have the same value. This requires solv-

ing roots of second order polynomial with respect to

k. The other root is always negative and therefore

is not in our range; let us denote the positive root

by r. We are allowed to take the floor, because we

know that the peak is between continuous index val-

ues r− 1 and r. Outside this range all the sum term

values are smaller than inside the range. Inside this

range there are one or two integer points. If only

one, then it is ⌊r⌋. If there are two integer indexes,
then r−1 and r must be these and they both give the

same maximum value and thus ⌊r⌋ gives the other
of the two maximum values.

This proved at the same time that the sum terms

are getting bigger until they reach the peak, after

which they start getting smaller. This unimodality

gives us a great opportunity to construct simple and

efficient algorithms.

4.2 About the Index Bounds

We can guess from the 15-nomial in Figure 3 that

if we want to compute the sum in a fixed precision,

we actually have to compute the sum terms from

some s ≥ 0 to some t ≤ n. This means that the

index of the first required term can be bigger than 0.

k
0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000

Value

0

100

200

300

400

500

600

k
0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000

Value

0

1#1033

2#1033

3#1033

4#1033

Figure 3: Magnitude of the first 8000 terms of the
trinomial (left) and the 15-nomial (right) normaliz-

ing sums when data size (n) is one million.

However, we have to compute the factorials start-

ing from 0 (to avoid any approximation), so we still
have to start from index 0. Our empirical tests also
show that we have to compute a lot more terms than

in the binomial case. The effect is visible also by

comparing figures 1 and 3. However, we can use

(8) for computing the multinomial normalizing sum

when the value of the binomial normalizing sum is

known. This recurrence formula method seems to

be much more efficient and therefore it is unneces-

sary to prove bounds in the multinomial case.

5 Sub-Linear Algorithms

First we present a simple algorithm (Algorithm 1),

which is validated directly by unimodality. The ba-

sic idea is that the algorithm can sum the terms of

a multinomial sum until the sum does not change

anymore. Terms of the left slope always change the

sum because each term is bigger than the previous

one. After the peak, terms are monotonically getting

smaller, and we know that the terms are never get-

ting bigger anymore. Therefore the algorithm can

stop after the sum has converged. All terms in the

tail are so small and decaying so rapidly, that they

cannot have a significant effect on the finite sum

(we will return to this subject after the second al-

gorithm). A precision of the result is determined by

the precision of the used floating-point numbers.

Notice that the algorithm is using the recurrence

mk =
(n− k + 1)(k + L− 2)

nk
·mk−1 (41)

while computing the sum terms. This way we can

avoid huge factorial values and also floating-point

214

Compute_Multinomial(L,n){

double sum = 1, previous_sum = -1, m = 1;

int k = 1;

for k from 1 to n by 1{

m = (k+L-2) * (n-k+1) / (n*k) * m;

sum = sum + m;

if(sum is same as previous_sum){

return sum;

}

previous_sum = sum;

}

return sum;

}

Algorithm 1: A simple algorithm for computing

the multinomial normalizing sum.

errors seem to be much lower. However the time

complexity is not proved for this algorithm, as we

did not compute the index bounds in the multino-

mial case. In addition, we cannot set the digit pre-

cision freely. For these reasons we present a second

algorithm, which also seems to be twice as fast as

the first one.

The intuitive idea of Algorithm 2 is to first com-

pute the index bound, and then compute the bi-

nomial normalizing sum using the ratio of succes-

sive terms. After this, the algorithm uses the recur-

rence formula to compute the wanted multinomial

normalizing sum. Variable bound is not directly

computable as presented in the pseudocode, but we

can use some standard logarithmic manipulation to

avoid underflow. The time complexity of this sec-

ond algorithm is O(
√

dn + L).

Now we can revise the question about the tail

sum. Terms below the index bound do not affect

the sum, but the first algorithm actually stops in the

binomial case before the right bound is reached, be-

cause single terms do not change the sum. But if we

take a sum starting from the stopping point all the

way to the index bound, we can notice that this tail

sum can affect the original sum. In our empirical

tests we found out that the effect seems to be only

on the few last digits, which is of the same magni-

tude as the floating point errors of our algorithms.

In Figure 4 we can see the average decay of the

last digits with respect to data size. The variance

is small between different numbers of same magni-

tude, so the figure gives a realistic impression. In the

end we decided to keep the algorithms simple, be-

Compute_Multinomial_With_Recurrence(L,n){

double sum = 1, b = 1, old_sum, new_sum;

int k,j;

int bound = ceil(2 + sqrt(-2*n*ln(2*10ˆ(-d)

-100ˆ(-d))));

for k from 1 to bound by 1{

b = (n-k+1) / n * b;

sum = sum + b;

}

old_sum = 1;

for j from 3 to L by 1{

new_sum = sum + (n * old_sum) / (j-2);

old_sum = sum;

sum = new_sum;

}

return sum;

}

Algorithm 2: A faster algorithm for computing the

multinomial normalizing sum.

cause such small errors in the criterion hardly have

any effect on the actual model selection task.

There are two operations that in fact increase pre-

cision. First we found out that the recurrence for-

mula in Algorithm 2 tends to increase precision of

those terms with an odd number of outcomes. Sec-

ond we still have to take a logarithm of the normal-

izing sum, when computing actual stochastic com-

plexity. The effect of the latter operation seem to be

about one digit.

Precise values can be achieved using a simple

trick: use a floating-point precision that is higher

than the precision d, and crop the tail digits (e.g.

quad precision for triple precision).

6 Conclusions

Stochastic complexity is an elegant, information-

theoretic criterion for learning probabilistic graph-

ical model structures. Although probabilistic in na-

ture, it is fully objective and does not involve any

hyperparameters which may be introduce problems

in learning (Silander et al., 2007).

The fastest previously known algorithms for

computing the multinomial stochastic complexity

are O(n)-algorithms. In this paper we showed
that our previous hypergeometric representation of

multinomial normalizing sums can be used for de-

riving sub-linear algorithms.

As the multinomial variable is an important build-

ing block in many more complex model classes,

the results are directly applicable to model selec-

215

 16

 15

 14

 13

 12

 11

 10

 9

 8

 7

 6

 5

 4

 3

 2

 1

 12 11 10 9 8 7 6 5 4 3 2 1

A
v
e
ra

g
e
 p

re
c
is

io
n
 i
n
 d

ig
it
s

10-logarithm of data size

Figure 4: Average precision in the binomial normal-

izing sum with respect to data size using double pre-

cision floating-point numbers and Algorithm 2.

tion tasks in these cases as well. However, it should

be noted that if the learning criterion is defined

via the standard normalized maximum likelihood,

the savings in the overall computational complex-

ity are not necessarily very significant: for exam-

ple, in the Naive Bayes case (classification or clus-

tering tasks if the root node is hidden), the learn-

ing criterion involves a product of multinomial nor-

malizing sums corresponding to the predictor vari-

ables, and these can be now computed in sub-linear

time using the results above. Nevertheless, the real

bottleneck of the computation process is a convolu-

tion operation, which still takes at leastO(n2 log L)
floating-point operations to compute (Mononen and

Myllymäki, 2007). Similarly, when learning tree-

structured Bayesian networks (Mononen and Myl-

lymäki, 2008a), we can speed-up some parts of the

computation, but not all.

On the other hand, there now exists a slightly

different way to define the stochastic complex-

ity, based on the factorized NML (fNML) crite-

rion (Roos et al., 2008). The fNML criterion can be

used in the Naive Bayes or in the Bayesian tree case,

or even for learning Bayesian networks (DAGs) in

general. In this case, the learning criterion factor-

izes into a product of multinomials, which means

that the speed-up offered by our sub-linear algo-

rithm is more apparent.

Acknowledgments

This work was supported in part by the Academy

of Finland under the project Civi and by the Finnish

Funding Agency for Technology and Innovation un-

der the projects Kukot and PMMA. In addition, this

work was supported in part by the IST Programme

of the European Community, under the PASCAL

Network of Excellence.

References

P. Flajolet and R. Sedgewick. 2005. Analytic Combina-
torics. Unpublished.

P. Grünwald. 2007. The Minimum Description Length
Principle. MIT Press.

P. Kontkanen and P. Myllymäki. 2007. A linear-time
algorithm for computing the multinomial stochas-
tic complexity. Information Processing Letters,
103(6):227–233.

T. Mononen and P. Myllymäki. 2007. Fast NML com-
putation for Naive Bayes models. In V. Corruble,
M. Takeda, and E. Suzuki, editors, Proceedings of the
10th International Conference on Discovery Science,
October.

T. Mononen and P. Myllymäki. 2008a. Computing the
NML for Bayesian forests via matrices and generating
polynomials. In Proceedings of the IEEE Information
Theory Workshop, Porto, Portugal, May.

T. Mononen and P. Myllymäki. 2008b. On the multi-
nomial stochastic complexity and its connection to
the birthday problem. In Proceedings of the Interna-
tional Conference on Information Theory and Statisti-
cal Learning, Las Vegas, NV, July.

J. Rissanen. 2007. Information and Complexity in Sta-
tistical Modeling. Springer.

T. Roos, T. Silander, P. Kontkanen, and Myllymäki P.
2008. Bayesian network structure learning using fac-
torized NML universal models. In Proceedings of the
Information Theory and Applications Workshop, San
Diego, CA, January.

Yu.M. Shtarkov. 1987. Universal sequential coding of
single messages. Problems of Information Transmis-
sion, 23:3–17.

T. Silander, P. Kontkanen, and P. Myllymäki. 2007. On
sensitivity of the MAP Bayesian network structure to
the equivalent sample size parameter. In R. Parr and
L. van der Gaag, editors, Proceedings of the 23rd Con-
ference on Uncertainty in Artificial Intelligence, pages
360–367. AUAI Press.

S. Winitzky. 2008. A handy approximation for the error
function and its inverse. Unpublished.

216

Paper 3

Tommi Mononen and Petri Myllymäki:

On Recurrence Formulas for Computing the Stochastic Com-
plexity

In Proceedings of the International Symposium on Information The-
ory and its Applications, ISITA’08 (Auckland, New Zealand), pages
281-286, IEEE, 2008.

c©2008 IEEE. Reprinted with permission.

