
Is Multinomial PCA Multi-faceted Clustering or Dimensionality
Reduction?

Wray Buntine and Sami Perttu
Complex Systems Computation Group (CoSCo), Helsinki Institute for Information Technology (HIIT)

University of Helsinki & Helsinki University of Technology
P.O. Box 9800, FIN-02015 HUT, Finland.
{Firstname}.{Lastname}@hiit.fi

Abstract

Discrete analogues to Principal Components
Analysis (PCA) are intended to handle dis-
crete or positive-only data, for instance sets
of documents. The class of methods is appro-
priately called multinomial PCA because it
replaces the Gaussian in the probabilistic for-
mulation of PCA with a multinomial. Exper-
iments to date, however, have been on small
data sets, for instance, from early informa-
tion retrieval collections. This paper demon-
strates the method on two large data sets and
considers two extremes of behaviour: (1) di-
mensionality reduction where the feature set
(i.e., bag of words) is considerably reduced,
and (2) multi-faceted clustering (or aspect
modelling) where clustering is done but items
can now belong in several clusters at once.

1 INTRODUCTION

Pp. 300–307 in Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, edited
by C.M. Bishop and B.J. Frey. Society for Artificial Intelligence and Statistics, 2003.

1.1 BACKGROUND

A now standard method for analysing discrete data
such as documents is clustering or unsupervised
learning. A rich variety of methods exist borrow-
ing theory and algorithms from a broad spectrum of
computer science: spectral (eigenvector) methods (Shi
& Malik, 2000), kd-trees (Moore, 1998), using ex-
isting high-performance graph partitioning algorithms
from CAD (Han, Karypis, Kumar, & Mobasher, 1997),
clustering to be informative about an auxiliary vari-
able (Pereira, Tishby, & Lee, 1993; Tishby, Pereira, &
Bialek, 1999), hierarchical algorithms (Vaithyanathan
& Dom, 2000) and data merging algorithms (Bradley,
Fayyad, & Reina, 1998). All these methods, however,
have one significant drawback for typical application

in areas such as document or image analysis: each
item/document is to be classified exclusively to one
class. Their models make no allowance, for instance,
for a research paper to have 60% artificial intelligence
content and 40% molecular biology content. It is 100%
one way or another. In practice documents invari-
able mix a few topics, readily seen by inspection of
the human-classified Reuters newswire, so the auto-
mated construction of topic hierarchies needs to re-
flect this. One alternative is to make clustering multi-
faceted whereby a document can be assigned using a
convex combination to a number of clusters rather
than uniquely to one cluster. This is an unsupervised
version of the so-called multi-class classification task
(Crammer & Singer, 2002).

A body of techniques with completely different goals
is known as dimensionality reduction: they seek
to reduce the dimensions of an item/document. Sup-
pose each is represented by a vector of 5000 discretes
or integers. Then for the purpose of performing sub-
sequent prediction, for instance, one might seek to re-
duce this to 100 reals for use in a more exhaustive or
complex algorithm such as nearest neighbor or logis-
tic regression. To perform search in high dimensional
spaces, such as image databases, dimensionality reduc-
tion serves a similar purpose (Kanth, Agrawal, Ab-
badi, & Singh, 1999). Ad hoc dimensionality reduction
techniques range from greedy feature selection schemes
to ordering by information or independence metrics
(Baeza-Yates & Ribeiro-Neto, 1999). The state of
the art here is Principal Components Analysis (PCA),
even in discrete applications. In text applications it
is a PCA variant called latent semantic indexing LSI
(Baeza-Yates & Ribeiro-Neto, 1999). A rich body of
practical experience indicates LSI is not ideal for the
task (e.g., (Hofmann, 1999; Chakrabarti & Mehro-
tra, 2000)), and theoretical justifications use unreal-
istic assumptions (Papadimitriou, Raghavan, Tamaki,
& Vempala, 1998). The use of cluster centers as vec-
tors, a heuristic method with no formal basis, performs
better than LSI (Karypis & Han, 2000), as does dis-

2 MULTINOMIAL PCA 301

tributional clustering (Baker & McCallum, 1998).