International Symposium on Information Theory and its Applications, ISITA2008
Auckland, New Zealand, 7-10, December, 2008

On Recurrence Formulas for Computing the Stochastic Complexity

Tommi Mononen and Petri Myllymäki

Helsinki Institute for Information Technology (HIIT), University of Helsinki, Finland
E-mail: <firstname>.<lastname>@hiit.fi

Abstract

Stochastic complexity is a criterion that can be used
for model selection and other statistical inference tasks.
Many model families, like Bayesian networks, use multi-
nomial variables as their basic components. There now
exists new efficient computation methods, based on
generating functions, for computing the stochastic com-
plexity in the multinomial case. However, the theo-
retical background behind these methods has not been
been extensively formalized before. In this paper we de-
fine a bivariate generating function framework, which
makes the problem setting more comprehensible. Uti-
lizing this framework, we derive a new recurrence rela-
tion over the values of a multinomial variable, and show
how to apply the recurrence for computing the stochas-
tic complexity. Furthermore, we show that there can-
not be a generic homogeneous linear recurrence over
data size. We also suggest that the presented form of
the marginal generating function, which is valid in the
multinomial case, may also generalize to more complex
cases.

1. Introduction

Minimum Description Length (MDL) is an infor-
mation-theoretic principle for statistical inference [12].
A central concept in this framework is stochastic com-
plexity. Given a parametric model M, the stochastic
complexity of a discrete observed data matrix xn with
n data vectors is

SC(xn | M) = − logPNML(xn | M) (1)

where

PNML(xn | M) =
P (xn | θ̂(xn),M)

∑

yn P (yn | θ̂(yn),M)
. (2)

The above probability, where θ̂(xn) denotes the max-
imum likelihood parameters of the model, defines the
normalized maximum likelihood (NML) distribution [14].
The model selection task is to search from a fixed model

family (a set of parametric models with varying com-
plexity) the model minimizing the stochastic complex-
ity (1).

Many probabilistic models, like for example Bayes-
ian networks, use the multinomial variable as an im-
portant building block. However, even in this simple
case computing the stochastic complexity is difficult,
as the denominator of (2) (denoted in the sequel by
C(L, n)), requires summation over all the data tables
yn that are of the same size as our observed data. For
a multinomial variable the normalizing sum is

C(L, n) =
∑

h1+···+hL=n

n!

h1! · · ·hL!

L
∏

k=1

(

hk

n

)hk

, (3)

where hk is a number of data points assigned to the
kth value and L is the number of values of the multi-
nomial variable. Using this definition directly is obvi-
ously not feasible, but there now exist several efficient
linear time algorithms for this task [6, 11] and also a
very good asymptotic approximation [4] and for fixed
precision there is even a sub-linear time computation
method [9]. Derivation of efficient computation meth-
ods for the multinomial normalizing sum utilize the
one-parameter generating function family:

BL(z) =

(

1

1− T (z)

)L

=
∞
∑

n=0

C(L, n)nn zn

n!
, (4)

where T (z) is the tree function [5, 4]. For example,
there exists an efficient recurrence formula

C(L, n) = C(L− 1, n) +

(

n

L− 2

)

C(L− 2, n), (5)

which can be used for computing multinomial normal-
izing sums, if the corresponding binomial normalizing
sum (L = 2) is computed first, which can be done in
O(n) time using the definition with a trivial parameter
substitution trick [6].

However, the generating function and the recur-
rence formula seem to be mismatching pairs: the coeffi-
cient sequence in (4) goes over the variable n, while (5)
goes over the variable L. Next we redefine the problem
so that this ambiguity disappears.

281

2. Bivariate Generating Function

The multinomial normalizing sum has two param-
eters L and n, hence we are looking for a bivariate
generating function [2]. First we however define the
tree function properly [5]:

T (z) =
∞
∑

n=1

nn−1 zn

n!
(6)

and it satisfies

T (z) = zeT (z). (7)

Now we can return to the original problem and write
the bivariate generating function in the form

∞
∑

L=0

BL(z)uL =

∞
∑

L=0

(

1

1− T (z)

)L

uL (8)

=
∞
∑

L=0

∞
∑

n=0

C(L, n)nn zn

n!
uL. (9)

We want to have (9) in closed form. Since we know
that

1

1− au
= 1 + au + a2u2 + a3u3 + · · · ,

we can just replace a by B(z) and get

f(z, u) =

∞
∑

L=0

∞
∑

n=0

C(L, n)nn zn

n!
uL (10)

=
1

1− u
1−T (z)

=
T (z)− 1

T (z)− 1 + u
. (11)

This function is the bivariate exponential generating
function. Now we have the bivariate formal power se-
ries with two variable coefficients. If we arrange co-
efficients C(L, n)nn into the form of a table, we can
ask, which generating function generates coefficients of
some row or column? We adopt terms and notation
used in [2] and call these marginal generating functions
vertical and horizontal generating functions. Now we
start looking at how to compute the marginal generat-
ing functions of (11). The vertical generating function
family is now our original function BL(z), which we
denote from now on by

f 〈L〉(z) =

∞
∑

n=0

C(L, n)nn zn

n!
=

(

1

1− T (z)

)L

. (12)

The horizontal generating function family is a previ-
ously unknown function, although (5) applies to its se-
quence of coefficients. However, to derive this function,
we need first the so called Lagrange inversion formula
[13].

Proposition 1 The Lagrange inversion formula is

[zn]G(H(z)) = [zn]G(z)H ′(z)

(

H(z)

z

)−n−1

,

where G(z) is any formal power series and H(z) is any
formal power series with the zero constant term and
H(z) is the compositional inverse of H(z).

Above we denoted the coefficient extraction by stan-
dard notation [zn]. Now we are ready to present the
previously missing marginal generating function family
in a form of theorem.

Theorem 1 The horizontal generating function family
is of the form

fn(u) =

∞
∑

L=0

C(L, n)nnuL

= nnu

(

1 +

(

u

1− u

) n
∑

L=0

n!n−L

(n− L)!
· (1− u)−L

)

.

Proof 1 We will utilize the Lagrange inversion, but
first we have to find two functions that form a compos-
ite function:

1

1− u
1−T (z)

=
1

1− u

1−H(z)

= G(H(z), u),

thus the functions are

G(z, u) =
1

1− u
1−z

=
z − 1

z − 1 + u
and

H(z) = T (z) and H(z) =
z

ez
.

Now we are ready to use the Lagrange inversion for-
mula. We do the Lagrange inversion only with respect
to variable z. The dummy variable u is only in the
outer function, so we can write in this case

[zn]
1

1− u
1−T (z)

= [zn]G(z, u)H ′(z)

(

H(z)

z

)−n−1

= [zn]
z − 1

z − 1 + u
e−z(1− z)

(

1

ez

)−n−1

= [zn]
(z − 1)2enz

1− z − u
.

Next we will do series expansion for the last form. We
split the form in two parts:

S(z, u) =
(z − 1)2

1− z − u
=

z2 − 2z + 1

1− z − u
and

R(z) = enz.

282

The series expansions with respect to variable z are

S(z, u) = (u + 1)− z +

∞
∑

k=0

u2

(1− u)k+1
zk and

R(z) =
∞
∑

k=0

nk zk

k!
.

The final step is just to use the discrete convolution
formula between S(z, u) and R(z):

[zn]S(z, u)R(z) =
nn

n!
(u + 1)−

nn−1

(n− 1)!

+
u2

1− u

n
∑

L=0

nn−L

(n− L)!(1− u)L

=
nnu

n!
+

u2nn

1− u

n
∑

L=0

n−L

(n− L)!
(1− u)−L,

which is identical to the claim when multiplied by n!
(because the vertical generating function family is of
exponential type). 2

This result can be represented also in another form
using confluent hypergeometric functions:

fn(u) = nnu +

(

nnu2

1− u

)

2F0

(

1,−n

—

∣

∣

∣

∣

−
1

n(1− u)

)

.

For further information on 2F0 functions, see [11].

This one-parameter family does not look very nice
at first sight, but if we enter some values, for example
n = 1, 2, 3, we observe that the horizontal generating
functions in the simplified form are

f1(u) =

∞
∑

L=0

C(L, 1)11uL =
u

(1− u)2
,

f2(u) =
∞
∑

L=0

C(L, 2)22uL =
−2u(u− 2)

(1− u)3
and

f3(u) =

∞
∑

L=0

C(L, 3)33uL =
3u(3u2 − 10u + 9)

(1− u)4
.

The formal power series coefficients of these functions
give all the normalizing sums for a fixed amount of
data. These example functions, and the horizontal gen-
erating functions in general, are so called rational gen-
erating functions. This observation enables us to use
the huge mathematical toolbox designed for rational
generating functions, and may be a reason why the
multinomial normalizing sum has such nice properties
with respect to variable L. Next we present direct im-
plications of the redefinition.

2.1. Recurrence Relations over L

There are two known recurrence relations over vari-
able L: the first one is (5) and the second one is actually
a simple sequential convolution. The second method is
based on the observation that if we have a formal power
series raised to some positive integer power, we get ex-
panded coefficients by computing many convolutions
sequentially. This result applies to f 〈L〉(z).

However, our new horizontal generating function
family gives the third recurrence relation. There is
also a standard way to construct a recurrence relation
for rational functions using Taylor series. One can say
loosely that the numerator of a rational function gives
initial conditions and the denominator gives the recur-
rence equation. Hence, in this case we get for fn(u) the
recurrence equation

n+1
∑

j=0

(

n + 1

j

)

(−1)jC(L− j, n) = 0, (13)

which we can write in a simpler operator form

(∇L)n+1C(L, n) = 0, (14)

where ∇L is the backward difference operator with re-
spect to variable L. We can write ∇L = I−E−1

L , where
I is the identity operator and E is the shift operator.
If we apply the operator to C(L, n), the identity opera-
tor gives the same C(L, n), and the shift operator E−1

L

gives C(L− 1, n). For example, if n = 2, we have

(∇L)3C(L, 2) =(I − E−1
L)3C(L, 2)

=(I − 3E−1
L + 3E−2

L − E−3
L) C(L, 2)

=C(L, 2)− 3C(L− 1, 2)

+ 3C(L− 2, 2)− C(L− 3, 2)

=0.