As a substitute to PCA on discrete data, authors
have recently proposed discrete analogues to PCA.
Methods include non-negative matrix factorization
(Lee & Seung, 1999), probabilistic latent semantic
analysis (Hofmann, 1999), latent Dirichlet allocation
(Blei, Ng, & Jordan, 2002), and generative aspect
models (Minka & Lafferty, 2002). A good discussion
of the motivation for these techniques can be found in
(Hofmann, 1999), a more sophisticated statistical anal-
ysis is (Minka & Lafferty, 2002), and a unifying treat-
ment is in (Buntine, 2002). We refer to the method as
multinomial PCA (mPCA) because it is a precise
multinomial analogue to Tipping et al.’s elegant for-
mulation of PCA as a Gaussian mixture of Gaussians
(Tipping & Bishop, 1999).

1.2 OVERVIEW

This paper describes our experiments intended to un-
derstand mPCA and whether it should be called a
multi-faceted clustering algorithm or a dimensionality
reduction algorithm. Note that previous experimen-
tal work has focused on comparatively small data sets
(Hofmann, 1999; Blei et al., 2002; Minka & Lafferty,
2002): 20, 000 odd documents in Lewis’ Reuters-21578
data set, and smaller document sets from various in-
formation retrieval collections. Moreover, they have
implicitly assumed a multi-faceted clustering scenario.

In this paper we address this short-coming by inves-
tigating the behaviour of mPCA on larger document
sets. In previous work we had reported initial exper-
iments on a word bigram task that differed from the
document data in the manner of its size. A single
bigram “document,” the bigram vector recording co-
occurrence counts for words following a target word,
can now have millions of words representing the to-
tal count of all words following the target word in a
large repository of text. First, we extend this analysis
here. Second, we report here the first application of
the method to the new Reuters Corpus1, containing
news items from 1996 and 1997. Data sets discussed
here have dimensions as follows (“items” is the num-
ber of documents, and “mean features” the average
number of words per document):

Data set Items Mean features
Reuters-21578 ≈ 20, 000 ≈ 150
Google bigrams 5, 000 ≈ 8, 000, 000
Reuters Corpus ≈ 800, 000 ≈ 250

Thus we can stress-test the algorithm along two di-
mensions, the number of documents and their average

1Volume 1: English Language, 1996-08-20 to 1997-08-
19.

size. This gave us the opportunity to evaluate mPCA
methods more fully. This required scaling up the al-
gorithm, although we have not yet needed to apply
parallel processing (e.g., (Blei et al., 2002)).

2 MULTINOMIAL PCA

For concreteness, consider the problem in terms of the
usual “bag-of-words” representation for a document
(Baeza-Yates & Ribeiro-Neto, 1999), where a docu-
ment is represented as a sparse vector of word indices
and their occurrence counts. All positional informa-
tion is lost. Here the items making up the sample are
documents and the features are the words in the docu-
ment. Ignoring sparsity (which for the subsequent the-
ory is an implementation issue), then with J different
words the i-th document becomes a vector ~xi ∈ ZJ ,
where the total

∑
j xi,j might be known, and there are

I documents in total.

2.1 THE MODEL

2.1.1 A Gaussian model

Consider Tipping et al.’s representation of standard
PCA. A hidden variable ~mi is sampled for the i-th doc-
ument from K-dimensional Gaussian noise. Each en-
try represents the strength of the corresponding com-
ponent and can be positive or negative. This is folded
with the K×J matrix of component means ~Ω to yield
a J-dimensional document mean. Thus for the i-th
document from the collection of I in total:

~mi ∼ Gaussian(0, IK)

~xi ∼ Gaussian(~mi
~Ω + ~µ, IJσ)

This relies on the data being somewhat Gaussian,
which fails badly for some image and document data
where low counts are frequent. No data transforma-
tions can eliminate the effect of low counts.