The recurrence is valid for f2(u). In fact, also the gen-
eral form of the backward difference operator is work-
ing. This means that we can skip coefficients and for
example take every third one. So the general form of
the operator is ∇b

L = I − E−b
L . This leads to a fast

algorithm for computing normalizing sums with huge
values of L and a small fixed value of n. For exam-
ple, for L = n · 2m, where m ∈ N, we can compute
the normalizing sums in following way: First compute
the initial n values, then use the above recurrence with
b = 1. After 2n values, use the recurrence with b = 2
and after 4n values use the recurrence with b = 3 etc.
So we always make bigger and bigger leaps until we
reach the desired target L. Of course we can modify
the scheme so that we can reach any desired value of L

using a similar approach.

283

This recurrence is not very useful in our framework:
it starts to work after the number of values in a variable
exceeds the number of data points. So it actually tells
us how the value of the normalizing sum changes, if we
add excess bins (values). What is more important is
that the same recurrence applies also to more complex
cases, like the Naive Bayes model discussed below.

2.2. Recurrence Relations over n

There are many different recurrence relations over
L. For single horizontal generating functions we have
the convolution recurrence and (13). For the whole
horizontal family we have (5). However, there does not
exist a single efficient recurrence formula over n. The
existence of a simple recurrence formula over n would
lead to efficient dynamic programming methods. Un-
fortunately we are not going to present any recurrence
formulas over n; actually, in the following we prove that
in this case, it is impossible to have a homogeneous lin-
ear recurrence relation for the family of vertical gener-
ating functions.

We start by definitions. We define the basic con-
cepts first in the single variable case and later expand
definitions to the multivariate case. A sequence is called
holonomic if it satisfies a homogeneous linear recur-
rence equation

p0(i)a(i) + p1(i)a(i + 1) + · · ·

+ pd(i)a(i + r) = 0 n ≥ 0, r ∈ N, (15)

where the terms pk(i) are polynomials, which are not
all zero. Respectively, a formal power series is holo-
nomic (D-finite) if and only if its coefficient sequence
is holonomic (P-recursive). The following proposition
defines holonomicity condition between ordinary and
exponential generating functions [1].

Proposition 2 The ordinary generating function
∑∞

n=0 gnzn is holonomic if and only if the exponential

generating function
∑∞

n=0 gn
zn

n! is holonomic.

Now we are ready to give the proposition that is con-
nected to our specific problem [3]:

Proposition 3 Generating function
∑∞

n=0 nnzn is not
holonomic.

The two previous propositions together imply that also
f 〈1〉(z) is non-holonomic. So there is no homogeneous
linear recurrence relation, which gives the next coeffi-
cient given a fixed number of previous coefficients.

Until this point, we had a formal power series only
with one variable. Now we need bivariate power series,
because we want to prove that the bivariate generating

function is non-holonomic. In general we have a formal
multivariate power series

g(x1, . . . , x2) =
∑

i1,··· ,im

a(i1, . . . , im)xi1
1 · · ·x

im

m .

The section of g(x1, . . . , xm) is a lower dimensional for-
mal power series, where some variables have been as-
signed to certain values:

g
1,...,s
is+1,...,im

(x1, . . . , xm) =
∑

i1,...,is

a(i1, . . . , im)xi1
1 · · ·x

is

s ,

where (is+1, . . . , im) are the assigned values. Now the
definition of holonomicity for multivariate formal power
series says that if g(x1, . . . , xm) is holonomic then all
the sections must be holonomic [7]. This leads to the
following theorem:

Theorem 2 The bivariate generation function f(z,u)
is non-holonomic.

Proof 2 All sections of a holonomic function must be
holonomic. Now take the section

fn
1 (z, u) =

∞
∑

n=0

C(1, n)nn zn

n!

=

∞
∑

n=0

nn zn

n!
= f 〈1〉(z),

which is non-holonomic. Therefore the bivariate gen-
erating function is also non-holonomic. 2

If the bivariate generating function would have been
holonomic, it would have implied that there is also a
homogeneous linear recurrence over n. However now
the situation is a bit more complicated. We cannot
infer converse, meaning that there is no linear homoge-
neous recurrence, but we need a proposition that says
how to end up to multivariate holonomic sequences [7]:

Proposition 4 Let the sequence a(i1, . . . , im) satisfy a
system of recurrences, one for each j = 1 . . .m, of the
form

p
(j)
0 (ij)a(i1, . . . , im) +

rj
∑

l=1

p
(j)
l (i1, . . . , im)a(i1, . . . , ij−1,

ij − l, ij+1, . . . , im) = 0,

where p
(j)
0 are nonzero polynomials of one variable. Then

the sequence a(i1, . . . , im) is holonomic.

Intuitively this means that if there exists the above
recurrence equations with respect to each variable, then
we have a multivariate holonomic function. This leads
to the following theorem:

284

Theorem 3 For the family of vertical generating func-
tions of f(z, u) there is no recurrence equation of the
form

r2
∑

l=0

pl(L, n)C(L, n− l) = 0,

where r2 is some non-negative integer and p0(L, n) is
non-zero.

Proof 3 We can use Proposition 4. First we notice
that (5) can be written in form

(L− 2)C(L, n) + (2 − L)C(L− 1, n)

+ (−n)C(L− 2, n) = 0,

which means that the first recurrence equation exists.
Now suppose that also the second recurrence exists. This
implies that the sequence C(L, n)nn is holonomic. How-
ever, this is a contradiction because we know that the
sequence is not holonomic. So, the second recurrence
must be false.

Our only concern is now that by Proposition 4 we
have p0(n) instead of p0(L, n). However, if there would
be such a recurrence, then by setting L = 1 in the re-
currence equation we would get a homogeneous linear
recurrence for the non-holonomic f 〈1〉(z), which is of
course a contradiction. 2

This result could have been proved without the bivari-
ate holonomicity, but we wanted to bring insight to the
problem setting. There still may be some other type
of recurrence formulas, but finding one can be a rather
difficult task as a general methodological foundation is
mostly missing.

3. Recurrences in the Naive Bayes Case

The Naive Bayes classifier is a probabilistic model
used widely in classification and clustering tasks. The
model has m predictor variables with Ki outcomes for
the ith variable, and one class variable with L out-
comes. The predictor variables are assumed to be in-
dependent given the value of the class variable.

We already know that the convolution type recur-
rence works for the normalizing sums also in the Naive
Bayes case [8]. Validity is easy to see from the fact that
we can write the ’vertical’ generating function family
in the form

(

∞
∑

n=0

C(K1, n)C(K2, n) · · · C(Km, n)nn zn

n!

)L

=

∞
∑

n=0

CNB(L, K1, . . . , Km, n)nn zn

n!
. (16)

We just expand the power L sequentially and compute
convolutions as we did in the multinomial case. A far
more interesting fact is that our new recurrence formula
seems to be valid also in the Naive Bayes case. In the
following, we list some consequences of this conjecture.

It is hardly surprising that the operator equation
works also over L. In this case the equation is

(∇L)n+1CNB(L, K1, . . . , Km, n) = 0. (17)

An astonishing fact is that the same equation works
also over the number of outcomes of the predictor vari-
ables. This is the first recurrence equation of this kind.
The equation in this case is

(∇Ki
)n+1CNB(L, K1, . . . , Ki, . . . , Km, n) = 0. (18)

Using the conjecture we can construct ’horizontal’ gen-
erating functions also for Naive Bayes models. We just
need to compute some initial values and expect valid-
ity of recurrence equations to get the sought generating
functions. We used Maple command rectodiffeq and
solved the generating function from the result. In em-
pirical tests we did not found any flaws. The generating
functions seem to be the correct ones.

We give an example. Let us take a Naive Bayes
model whose root node has 5 values and the three leaf
nodes 3, 3 and K3 values. For values n = 1, 2, 3, the
generating functions are

f1(u) = 45
u

(1− u)2
,

f2(u) =
405

2

u(7u + 10)

(1− u)3
and

f3(u) =
5

27

u(126525u2 + 1152890u + 497673)

(1− u)4
.

We can see that the denominators are of course same as
in the multinomial case for these few instances. More-
over, also the horizontal generating functions are quite
similar, only the coefficients of the numerators are dif-
ferent.

4. Using Horizontal Generating Functions

Let us suppose that we have precomputed the ex-
panded form of a horizontal generating function for
some model and fixed n. Now we can compute the
normalizing values using convolution. The series ex-
pansion of the denominators of horizontal generating
functions is

1

(1− u)n+1
=

∞
∑

j=0

(

j + n

j

)

uj =

∞
∑

j=0

hju
j. (19)

285

and the coefficients of the series can be computed effi-
ciently using the ratio

hj

hj−1
=

j + n

j
. (20)

We just have to do the discrete convolution for coeffi-
cient sequences of (19) and the numerator. This way
we can test different number of values in a single leaf
(predictor) variable of a Naive Bayes model very fast.
We have also noticed that leaf nodes of Bayesian trees
have similar kind of horizontal generating functions.
This may generalize also to inner and root nodes, but
our present tree computation algorithm does not allow
us to test this hypothesis.

However, as the computation has been previously
shown to involve higher level convolutions with respect
to sequences of length n [8, 10], we expect there to
be hidden costs. We are still hoping that there could
be efficient shortcuts with respect to a tree structure,
which would allow us to construct the horizontal gen-
erating functions efficiently. However, it is most likely
that bivariate generating functions are not descriptive
enough for more complex models, but in this case we
need multivariate generating functions.

5. Conclusions

We redefined the generating function for the multi-
nomial normalizing sum of NML. The previously un-
known marginal generating function family has inter-
esting properties and it may eventually lead to develop-
ment of efficient algorithms for computing the stochas-
tic complexity of Bayesian trees and more general Bayes-
ian models. We also proved that for computing the
multinomial normalizing sum, there does not exist a
generic homogeneous linear recurrence formula over the
data size.