2.1.2 The discrete analogue

Modify the above as follows. First sample a probabil-
ity vector ~mi that represents the proportional weight-
ing of components, and then mix it with a matrix ~Ω
whose rows represent a word probability vector for a
component:

~mi ∼ Dirichlet(~α)

~xi ∼ Multinomial(~mi
~Ω, Li)

where Li is the total number of words in the i-th doc-
ument, and ~α is a vector of K-dimensional parame-
ters to the Dirichlet. Thus the probability of the j-th
word appearing in the i-th document is a convex com-
bination of the document’s hidden vector ~mi and the

3 THEORY REVIEW 302

j-th column of ~Ω. mPCA thus represents an addi-
tive/convex mixture of probability vectors.

Note also that a J-dimensional multinomial results
from taking J independent Poissons and assuming
their total count is given, thus a Poisson or multino-
mial analysis are similar and we just pursue the one
here.

2.2 THE EXTREMES OF MPCA

With each document a vector ~x ∈ ZJ , traditional
clustering becomes the problem of forming a mapping
ZJ 7→ {1, . . . , K}, where K is the number of clus-
ters, whereas dimensionality reduction forms a map-
ping ZJ 7→ RK where K is considerably less than J .
Instead, mPCA represents the document as a convex
combination. This forms a mapping ZJ 7→ CK where
CK denotes the subspace of RK where every entry is
non-negative and the entries sum to 1 (~m ∈ CK implies
0 ≤ mk ≤ 1 and

∑
k mk = 1).

Suppose ~m ∈ CK is the reduction of a particular
document. For multi-faceted clustering, ~m should
have most entries zero, and only a few entries signif-
icantly depart from zero. For dimensionality reduc-
tion, ~m should have many non-zero entries and many
significantly different from zero so that the reduced
space CK is richly filled out to make the dimension-
ality reduction efficient in its use of the K dimen-
sions. A measure we shall use for this is entropy,
H(~m) =

∑
j mj log 1/mj . Thus multi-faceted clus-

tering prefers low entropy reductions in CK whereas
dimensionality reduction prefers high entropy reduc-
tions. In the limit, when the average entropy is 0, the
mapping becomes equivalent to standard clustering.

3 THEORY REVIEW

Here we summarize relevant theory from (Buntine,
2002). A notation convention used here is that in-
dices i, j, k in sums and products always range over 1
to I, J,K respectively, where i denotes a sample index,
j a dictionary word index, and k a component index.
I is the number of documents, J the number of words
(dictionary size), and K the number of components.
The index i is usually dropped for brevity (it is shared
by all document-wise parameters) and is inserted when
needed using the notation “[i]”.

3.1 A PROBABILITY MODEL

3.1.1 Priors

In the mPCA model ~m, a K-dimensional probabil-
ity vector, represents the proportion of components

in a particular document. ~m must therefore repre-
sent quite a wide range of values with a mean rep-
resenting the general frequency of components in the
sample. A prior for such a probability vector is the
Dirichlet, ~m ∼ Dirichlet(~α). This is analytically at-
tractive but otherwise has little to recommend it. The
matrix ~Ω represents word frequency probability vec-
tors row-wise. A suitable prior for these is a Dirich-
let whose mean correspond to the empirical frequen-
cies of words occurring in the full data set, ~f , so that
~Ωk,· ∼ Dirichlet(2~f) (i.e., an empirical prior).

3.1.2 Likelihoods

We briefly present the case where the bag of words
has no order. The leads to identical theory to the
so-called unigram model, or 0-th order Markov model
which retains order. A hidden variable ~w is used which
is a sparse matrix whose entry wk,j is the count of the
number of times the j-th word occurs in the docu-
ment representing the k-th component. Its row total
rk =

∑
j wk,j is the count of the number of words in

the document representing the k-th component. Its
column total cj =

∑
k wk,j is the observed data. De-

note by ~wk,· the k-th row vector.

~m ∼ Dirichlet(~α)
~r ∼ Multinomial(~m,L)

~wk,· ∼ Multinomial(~Ωk,·, rk) for k = 1, . . . , K

The hidden variables here are ~m and ~w and the row
and column totals are derived. The full likelihood for
a single document p(~m, ~w | ~α, ~Ω) then simplifies to:

1
ZD(~α)

CL
w1,1...,wK,1,...,wK,J

∏

k

mαk−1
k

∏

k,j

m
wk,j

k Ωwk,j

k,j ,

(1)
where ZD() is the normalizing constant for a Dirichlet.
This is the likelihood used in constructing a variational
EM algorithm with the hidden variables. It corre-
sponds to one big multinomial because

∑
k,j mkΩk,j =

1. Thus the hidden variable ~w can be marginalized out
to yield the formulation in Section 2.

1
ZD(~α)

CL
c1...,cJ

∏

k

mαk−1
k

∏

j

∑

j

mkΩk,j

cj

.

3.2 AN ALGORITHM

The algorithm estimates the MAP parameters for ~Ω
and the parameters ~α for the Dirichlet prior. This
extends (Blei et al., 2002) with a prior and a proof of
optimality of the product approximation.

Theorem 1 Assume the likelihood model of Sec-
tion 3.1.2 and priors of Section 3.1.1. The following

4 IMPLEMENTATION DETAILS 303

updates converge to a local maximum of a lower bound
of log p(~r, ~Ω, ~α) that is optimal for all product approx-
imations q(~m)q(~w) for p(~m, ~w | ~Ω, ~α, ~r). The subscript
[i] indicates values from the i-th document and ~γ and
~β are intermediate variables of appropriate dimension.

γj,k,[i] ←− 1
Z1,j,[i]

Ωk,j exp
(
̂log mk,[i]

)
, (2)

βk,[i] ←− αk +
∑

j

cj,[i]γj,k,[i] , (3)

Ωk,j ←− 1
Z2,k

(
2fj +

∑

i

cj,[i]γj,k,[i]

)
,

Ψ0(αk)−Ψ0

(∑

k

αk

)

←− log 1/K +
∑

i
̂log mk,[i]

1 + I
. (4)

Using ̂log mk,[i] = Ψ0(βk,[i])−Ψ0

(∑
k βk,[i]

)
, and Ψ0()

is the digamma function. The lower bound on the log
probability for the single i-th document is given by

log p
(
~r[i] | ~Ω, ~α

)
≥ log CL

~r[i]
− log

ZD(~α)

ZD(~β[i])
(5)

+
∑

k

(αk − βk,[i]) ̂log mk,[i] +
∑

j

cj,[i] log Z1,j,[i]

Note the last two rewrite rules are the standard MAPs
for a multinomial and a Dirichlet sampling respec-
tively. The last rewrite rule (4) for ~α gives its dual pa-
rameters (according to exponential family convention),
which can be immediately inverted using Minka’s
methods (Minka, 2000). Note that Formula (5) can
be updated while the rest of the major calculations
are being done, and thus the probability bounds can
be efficiently maintained. Be warned, however, that
these are bounds on a model we do not realise. Minka,
for instance, does Monte Carlo runs on ~m to produce
unbiased estimates of the document likelihood (Minka
& Lafferty, 2002). By computing Minka’s unbiased es-
timates, we find perplexities will be over-estimated by
as much as 5% using the bounds.

4 IMPLEMENTATION DETAILS

Our code is written in C using Open Source tools and
libraries such as the GNU Scientific Library (GSL).
The GSL comes with a wide variety of distributional
sampling algorithms as well as functions such as the
digamma function and its derivatives.