Acknowledgments

Authors thanks Alessandro Di Bucchianico and Petri
Kontkanen for fruitful discussions. This work was sup-
ported in part by the Academy of Finland under the
project Civi and by the Finnish Funding Agency for
Technology and Innovation under the projects Kukot
and PMMA. In addition, this work was supported in
part by the IST Programme of the European Commu-
nity, under the PASCAL Network of Excellence.

References

[1] C. Banderier, M. Bousquet-Mélou, A. Denise,
P. Flajolet, D. Gardy, and D. Gouyou-
Beauchamps. Generating functions for generating

trees. Discrete Mathematics, 246(1-3):29–55,
March 2002.

[2] P. Flajolet and R. Sedgewick. Analytic Combina-
torics. Unpublished, 2005.

[3] S. Gerhold. Combinatorial Sequences: Non-
Holonomicity and Inequalities. PhD thesis, Jo-
hannes Kepler University, Linz, 2005.

[4] P. Jacquet and W. Szpankowski. Markov
types and minimax redundancy for Markov
sources. IEEE Transactions on Information The-
ory, 50(7):1393–1402, 2004.

[5] D.E. Knuth. Convolution polynomials. Mathemat-
ica Journal, 2(4):67–78, Fall 1992.

[6] P. Kontkanen and P. Myllymäki. A linear-time
algorithm for computing the multinomial stochas-
tic complexity. Information Processing Letters,
103(6):227–233, 2007.

[7] L. Lipshitz. D-finite power series. Journal of Al-
gebra, 122:353–373, 1989.

[8] T. Mononen and P. Myllymäki. Fast NML com-
putation for Naive Bayes models. In V. Corruble,
M. Takeda, and E. Suzuki, editors, Proceedings
of the 10th International Conference on Discovery
Science, October 2007.

[9] T. Mononen and P. Myllymäki. Computing the
multinomial stochastic complexity in sub-linear
time. In Proceedings of the 4th European Work-
shop on Probabilistic Graphical Models, 2008.

[10] T. Mononen and P. Myllymäki. Computing the
NML for Bayesian forests via matrices and gen-
erating polynomials. In Proceedings of the IEEE
Information Theory Workshop, Porto, Portugal,
May 2008.

[11] T. Mononen and P. Myllymäki. On the multino-
mial stochastic complexity and its connection to
the birthday problem. In Proceedings of the Inter-
national Conference on Information Theory and
Statistical Learning, Las Vegas, NV, July 2008.

[12] J. Rissanen. Information and Complexity in Sta-
tistical Modeling. Springer, 2007.

[13] S. Roman. The Umbral Calculus. Dover, 2005.

[14] Yu.M. Shtarkov. Universal sequential coding of
single messages. Problems of Information Trans-
mission, 23:3–17, 1987.

286

Paper 4

Tommi Mononen and Petri Myllymäki:

Fast NML Computation for Naive Bayes Models

In Proceedings of the 10th International Conference on Discovery
Science, DS’07 (Sendai, Japan), pages 151-160, Springer, 2007.

c©2007 Springer-Verlag. Reprinted with permission.

Fast NML Computation for Naive Bayes Models

Tommi Mononen and Petri Myllymäki

Complex Systems Computation Group (CoSCo)
Helsinki Institute for Information Technology (HIIT)

University of Helsinki & Helsinki University of Technology
P.O.Box 68 (Department of Computer Science)

FIN-00014 University of Helsinki, Finland
{Firstname.Lastname}@hiit.fi

Abstract. The Minimum Description Length (MDL) is an information-
theoretic principle that can be used for model selection and other statis-
tical inference tasks. One way to implement this principle in practice is
to compute the Normalized Maximum Likelihood (NML) distribution for
a given parametric model class. Unfortunately this is a computationally
infeasible task for many model classes of practical importance. In this
paper we present a fast algorithm for computing the NML for the Naive
Bayes model class, which is frequently used in classification and cluster-
ing tasks. The algorithm is based on a relationship between powers of
generating functions and discrete convolution. The resulting algorithm
has the time complexity of O(n2), where n is the size of the data.

1 Introduction

The information-theoretical Minimum Description Length (MDL) principle [15,
4, 17, 3] for model selection is based on the conceptually simple idea that given
a data set, the best model for the data is the one which results in the shortest
description for the data together with the model. Hence, we wish to select a
model representing a balance between too simple models (in which case the
code length for the data is large) and too complex models (in which case the
code length for the data is small, but for the model itself large).

Consider a parametric probabilistic model class, i.e., a set of models each
defining a probability distribution over all possible data sets. Let us call the
shortest possible code length obtainable with the given set of models stochastic
complexity. Consequently, given a data set, we can choose between alternative
parametric models (model classes) with different number of parameters by com-
paring the corresponding stochastic complexities for the given data.

However, there remains the question of how to formally define the stochastic
complexity for a model class. As each of the probability distributions in a prob-
abilistic model class corresponds to a code length, it is obvious that no code can
be shorter than all the other codes in the model class for all data sets, because
no probability distribution can dominate another probability distribution over
all data sets. A universal model is a model (code) which can imitate any model

V. Corruble, M. Takeda, and E. Suzuki (Eds.): DS 2007, LNAI 4755, pp. 151–160, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

152 T. Mononen and P. Myllymäki

in a given parametric model class. The normalized maximum likelihood (NML)
distribution [16, 18] is the worst-case optimal universal model giving a desired
formal definition for the stochastic complexity (see the next Section).

Unfortunately, computing the NML is very difficult for many model classes
of practical interest. In this paper we consider Bayesian networks, probabilistic
model classes defined by acyclic directed graphs [14, 5]. The Naive Bayes model is
a simple Bayesian network, which is continuously used with success in areas such
as clustering and classification. It has been earlier shown [11] how to compute the
NML for the Naive Bayes model family in O(n2 log L) time, where L denotes the
number of values of the class variable of the Naive Bayes model. In this paper we
introduce a faster O(n2) algorithm for this task, based on generating functions.

2 The Problem

The normalized maximum likelihood (NML) distribution [16, 18] is defined by

PNML(xn|M) =
P (xn|θ̂(xn,M))

∑
yn P (yn|θ̂(yn,M))

, (1)

where the numerator is the maximum likelihood for the observed data xn within
the model class M. The normalizing term in the denominator is the sum over
maximum likelihoods of all possible data sets of size n, with respect to the
model class. As shown in [18], this yields the worst case universal distribution
with respect to the model class M.

Although NML was defined as the worst-case optimal universal model, with-
out considering model complexity regularization, it is interesting to note how it
behaves as a model class selection criterion. Namely, if the model class is very
complex, then the maximum likelihood for the given data (the numerator in (1))
is large, but so is also the denominator as a complex model gives a high max-
imum likelihood for many data sets. For simple model classes the sum in the
denominator is small, but so is the numerator. Consequently, the denominator
behaves a a regularization term, and the model class optimizing the stochastic
complexity − log(PNML(xn|M)) has to balance between model complexity and
fit to the given data.

Let us now consider Naive Bayes models. The Naive Bayes is a Bayesian
network with one root node and m leaf nodes attached to the root node. Vari-
ables related to nodes are multinomially distributed. The joint distribution cor-
responding to the Naive Bayes is defined by

P (x) = P (x0)
m∏

i=1

P (xi|x0), (2)

where x = (x0, x1, . . . , xm) is a vector of variable value assignments and x0 is
the value in the root.

For Naive Bayes models, computing the numerator of (1) is trivial, but this is
not the case with the denominator. In this paper we derive an efficient algorithm

Fast NML Computation for Naive Bayes Models 153

for computing the normalizing term for this model family and call it the Naive
Bayes normalizing term.

3 Generating Functions and the Naive Bayes

The normalizing term for a single multinomial variable is called multinomial
normalizing term. We can compute the multinomial normalizing term efficiently:
the most efficient known method is proved using generating functions [9, 10]. We
now use this same methodology in the Naive Bayes case. First we have to define
the needed operations, which we use with generating functions, and then take a
closer look at the Naive Bayes normalizing term.

3.1 Generating Functions

An ordinary generating function (OGF) of a sequence an is

F (z) =
∞∑

n=0

anzn = a0 + a1z + a2z
2 + · · · , (3)

where z ∈ C [2]. We are only interested in coefficients an, not the value of the
function F (z) itself. The function F (z) is only used for computation of some an

coefficients or in derivation of recurrence formulas. With a recurrence formula
we can compute the coefficient an+1 with the help of the fixed and finite set of
previous coefficients. A generating function may have a closed form, in which
case manipulation is easier.

As a generating function is also a formal power series, all general formal power
series operations are applicable. In the case of the multinomial normalizing term,
however, we need the exponential generating function (EGF), which is of form

G(z) =
∞∑

n=0

bn
zn

n!
. (4)

We need to define for later use also two operations: a coefficient extraction from a
formal power series and taking the power of the exponential generating function.
The first operation is defined by

[zn]G(z) =
bn

n!
, (5)

which means that [zn] gives us the coefficient of term zn. The second opera-
tion defines what happens to coefficients when we exponentiate the generating
function. Rising the generating function G(z) to the power of two, denoted by

G2(z) =

(∞∑

n=0

bn
zn

n!

)2

=
∞∑

n=0

cn
zn

n!
, (6)

154 T. Mononen and P. Myllymäki

corresponds to the binomial convolution

cn =
n∑

h=0

(
n

h

)

bhbn−h (7)

in the level of coefficients. Similarly, the power of L gives

dn =
∑

h1+···+hL=n

(
n!

h1!h2! · · ·hL!

)

bh1bh2 · · · bhL , (8)

which is the multinomial convolution [2, 8]. This relation between the expanded
form and the power form is the key feature for achieving a new, more efficient
algorithm for computing the Naive Bayes normalizing term.

3.2 Naive Bayes Generating Function in the Power Form

First we have to define the generating function for the multinomial normalizing
term. We do not give this function in the expanded form, but use a more compact
notation: Lth power of a generating function [9, 10]. The power form is

BL(z) =

(∞∑

n=0

nn zn

n!