The first thing to note is that the intermediate variable
~γ does not need to be stored, and can be recomputed
at each stage for each document. Moreover, βk,[i] and

̂log mk,[i] share the same space, taking K ∗I space, and
~Ω takes 2 ∗K ∗ J space, since both an old and a new
value is required in order to eliminate ~γ. The basic
algorithm then takes the following form:

1. Initialize the full ~m matrix using a uniform Dirich-
let, and initialize the matrix ~Ω.

2. For each document index i:

(a) For each word index j with a non-zero count
in the document (cj,[i] > 0),

i. Compute γj,k,[i] for each k and Z1,j,[i].
ii. Accumulate the sums for updating βk,[i]

and Ωk,j . Accumulate the log probability
bounds of Formula (5).

(b) Compute the new βk,[i] for each k and store
it as normalized exp(̂log mk,[i]). Accumulate
the sums for updating ~α.

3. Update ~Ω, and ~α.

4. If the accumulated log probability bound has not
stabilized, repeat from step 2.

Notice, this interleaves the update of ~Ω and ~m, rather
than optimizing ~m for the each ~Ω. The former seems
to perform better (compare with (Minka & Lafferty,
2002)).

Space requirements for runtime are thus O(K ∗(I +
J) + S) where S is the size of the input data rep-
resented as sparse vectors, and computational re-
quirements for each iteration is O(K ∗ (I + J + S)).
This is comparable to an algorithm for extracting the
top K eigenvectors usually used for PCA. Convergence
is maybe 10-40 iterations for our data, depending on
K and the accuracy required. This is slower than its
PCA counterpart, but comparable in performance to
a fast supervised learning algorithm on the same doc-
ument set (Crammer & Singer, 2002).

Useful diagnostic measures reported on below are
as follows (note we retain the term “document” here to
mean one item as used elsewhere in the paper): Mean
effective number of words per component (EW/C): the
conditional entropy of the word probability vectors in
~Ω given components raised to power 2. Mean effec-
tive number of components per document (EC/D): the
entropy of the component probability vectors ~m av-
eraged over documents raised to power 2. Effective
number of components (EC): the entropy of the ob-
served component base rates raised to power 2, should
be O(K).

6 REUTERS EXPERIMENTS 304

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200

M
ea

n
ef

fe
ct

iv
e

nu
m

be
r

of
 c

om
po

ne
nt

s
pe

r
do

cu
m

en
t

Effective number of components

Bigram data for 5000 words

baseline
/100

/1000
/10000

/100000

Figure 1: Component dimensions

5 GOOGLE BIGRAM DATA

Our first experiments allowed a different view of the
mPCA method because of the quantity of the data.
Bigram data had been collected about words from a
significant portion of the English language documents
in Google’s August 2001 crawl. The bigram data is
17% non-zero for the matrix of the top 5000 words.
The top word “to” has 139, 597, 023 occurrences and
the 5, 000-th word “charity” has 920, 343 occurrences.
The most frequent bigram is “to be” with 20, 971, 200
occurrences, while the 1, 000-th most frequent is “in-
cluded in” at 2, 333, 447 occurrences. Note with this
data, the role of a “document” is played by the co-
occurrence data for a target word.

For the Google bigram data, it was previously reported
that EC/D grows sub-linearly as mPCA is run with
larger and larger component dimension K (Buntine,
2002). To test why the growth continues, happens, we
sampled without replacement from each bigram vec-
tor to produce “documents” of different sizes. Each
“document” is sub-sampling by factors of 100, 1, 000,
10, 000, 100, 000 respectively, yielding mean “docu-
ment” sizes of approximately 80, 000, 8, 000, 800 and
80, respectively with sparsity levels increasing approx-
imately linearly as 85%, 92%, 95%, and 99% respec-
tively.

The results from these experiments are reported in
Fig. 1, plotting EC versus EC/D. Each curve repre-
sents the results for one sub-sampling factor. So the
top curve, which has no sub-sampling and where doc-
uments are 8, 000, 000 words on average, the mean ef-
fective number of components per document increases
up to about 40. The second from the bottom curve
(/10000) has about 800 words per document and typ-
ically 3-4 mean effective number of components per
document, no matter how many components are in-
ferred from the data (from 20 up to about 800). The

third from the bottom curve (/1000) has about 8000
words per document and 10 mean effective number of
components per document. From these experiments,
we can conclude: The mean effective number of com-
ponents is influenced by the document size. This would
reflect the statistical capacity of the document to sup-
port a number of components.

6 REUTERS EXPERIMENTS

For the next experiments we collected bag-of-words
data from the new Reuters Corpus, which contains
806, 791 news items from 1996 and 1997. The average
length of a news item is 225 words, which translates
to a total of 180 million word instances. About half a
million of these are distinct words after the suffix “’s”
is eliminated.

We kept the most frequent 65, 000 words in the dictio-
nary; these are words appearing at least 38 times in
the corpus. They account for 99% of the data. This
lets us store the full set of documents in a bag-of-words
format in 220 MB.

6.1 SCALING UP THE ALGORITHM

If 1000 component models are to be built, that would
mean that 806, 791, 000 floats are needed to store the
̂log mk,[i] data, 3.2 GB if stored naively.

Thus, in order to run the system on the full Reuters
data set, we needed to make some changes to our soft-
ware. First, we store each ̂log mk,[i] in 16 bits as a
factor of 216, which reduces the storage requirement
to 1.6 GB. Note that part way through the run, this
becomes sparse, but initially at least the full 1.6 GB
is used. Second, we process the ̂log mk,[i] data us-
ing sparse vectors. Part way through the run, it can
become sparse between 15% and 95%, and thus this
speeds up a single cycle by a significant factor, run-
ning up to three times faster. Third, we process the
̂log mk,[i] data directly off the disk using memory map-

ping (mmap() in Linux) and do not keep the full matrix
in memory. It turns out that the processing per docu-
ment is sufficiently slow that this use of disk makes no
difference in speed. It is the ~Ω matrix, 260 MB in size
(with 1000 components and 65, 000 words), that needs
to be stored in memory since access to it is rapidly
changing.

With these modifications, we were able to process the
full set of Reuters news documents on a single desktop
Linux computer with 1 GB of memory and a 1.3 GHz
processor in an overnight run. Parallel processing
is the next technique which we will need when run-
ning the algorithms on 20 GB web/HTML repositories.

6 REUTERS EXPERIMENTS 305

Nasdaq composite flood damage
per share lend lease
European Union bonds AAA
Iraqi oil applications software
same-store sales North Sea
personal computers shot dead
electrical equipment draft law
NHL ice East Timor
oil production tobacco industry
South Africa his first

Table 1: Titles of 20 random components

Runs initially did training on 700, 000 documents and
using the remainder with Formula (5) as a hold-out set
to ensure safe stopping and prevent over-fitting. All
reported results are trained on the full set.

6.2 INSPECTING RESULTS

We have written a custom web server in C++ that al-
lows the user to examine different aspects of a model
via a web browser. Documents, components and words
each have their own pages that are dynamically gen-
erated and fully cross-referenced.

For the interface, we also implemented a simple com-
ponent naming algorithm to get a better feel for the
results. It looks at 2- and 3-word compounds appear-
ing in the documents. Each compound is scored for
its relevancy in a component and the highest scoring
compound becomes the title. We skip the details but
Table 1 shows titles of 20 random components gener-
ated by the algorithm from a K = 1000 component
run. Many entries in the table are related to finance
and economy; this reflects corpus content.

Document-level co-occurrence of words is the phe-
nomenon mPCA captures in the bag-of-words case.
Different types of components emerge from the
Reuters corpus. As an example, the following com-
ponents are taken from a run with K = 1, 000 compo-
nents.