)L

. (9)

We call the series inside the parentheses a basic series. The basic series here is
of exponential type and formal power series coefficients are now nn

n! . Coefficients
of the exponential generating function are nn. When we expand power L, we get
an exponential generating function

BL(z) =
∞∑

n=0

CMN (L, n)nn zn

n!
, (10)

where CMN (L, n) is the multinomial normalizing term with L values and n data
vectors [9, 10]. By a strict definition of generating functions this is not such a
function, as it is not explicitly defined. However, we misuse the definition here
slightly and in same way also later in the Naive Bayes case, because the implicit
form is sufficient for our purposes. There are efficient ways to compute the term
CMN (L, n), and we will show one of them later.

Now we focus on the Naive Bayes normalizing term. The normalizing term is
represented in the previous papers only using the expanded form. We denote the
Naive Bayes normalizing term by CNB(L, K1, . . . , Km, n), where L is the number
of values of the root variable and Ki is the number of values in leaf variable i.
The following theorem shows the simple power form of the normalizing term.

Theorem 1

nn

n!
CNB(L, K1, . . . , Km, n) = [zn]

(∞∑

n=0

nn

(
m∏

i=1

CMN (Ki, n)

)
zn

n!

)L

.

Fast NML Computation for Naive Bayes Models 155

Proof. A vector (h1, . . . , hL) is a sufficient statistics i.e. data counts of the root
variable. The used formula for the Naive Bayes normalizing term is from the
paper [11]. With standard manipulation we get

nn

n!
CNB(L, K1, . . . , Km, n) (11)

=
nn

n!

∑

h1+···+hL=n

n!
h1! · · ·hL!

(
L∏

k=1

(
hk

n

)hk
)

m∏

i=1

L∏

k=1

CMN (Ki, hk) (12)

=
nn

n!

∑

h1+···+hL=n

n!
h1! · · ·hL!

(
1
nn

L∏

k=1

hhk

k

)
L∏

k=1

(
m∏

i=1

CMN (Ki, hk)

)

(13)

=
1
n!

∑

h1+···+hL=n

n!
h1! · · ·hL!

L∏

k=1

(

hhk

k

m∏

i=1

CMN (Ki, hk)

)

(14)

= [zn]

(∞∑

n=0

nn

(
m∏

i=1

CMN (Ki, n)

)
zn

n!

)L

. (15)

The last form is the power form, from where we can easily extract the ba-
sic series. We started from the expanded form and ended up with the power
form. �
Let us compare the generating functions of the multinomial and the Naive Bayes
normalizing terms. In the multinomial case we have

(∞∑

n=0

nn zn

n!

)L

(16)

and in the Naive Bayes case we have

EL =

(∞∑

n=0

CMN (K1, n) · · · CMN (Km, n)nn zn

n!

)L

. (17)

The two forms seem to be quite similar, except that in the Naive Bayes case
we have additional multinomial normalizing terms inside the basic series terms.
These extra multinomial normalizing terms makes the expanded form look quite
ugly. However, despite of the complex terms, there exists an O(n2 log L) algo-
rithm for computing the Naive Bayes normalizing term [11]. The basic idea is
very simple: we can split the exponent L into two parts. Let’s call these parts L∗

and L − L∗. Then we get EL = EL∗EL−L∗
. Now we can simply take the normal

discrete convolution in the right hand side to get one term of the series in the
left hand side. If we require that the result is also a normalizing term, we get
the known recurrence formula

CNB(L, K1, . . . , Km, n) =
n∑

k=0

(
n

k

) (
k

n

)k (
n − k

n

)n−k

· CNB(L∗, K1, . . . , Km, k) CNB(L − L∗, K1, . . . , Km, n − k). (18)

156 T. Mononen and P. Myllymäki

So two lower exponents produce a higher one. To achieve the log L -term in the
time complexity, we have to merge exponents wisely, so that we do not make any
unnecessary steps. For example, if we want to compute EL with L = 16, we first
compute E2 and then compute E2E2 to get E4. In the same way we get the series
E8 and finally the series E16. If the target value is not two to some power, then
we have to do more complicated multiplications based on same idea. However,
in the next section we present a novel, even more efficient way for computing
the Naive Bayes normalizing term.

4 Powers of Formal Power Series

As basic series are formal power series, we can use some known powers of formal
power series formula. One of these formulas is the Miller formula [6]. It is origi-
nally a result of Euler and it has time complexity of O(n2) for any real number
exponent, but of course only natural numbers are meaningful in our case.

The proof of the Miller formula has been sketched many times in history
[7, 13, 6], but we were not able to find a detailed proof in the literature. The
detailed proof is relatively straightforward and uses only standard manipulation.
We complete below the missing parts of Knuth’s proof for sake of clarity.

Theorem 2 (The Miller formula). If two formal power series are V (z) =
1 +

∑∞
k=1 vkzk and W (z) =

∑∞
k=0 wkzk and W (z) = (V (z))α, α ∈ R, then

w0 = 1 and wn =
∑n

k=1

(
(α+1

n)k − 1
)
vkwn−k.

Proof. It is evident that w0 = 1, since v0 = 1 and 1 = 1α. Next we derivate the
basic equation of the theorem and get

W ′(z) = αV (z)α−1V ′(z).

Then we multiply both sides with V (z) and substitute V (z)α = W (z), which
gives us the equation

W ′(z)V (z) = αW (z)V ′(z).

Let us now look at the zn−1-coefficients of both sides:

[zn−1]W ′(z)V (z) = α[zn−1]W (z)V ′(z) (19)
n∑

k=0

kwkvn−k = α

n∑

k=0

(n − k)wkvn−k (20)

n−1∑

k=0

kwkvn−k + nwnv0 = α

n−1∑

k=0

(n − k)wkvn−k + 0 (21)

nwnv0 =
n−1∑

k=0

(
α(n − k)wkvn−k − kwkvn−k

)
(22)

wn =
1

nv0

n−1∑

k=0

(
(α(n − k) − k)wkvn−k

)
(23)

Fast NML Computation for Naive Bayes Models 157

wn =
n−1∑

k=0

(
α(n − k) − k

n

)

wkvn−k (24)

wn =
n∑

k=1

(
α(n − n + k) − n + k

n

)

wn−kvn−n+k (25)

wn =
n∑

k=1

((
α + 1

n

)

k − 1
)

wn−kvk. (26)

After some straightforward manipulation we get the result. �

We can obviously use this method for computing the normalizing term of the
Naive Bayes model. It should be noted that while this result is elegant, if we use
the discrete Fourier transform, we can achieve the time complexity O(n log n)
by using the basic identity (V (z))α = exp(α log(V (z))) and the fast Fourier
transform (FFT). The FFT method involves utilization of Newton’s method
and is explained in the paper [1]. However, the usefulness of this approach is
unclear as some earlier tests with the multinomial normalizing term [12] show
that the used floating point numbers must have very high precision in practical
cases. This is due to the fact that the values of the normalizing terms can be quite
large, and consequently, as the data size increases, the precision of the floating
point numbers must also increase. This means that increasing the precision will
affect the efficiency of the algorithm, although the number of operations remains
in principle the same.

5 Computation of the Naive Bayes Normalizing Term

The computation of the Naive Bayes normalizing term is quite straightforward
given the results derived above. Now we collect these results in a form of an algo-
rithm. As we did not describe earlier how to compute efficiently the multinomial
normalizing term, we start by defining that.

5.1 Recurrence Formula for the Multinomial Normalizing Term

The multinomial normalizing term can be computed by using a recurrence for-
mula [9, 10]. Initial values for this formula are

CMN (1, n) = 1 and (27)

CMN (2, n) =
n∑

k=0

(
n

k

) (
k

n

)k (
n − k

n

)n−k

, (28)

where CMN (2, n) is a binomial normalizing term. After this we use the recurrence
formula

CMN (L + 2, n) = CMN (L + 1, n) +
n

L
CMN (L, n) (29)

158 T. Mononen and P. Myllymäki

to get the normalizing term with the wanted number of values in a multinomial
variable. Time complexity of this whole method is O(n), as the number of values
in a variable is usually much smaller than the number of the data points n. If
we have to compute all normalizing terms between [0, n] and we choose to use
FFT, then binomial normalizing terms should be computed using (16). For the
multiplication we can apply FFT.

5.2 The Algorithm

Now we have all the components we need for our algorithm. As said before, our
main theorem is quite obvious given the earlier results (Theorems 1 and 2) and
needs no proof.

Theorem 3. The Naive Bayes normalizing term can be efficiently calculated in
following way:

1. Compute first n + 1 binomial normalizing terms.
2. Use the recurrence formula to get the needed multinomial normalizing terms.
3. Compute the basic series

∑n
k=0 CMN (K1, k) · · · CMN (Km, k)kk zk

k! .
4. Use the Miller formula to compute a new series, which is the basic series to

the power of L.
5. Extract the Naive Bayes normalizing terms from the computed series by ex-

tracting coefficients and multiplying every coefficient so that the kth coeffi-
cient is multiplied by k!

kk .

Time complexity is O(n2) for any exponent, because complexities of the steps
are O(n2), O(n · max(Ki)), O(n · m), O(n2) and O(n), respectively. This way
we get all the Naive Bayes normalizing terms between [0, n] in the given time,
not just the nth of them. Notice that if the FFT approach could be used, time
complexities of the first (explained in the Sect. 5.1) and the fourth steps would
become O(n log n). In this case the Miller formula in the fourth step is replaced
with the algorithm mentioned in Section 4. Theorem 3 gives us actually a general
framework for designing this kind of algorithms, as step 4 can be replaced with
any exponentiation algorithm.

The method given in Theorem 3 is more efficient than the O(n2 log L)-algo-
rithm presented in [11]. This is easy to see, as the previous algorithm essentially
performs in the fourth step at minimum log L- power series multiplications in-
stead of something which corresponds just one power series multiplication. In
fact even when using the previous method, in some case it can be wise to compute
series coefficients and not to require that all sub-results has to be normalizing
terms. This way we can replace (18) just with normal convolution and achieve
some more efficiency by omitting unnecessary multipliers present in the old for-
mula. Furthermore, the old formula is applicable for values L greater than 2, but
we can use normal convolution for values L greater than 1. In the fifth step we
then convert wanted series coefficients into normalizing terms.

The new Miller method algorithm works perfectly fine with exact rational
numbers. However our preliminary implementations show that in practice this is

Fast NML Computation for Naive Bayes Models 159

not necessarily the case with fixed precision floating point numbers and all formal
power series: for some tested basic series, small errors in elementary operations
tend to corrupt the normalizing terms very fast as n grows (because the algorithm
uses iteratively previous values). Therefore with finite precision floating point
numbers, using the previous, slower algorithm may be more advisable.

We have derived an efficient algorithm for computing the Naive Bayes nor-
malizing term exactly. The computational complexity of computing the NML
criterion for a Naive Bayes model is the same as for this algorithm, as the
numerator of (1) is trivial to compute. Further information on computing the
stochastic complexity for Naive Bayes models can be found in papers [11, 12].

6 Concluding Remarks

We presented an O(n2) time algorithm for computing the normalizing term of the
NML distribution exactly in the case of the Naive Bayes model. As the remaining
term of the NML distribution is trivial to compute in this case, this result leads
to a computationally efficient algorithm for computing the NML exactly for
Naive Bayes models. We also defined a general framework for developing efficient
algorithms for the NML computation in the Naive Bayes case and showed how
the old O(n2 log L)-algorithm can be seen as an special case of the framework,
and how to make the algorithm more efficient.

We believe that it is not possible to do formal power series exponentiation in
this case faster than O(n2) without resorting to the Fast Fourier transform, which
would easily lead to numerical problems, as discussed earlier. So unless the basic
series for the Naive Bayes model reveals new hidden regularities with respect to
exponentiation, our algorithm meets the lower limit of the time complexity for
computing the NML exactly for Naive Bayes models.

Acknowledgements

The authors would like thank the anonymous reviewers for constructive com-
ments. This work was supported in part by the Academy of Finland under the
project Civi and by the Finnish Funding Agency for Technology and Innovation
under the projects Kukot and PMMA. In addition, this work was supported
in part by the IST Programme of the European Community, under the PAS-
CAL Network of Excellence, IST-2002-506778. This publication only reflects the
authors’ views.

References

[1] Brent, R.P.: Multiple-precision zero-finding methods and the complexity of ele-
mentary function evaluation. In: Traub, J.F. (ed.) Analytic Computational Com-
plexity, Academic Press, New York (1976)

[2] Flajolet, P., Sedgewick, R.: Analytic Combinatorics (in preparation)

160 T. Mononen and P. Myllymäki

[3] Grünwald, P.: The Minimum Description Length Principle. MIT Press, Cambridge
(2007)

[4] Grünwald, P., Myung, J., Pitt, M. (eds.): Advances in Minimum Description
Length: Theory and Applications. MIT Press, Cambridge (2005)

[5] Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning 20(3), 197–243
(1995)

[6] Henrici, P.: Automatic computations with power series. Journal of the ACM 3(1),
11–15 (1956)

[7] Knuth, D.E.: The Art of Computer Programming, volume. 2: Seminumerical Al-
gorithms, 3rd edn. Addison-Wesley, Reading (1998), ISBN: 0201896842

[8] Knuth, D.E., Pittel, B.: A recurrence related to trees. Proceedings of the American
Mathematical Society 105(2), 335–349 (1989)

[9] Kontkanen, P., Myllymäki, P.: Analyzing the stochastic complexity via tree poly-
nomials. Technical Report 2005-4, Helsinki Institute for Information Technology
(HIIT) (2005)

[10] Kontkanen, P., Myllymäki, P.: A linear-time algorithm for computing the multino-
mial stochastic complexity. Information Processing Letters 103(6), 227–233 (2007)

[11] Kontkanen, P., Myllymäki, P., Buntine, W., Rissanen, J., Tirri, H.: An MDL
framework for data clustering. In: Grünwald, P., Myung, I.J., Pitt, M. (eds.)
Advances in Minimum Description Length: Theory and Applications, MIT Press,
Cambridge (2006)

[12] Kontkanen, P., Wettig, H., Myllymäki, P.: NML computation algorithms for tree-
structured multinomial Bayesian networks. EURASIP Journal on Bioinformatics
and Systems Biology,(to appear)

[13] Nakos, G.: Expansions of powers of multivariate formal power series. Mathematica
Journal 3(1), 45–47 (1993)

[14] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo (1988)

[15] Rissanen, J.: Stochastic Complexity in Statistical Inquiry. World Scientific, New
Jersey (1989)

[16] Rissanen, J.: Fisher information and stochastic complexity. IEEE Transactions on
Information Theory 42(1), 40–47 (1996)

[17] Rissanen, J.: Information and Complexity in Statistical Modeling. Springer, Hei-
delberg (2007)

[18] Shtarkov, Y.M.: Universal sequential coding of single messages. Problems of In-
formation Transmission 23, 3–17 (1987)

Paper 5

Tommi Mononen and Petri Myllymäki:

Computing the NML for Bayesian Forests via Matrices and
Generating Polynomials

In Proceedings of the 2008 IEEE Information Theory Workshop,
ITW’08 (Porto, Portugal), pages 276-280, IEEE, 2008.

c©2008 IEEE. Reprinted with permission.

Computing the NML for Bayesian Forests via
Matrices and Generating Polynomials

Tommi Mononen, Petri Myllymäki
Helsinki Institute for Information Technology, Finland

Email: {firstname.lastname}@hiit.fi

Abstract— The Minimum Description Length (MDL) is an
information-theoretic principle that can be used for model selec-
tion and other statistical inference tasks. One way to implement
this principle in practice is to compute theNormalized Maximum
Likelihood (NML) distribution for a given parametric model class.
Unfortunately this is a computationally infeasible task for many
model classes of practical importance. In this paper we present
a fast algorithm for computing the NML for the model class
of Bayesian forests, which are graphical dependency modelsfor
multi-dimensional domains with the constraint that each node
(variable) has at most one predecessor. The resulting algorithm
has the time complexity ofO(n2K+L−3), where n is the number
of data vectors, andK and L are the maximal number of values
(alphabet sizes) of different types of variables in the model.

I. I NTRODUCTION

Let us consider an i.i.d. sample ofn vectors xn =
x1, . . . ,xn, where each vectorxi consists ofs discrete sym-
bols taken from some alphabet (with each of thes components
having its own alphabet). Given a parametric modelM,
the normalized maximum likelihood (NML) distribution (or
code) [7], [9] is defined by

PNML(xn|M) =
P (xn|θ̂(xn,M))

∑

yn P (yn|θ̂(yn,M))
, (1)

where the numerator is the maximum likelihood for the
observed data tablexn within M. The normalizing termin
the denominator is the sum over maximum likelihoods of all
possible data sets of sizen, with respect to the model class.
The NML offers a theoretically appealing, minmax optimal
criterion for model selection and other statistical inference
tasks, but is typically hard to compute.

Bayesian forests are tree-structured graphical Bayesian net-
work models [6], [3]: a tree is a connected directed acyclic
graph where each node has at most one parent, and a forest
is a set of trees. In a Bayesian tree, each node corresponds to
a random variable (a column inxn), and the joint probability
distribution of a vectorv = (v1, . . . , vs) factorizes as

P (v) =

s
∏

i=1

P (vi|vf(i)), (2)

wheref(i) is the index of the parent node of nodei. So each
node has a local probability distribution conditioned on its
parent node and the joint distribution is a product of these
local distributions. Trees are independent of each other, so the
joint probability of a forest is a product of joint probabilities

of trees. In this paper we use multinomial local distributions,
and hence the joint distribution is a product of multinomials.

For Bayesian forests, computing the numerator of (1) is
trivial [10], while computing the denominator is computa-
tionally very demanding. In the following we represent a
novel algorithm for computing the normalizing term of (1) in
the case of Bayesian forests. The efficiency of the algorithm
depends on the number of values of the variables (the sizes of
the column alphabets).

II. M ATRIX REPRESENTATION

Computing the NML normalizing term for a Bayesian forest
is quite complicated: the basic task is to take a sum over
all possible data sets of sizen and compute the maximum
likelihood for each data. However, note that this is equivalent
to summing over all possible sufficient statistics related to the
model and computing each maximum likelihood multiplied
by a factor which counts the number of data sets producing
the same sufficient statistics. As we saw earlier, Bayesian
multinomial forests have a nice property that the global
distribution decomposes into local probability distributions.
Now the main idea is to claim that we can use a similar
decomposition for computing our NML normalizing term
more efficiently. For accomplishing this, we define three
different type of localcomponents: a root node component,
an inner node component and a leaf node component. We
can represent these components as vectors and matrices. The
normalizing term corresponding to the whole forest can be
then computed using simple matrix operations between the
precomputed components. As we compute over all possible
local sufficient statistics in every component, we get the
wanted result: the value of the normalizing term for an forest.
For further investigations of the sufficient statistics related to
this problem, see [10].

A. General algorithm

Let us first have a look at the two-step matrix algorithm
on a general level without defining exactly the components.
The algorithm needs three different type of components:
horizontal vectors for root nodes, matrices for inner nodesand
vertical vectors for leaf nodes. In the first step the algorithm
computes required components. Identical components need to
be computed just once. Only the number of values of a variable
and its parent is essential: if there are identical numbers of

978-1-4244-2271-5/08/$25.00 ©2008 IEEE 276

outcomes in several locations in the forest, components are
identical.

Let us denote theroot node componentwith RX , whereX

is the name of the node. Theinner node componentis denoted
with MY

X , whereX is the name of the inner node andY is
the name of the parent node, and finallyLY

X is the leaf node
component. The operation between siblings (or between trees)
is the entry-wise product (Hadamard product) and denoted by
symbol ′⊙′. The operation between a parent and a child is
the ordinary matrix multiplication. In the second step the al-
gorithm executes these matrix computations. Notice that there
is no need to compute matrix-matrix-operations. Computation
proceeds always from leaves to root and the most demanding
operations are therefore matrix-vector-multiplications. We can
write computations using the matrix notation: take for example
the forest (B ← A→ C → D, E → F) with six nodes. Now
it is easy to write the computation using the matrix notation
as (RA(LA

B ⊙ (MA
C LC

D)))⊙ (RELE
F).

Next we proceed by specifying in subsections C, D and
E the individual components in such a manner that the
above algorithm provably computes the desired normalization
term, but first we have to shortly discussk-compositions,k-
partitions and their relations to each other.

B. k-compositions and k-partitions

A single multinomially distributed variableX forms the
multinomial model. The sufficient statistics for this model
is a k-composition, wherek is the number of values of
X . The k-compositionof n can be represented as ak-tuple
x = (x1, . . . , xk), wherex1 + · · ·+ xk = n, xi ∈ N andn is
the number of data points [8]. For brevity, let us in the sequel
denote the multinomial probability with maximum likelihood
parameters for the observed counts byc((x1, . . . , xk)):

c((x1, . . . , xk)) =
(
∑k

i=1 xi)!
∏k

i=1(xi!)

k
∏

j=1

(

xj
∑k

i=1 xi

)xj

, (3)

and hence the NML normalizing term for the multinomial
model class is

CMN (k, n) =
∑

x1+···+xk=n

c((x1, . . . , xk)), (4)

where the sum goes over the set of allk-compositions of the
data sizen [5]. But note that we can reduce the number of
terms in the previous sum by usingk-partitions instead of
k-compositions: Ak-partition is an unordered set of counts
defined in a similar way ask-compositions. However, for
simplicity, we represent eachk-partition as ak-tuple with a
standard decreasing order of counts.

We denote allk-partitions of a variableX by qX =
[qX

1 , . . . , qX
p], where k is the number of values in variable

X and p is the number ofk-partitions. The number of data
points is omitted from this notation, because we can determine
it from k and p. To be sure that we multiply right elements
with each other in the second step of the algorithm, we have
to select also an fixed ordering among the set ofk-partitions.
We use the following ordering (the rationale of which becomes

apparent in section III-D): First order allk-partitions so that
the first one is the one with most zero counts. Then comes
the ones with one zero count less, and so on. After this, order
each of these sub-blocks with a same number of zero counts
using inverse lexicographic ordering.

When twok-compositionsx andy have the same ordered
k-partition, then the maximum likelihoods are also the same,
i.e., c(x) = c(y). Consequently, if we usek-partitions instead
of k-compositions, we have to use an extra multiplier in
the computations to take into account the fact that many
k-compositions map to the samek-partition. Formally, the
multiplier functionis given by

m(x) =
k!

∏

w∈x
µw(x)!

, (5)

whereµw(x) = |u : xu = w| tells how many times a valuew
appears in ak-partition x.

C. Root node component

Root nodes have no parents, so the sufficient statistics of
each root node goes simply through allk-partitions, wherek is
the number of values of the root node variable. The root node
component is defined as a horizontal vector of multinomial
probabilities with maximum likelihood parameters for all
sufficient statistics of given data sizen:

RX =
[

m(qX
1) · c(qX

1) · · · m(qX
p) · c(qX

p)
]

, (6)

where p is the number ofk-partitions in the root nodeX .
The multipliers collect all identical values into the same vector
element. We naturally could have usedk-compositions instead
of k-partitions, but then the length of the vector would have
increased radically: when the number of data vectors is large,
there arek!-times morek-compositions thank-partitions.

D. Inner node component

The inner node component is a matrix. We define the matrix
here, but all computational issues will be handled in section III.

Unlike in the case of root nodes, with an inner node we
have to take into account the sufficient statistics of the parent
node, and for that we introduce theconditional termc(qX

i |q
Y
j),

whereqX
i is the sufficient statistics of a node andqY

j is the
sufficient statistics of the parent node. In the root node case
we can think that the missing parent node is a one valued
node (a constant). The conditional term has in this case the
form c(qX

i |(n)) = c(qX
i). Hence we can split the data between

different outcomes of the root node and get the correct result.
In the inner node case we can to think that the data is

originally in l separate bins (we use the ball analogy here),
where l is a number of possible outcomes of the parent
node. We spread the data from each parent bin to the inner
node’s bins, but unfortunately we cannot do this independently,
because we have to achieve the givenk-partition, wherek

is the number of the inner node’s possible values. As there
are many different valid paths to get the rightk-partition, our

277

conditional term gets the form

c((x1, . . . , xk)|(y1, . . . , yl)) =
∑

Z∈Z

l
∏

i=1

c(z1i, . . . , zki), (7)

where Z is a matrix with marginals(x1, . . . , xk) and
(y1, . . . , yl), and the termszij are elements of the matrixZ.
All elements are positive integer values. SetZ is the set of
those matricesZ which satisfy the given marginals:

Z = {Z|z11 + · · ·+ zk1 = y1, . . . , z1l + · · ·+ zkl = yl,

z11 + · · ·+ z1l = x1, . . . , zk1 + · · ·+ zkl = xk}.

To compute the conditional term, we have to form all the
matrices which satisfy the given marginals. This is a tremen-
dously heavy operation. Given the defined conditional terms,
the general form of the inner node matrix is

MY
X =

m(qX
1) · c(qX

1 |q
Y
1) · · · m(qX

p) · c(qX
p |q

Y
1)

...
. . .

...
m(qX

1) · c(qX
1 |q

Y
d) · · · m(qX

p) · c(qX
p |q

Y
d)

,

whereX is a node andY is its parent node. Dimensions of
this matrix are defined by the number ofl-partitions and the
number ofk-partitions (d× p). As before, multipliers exist as
we are usingk-partitions, notk-compositions.

E. Leaf node component

Leaf nodes are easier to handle than inner nodes, although
they also have parent nodes. In the inner node case we have the
targetk-partition, but in the case of leaf nodes, anyk-partition
is valid. As we do not have a fixed target partition, we can
just marginalize over all individual targets and the resultis a
product of ordinary multinomial normalizing terms defined in
the formula (4). So we can separately compute each parent
node bin, without any restrictions:

p
∑

i=1

m(qX
i) · c(qX

i |q
Y
j)

=

p
∑

i=1

m((x1, . . . , xk)i) · c((x1, . . . , xk)i|(y1, . . . , yl)j)

= CMN (k, y1) · · · CMN (k, yl), (8)

where(x1, . . . , xl)i is the ith k-partition and(y1, . . . , yl)j is
somel-partition. Efficient computation of the termCMN (·, ·)
is not trivial, but fortunately there is a recent result showing
how to use a simple recurrence formula to compute the term
in linear time with respect to data size [4].

The leaf node component is a vertical vector

LY
X =

∑p
i=1 m(qX

i) · c(qX
i |q

Y
1)

...
∑p

i=1 m(qX
i) · c(qX

i |q
Y
d)

. (9)

The vector hasd elements, whered is the number ofl-
partitions. Although the leaf vector can also be seen as an inner
node matrix where we take a sum over the other dimension,
luckily it is much easier to compute than the inner node
matrix.

III. EFFICIENT COMPUTATION OF INNER NODE MATRICES

In the previous section we defined the inner node compo-
nent, but we did not yet give an algorithm for computing it.
One could of course make the obvious brute-force algorithm
for finding the set of all matricesZ, and then compute each
of the c(qX

i |q
Y
j) terms. However, this approach is clearly

infeasible, as the number of matricesZ grows very fast when
the number of data vectors increases. Also the size of the inner
node component is growing at the same time.

Fortunately it is possible to use generating functions [2] and
other computational simplifications for calculating the inner
node components, as we will shortly see. These modifications
make the computations feasible for small data sets, if the
maximum number of values of the variables is relatively small.
First we introduce generating polynomials, which form the
very basis of our efficient computation.

A. Generating polynomials

A multivariate generating polynomialis a finite multivariate
series of the form

∑

x∈X

a(x1, . . . , xk)zx1

1 zx2

2 · · · z
xk

k , (10)

where x = (x1, . . . , xk) are vectors in a set of positive
integer-valued vectorsX and each variablezi ∈ C. The
coefficientsa(x1, . . . , xk) encode some relevant information.
When we take a product of these generating polynomials, the
coefficients of the resulting polynomial then correspond to
higher level convolution operations. In the following we define
our generating polynomials in such a manner that the result
corresponds to the convolution operations we need.

Let us now have a polynomial of the form (10) with the
sum going over allk-compositions of data sizeu. A natural
choice for the coefficients is the functionc((x1, . . . , xk)), in
which case the resulting generating polynomial is

P 0
k = 1, and (11)

Pu
k =

∑

x1+x2+···+xk=u

c((x1, . . . , xk))zx1

1 zx2

2 · · · z
xk

k . (12)

The coefficients of this polynomial describe the value of
c((x1, . . . , xk)|(u)), which is a root vector element without the
multiplier. Now the trick is just to multiply these generating
polynomials with respect to a parent nodel-partition:

T
(y1,...,yl)
k = P

y1

k P
y2

k · · ·P
yl

k . (13)

The coefficients of this polynomial now correspond to the
needed conditional termsc((x1, . . . , xk)|(y1, ..., yl)). In fact
one can read all thek-partitions (x1, . . . , xk) for a given
parent nodel-partition from this new generating polynomial.
So each product polynomial gives us a whole row of an inner
node matrix. Denoting the coefficient extraction by standard
notation, we can write this as

c((x1, . . . , xk)|(y1, ..., yl)) = [zx1

1 · · · z
xk

k]T
(y1,...,yl)
k . (14)

The above scheme gives us a concrete way to compute the
conditional terms. The only remaining question is how to do

278

the multiplication of these multivariate polynomials efficiently.
For this we will not use normal multiplication methods for
computing all the terms of the polynomialT

(y1,...,yl)
k : as we

only need the coefficients of those terms which correspond to
k-partitions, we can use the concept of a polytope to bound
the set of computationally relevant terms.

B. Convex polytopes

As polygon is the name for a figure on a plane bounded
by a finite number of line segments that form a closed path, a
polytopeis the name for a similar object in any dimension. The
bounding objects are calledfacets: facets of ak-dimensional
polytope are(k− 1)-dimensional and are itself polytopes. We
can represent aconvex polytopeas an intersection of half
spaces.Integer lattice pointsof a convex polytope are all the
points (x1, . . . , xk) which belong to the polytope and have
xi ∈ Z for all i [1].

Now we define the set of all terms that we need for
computing T

(y1,...,yl)
k . First we need all those terms that

correspond to ourk-partitions ofn. Second, because we are
taking a product of polynomials, we need also all those terms
that can produce ak-partition of n -terms via multiplication
process. For example,x2y2z0 timesx2y0x2 gives us the term
x4y2z2 which corresponds to a 3-partition(4, 2, 2) of 8. These
two sets of terms are all we need. We could map these points
to ak-dimensional space, but we can in fact map these points
also into a(k − 1)-dimensional space, because one of the
parameters is redundant. The redundancy is caused by the fact
that the total degree of all the terms is the same in our case,
as the polynomials we multiply are homogeneous. When we
map our terms into a(k− 1)-dimensional space, we drop the
first count and say that eachk-composition(x1, x2, . . . , xk)
corresponds to the point(x2, . . . , xk). It is most useful to drop
the first count with the biggest value, because then we need
to compute the least number of terms during the polynomial
multiplications.

As we have now defined the set of all relevant terms, we
want a compact representation for the set. This set happens to
be a(k − 1)-dimensional convex polytope, which we callk-
multiplication polytope. We define the convexk-multiplication
polytope using half spaces. There are two different kind of
inequalities which define our polytope. First inequalitiesare
of type

0 ≤ xi ≤
⌊n

i

⌋

, (15)

where xi is value in theith bin. There is one inequality
for every bin except the first one, because it is redundant.
Inequalities give the lowest and the highest count for every
bin. These inequalities form a hyper rectangle. But there are
still unnecessary terms inside this polytope, corresponding to
invalid counts that are already too big to produce any validk-
partition ofn. Therefore we need a second type of inequalities
in addition.

To achieve the second type of inequalities, we make splits
between the bins of ak-partition while preserving the order
of bins. Notice that as the countx1 is redundant, there cannot

be a split betweenx1 andx2, so x1 and x2 are in the same
group. For example, 4-partitions have three different splittings
{x1x2|x3x4, x1x2|x3|x4, x1x2x3|x4}, where the vertical bar
means the border of two groups. Now the new set of inequal-
ities can be written using these formed groups. We name each
group using the name of the last count in that group, and a
group is then multiplied by the number of members in that
group. We get three inequalities:

2x2 + 2x4 ≤ n, 2x2 + x3 + x4 ≤ n, 3x3 + x4 ≤ n. (16)

These inequalities describe situations where there are several
bins with a same value. In general we get the second type of
inequalities by finding all possible splittings and writingthe
inequalities in a similar manner.

Our polytope is now kind of a cage: we must compute all
the terms that are inside the cage, but none of the outside ones.
Next we will define how to do the polynomial multiplications.

C. Restricted multiplication of multivariate polynomials

We start by computing all those terms of a polynomialPu
k

that correspond to lattice points of ak-multiplication polytope.
Notice that the polytope is defined by the data sizen, not by
the number of data pointsu in some parent bin. We assign
coefficientsc((x1, . . . , xk)) to lattice point(x2, . . . , xk). This
means that there will be many lattice points which will remain
zero, as the polynomialPu

k does not have the corresponding
terms.

As we take a product of several multivariate polynomials,
it is wise to multiply first the smaller ones, because then the
number of resulting polynomial terms is minimized, as well
as is the number of multiplications. This means that the mul-
tiplication order must beP yl

k P
yl−1

k · · ·P y1

k when computing
the T

(y1,...,yl)
k polynomial.

Now we can define the actual operation between the values
of lattice points of polytopes, so that the operation corresponds
to the multiplication of multivariate polynomials. The value of
the resulting polytope lattice point(v1, . . . , vr) is computed by

P(v1, . . . , vr) =
v1
∑

w1=0

· · ·

vr
∑

wr=0

P1(w1, . . . , wr) · P2(v1 − w1, . . . , vr − wr),

whereP1 andP2 are the polytopes to be multiplied andr =
k − 1. We set previously the coefficients of a multivariate
polynomial to lattice points of the polytope. Therefore, when
we do the above operation for lattice points of the first two
polytopes, we see that the computed value of a lattice point is

c((h1, . . . , hk)|(y1, y2)) =
∑

Z∈W

c(z11, . . . , z1k) · c(z21, . . . , z2k), (17)

where W is the set of all matricesZ with marginals
(h1, . . . , hk) and (y1, y2). From this we can see directly
that when we do several multiplications, we get the term
c((x1, . . . , xk)|(y1, . . . , yl)) defined in formula (7).

279

We explained how to compute the relevant terms of the
polynomialT (y1,...,yl)

k efficiently. Next we show that there is
no need to compute the inner node matrices separately, as they
all have common terms, which is a property we can utilize to
make the computation even more efficient.

D. Core inner node matrix

Computation of the inner node matrices is still a very slow
operation, but we can avoid unnecessary computational work
by exploiting the particular order of partitions we earlierchose.
Namely, if we use the given order, we can first compute a
matrix, which we will name acore inner node matrix, as
follows:

CM =

c(q
max(X)
1 |q

max(Y)
1) · · · c(q

max(X)
P |q

max(Y)
1)

...
. . .

...

c(q
max(X)
1 |q

max(Y)
D) · · · c(q

max(X)
P |q

max(Y)
D)

,

where q
max(X)
i and q

max(Y)
j are K- and L-partitions. Value

D is the number ofL-partitions, whereL is the maximum
number of values that any inner node’s parent has in the forest
andP is the number ofK-partitions, whereK is the maximum
number of values any inner node has in the forest. Ignoring
the multipliers, we notice that every inner node matrix is just
a section from the core matrix. As we ordered the partitions
so that we first have embedded 1-partitions, then embedded 2-
partitions and so on, we can just make the following operation
to the core matrix to get an inner matrix: If the number of
values of a node is less thanK, we drop the last invalid
columns from the right, and if the number of values of a parent
is less thanL, we drop the last invalid rows from the bottom
of the core matrix.

The reason why all inner node matrices have the same
c(qX

i |q
Y
j) elements is easy to see: the bins with zero counts

do not affect the value of the conditional term, so we can add
as many zero counts as we want and the terms still remain
same.

E. Efficiency and the time complexity

The time complexity of the whole algorithm reduces to one
question: how much time does it take to compute the core
matrix? We get a rough approximation for the time complexity
in the following way: A size of aK-multiplication polytope
with givenn is O(nK−1). The maximum time that a polytope
element multiplication takes is alsoO(nK−1). We have to
computeD-times these polytopes, whereD is the number
of L-partitions ofn. The complexity of this term isO(nL−1).
Therefore the time complexity of the whole algorithm is
O(n2K+L−3). However, if we have precomputed the core
matrix, then the time complexity of computing the NML for
any forest (compatible to the core matrix) isO(HnK+L−2),
where H is the number of inner nodes in the forest. This
means that for example with two-valued nodes, the time
complexity is O(n3), but if we have precomputed the core
matrix, we can compute the NML in timeO(Hn2) for any
forest structure. Note that this time complexity applies for all

structures with any number of values in the leaf nodes, because
the number of values in a leaf node does not affect the inner
node computation.

We have run some tests for examining how largen is still
computationally feasible in practice. The algorithm is coded
using Perl and it utilizes some additional tricks. With 3-valued
nodes, computing the core matrix forn = 200 took about 6
hours using a 2.13GHz IntelR© CoreTM2 Duo -processor with
only one core, while with 4-valued nodes it took 16 hours to
compute the core matrix forn = 75. Note also that the core
matrix can be efficiently computed in parallel using multiple
processors (cores), as the rows of the core inner node matrix
can be computed separately using a different processor for
each row. Core matrices can also be stored for later use.

IV. CONCLUSION

We presented an algorithm for computing the normalized
maximum likelihood (NML) for tree structured Bayesian net-
work models. The efficiency of the algorithm depends on
the sizes of the alphabets used, and it is significantly more
efficient than the only existing alternative reported in [10].
The algorithm offers us an opportunity to empirically compare
the behavior of the NML approach to other graphical model
selection methods in many non-trivial cases. Furthermore,as
the algorithm computes exact results, this gives us also an
opportunity to empirically validate approximative methods for
computing the NML.

ACKNOWLEDGMENT

This work was supported in part by the Academy of
Finland under the project Civi and by the Finnish Funding
Agency for Technology and Innovation under the projects
Kukot and PMMA. In addition, this work was supported in
part by the IST Programme of the European Community, under
the PASCAL Network of Excellence, IST-2002-506778. This
publication only reflects the authors’ views.

REFERENCES

[1] M. Beck and S. Robins.Computing the Continuous Discretely: Integer-
point Enumeration in Polyhedra. Springer, 2007.

[2] P. Flajolet and R. Sedgewick.Analytic Combinatorics. Unpublished.
[3] D. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian

networks: The combination of knowledge and statistical data. Machine
Learning, 20(3):197–243, September 1995.

[4] P. Kontkanen and P. Myllymäki. A linear-time algorithmfor computing
the multinomial stochastic complexity.Information Processing Letters,
103(6):227–233, 2007.

[5] P. Kontkanen, P. Myllymäki, W. Buntine, J. Rissanen, and H. Tirri. An
MDL framework for data clustering. In P. Grünwald, I.J. Myung, and
M. Pitt, editors,Advances in Minimum Description Length: Theory and
Applications. The MIT Press, 2006.

[6] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networksof
Plausible Inference. Morgan Kaufmann Publishers, San Mateo, CA,
1988.

[7] J. Rissanen. Fisher information and stochastic complexity. IEEE
Transactions on Information Theory, 42(1):40–47, January 1996.

[8] F. Ruskey.Combinatorial Generation. Unpublished.
[9] Yu.M. Shtarkov. Universal sequential coding of single messages.

Problems of Information Transmission, 23:3–17, 1987.
[10] H. Wettig, P. Kontkanen, and P. Myllymäki. Calculating the normalized

maximum likelihood distribution for Bayesian forests. InProc. IADIS
International Conference on Intelligent Systems and Agents, Lisbon,
Portugal, July 2007.

280