Table 2 shows an example of a content component:
roughly, its presence in a document tells what the doc-
ument is about. In the table, typical words are ordered
according to their frequency in the component, while
unexpected words are scored by the log2-difference
of their component frequency from their corpus fre-
quency. The component is clearly about the mad cow
disease scandal and it has a high number (367) of ex-
pected words, which is typical of content components.

Another type of component, named “We Have”, is
shown in Table 3. This component has a low num-
ber (13) of expected words. It is a prime example of

Component “Mad Cow Disease”
Typical Words Unexpected Words

0.046 beef 0.43 beef
0.042 meat 0.41 meat
0.031 disease 0.28 disease
0.026 agriculture 0.24 cow
0.024 cattle 0.22 poultry
0.023 cow 0.20 mad
0.021 BSE 0.19 BSE
0.021 poultry 0.19 agriculture
0.020 mad 0.18 cattle

Table 2: Top words in component “Mad Cow Disease”

Component “we have”
Typical Words Unexpected Words
0.494 we 3.91 we
0.146 our 1.17 our
0.040 are 0.17 us
0.034 have 0.15 are
0.030 us 0.12 have
0.016 away 0.11 away
0.012 believe 0.08 hope
0.012 what 0.08 believe
0.012 hope 0.06 know

Table 3: Top words in component “We Have”

a stylistic component: the typical documents are
invariably interviews, and the top words are personal
pronouns and opinionated words.

There are also components that do not fall conve-
niently into either category, for instance the women’s
tennis component in Table 4, or that seem to be com-
posed of overlapping sub-topics. Sometimes a com-
ponent with a high proportion of stop words, such as
“the”, “to”, “in”, “a”, contains a hidden “real topic”
with a smaller proportion.

Component “Steffi Graf”
Typical Words Unexpected Words
0.102 her 0.87 her
0.069 she 0.51 she
0.023 I 0.19 Graf
0.019 Graf 0.14 Hingis
0.014 Hingis 0.13 Seles
0.012 Seles 0.10 I
0.010 who 0.07 tennis
0.008 tennis 0.07 Steffi
0.007 was 0.05 miss

Table 4: Top words in component “Steffi Graf”

7 CONCLUSION 306

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900 1000

P
ro

ba
bi

lit
y

of
 s

to
p

w
or

ds

Sorted component

Stop words (i.e., 30 most common) in 1000-component run

component value
population value

Figure 2: Stop word proportions in 1000-component
run

 1

 10

 100

 1000

 10 100 1000 10000

E
ffe

ct
iv

e
nu

m
be

r
of

 c
om

po
ne

nt
s

Word count

Components per document

document

Figure 3: Document Size versus Components

Since we did nothing to exclude stop words from our
runs, the question arises what impact they had in the
models. Here we define the set of stop words as the
most frequent 30 words. Fig. 2 shows stop word pro-
portions per component in a 1000-component run. The
dotted line is the frequency of stop words in the corpus.
It can be seen that less than 5% of the components con-
tain a significant proportion of stop words, and most
of the components have very little stop word content.
Thus we conclude that their impact is minimal: not
having strong co-occurrence patterns, they are isolated
and mPCA concentrates on more interesting aspects.

6.3 EXPLAINING COMPONENT
DIMENSIONALITY

To understand components and their relationship with
our original question, dimensionality reduction or
multi-faceted clustering, we plotted the effective size
data. Fig. 3 shows the relationship between document
size and EC/D the number of components. The tri-
angular shape is explained as follows: for small doc-
uments, it is difficult to distinguish statistically be-

 1

 10

 100

 1000

 10000

 1 10 100 1000

E
ffe

ct
iv

e
nu

m
be

r
of

 w
or

ds

Sorted component

Component cover in words

1000 comps
400 comps
200 comps

80 comps
20 comps

Figure 4: Words in a Component

tween the many choices of components; for large doc-
uments it is difficult not to. Clearly, in this case, the
number of components for each document indicates
we are operating in the regime of dimensionality re-
duction. However, the components are not synonym
sets, rather they are topical set of words. While for
each component there will be a corresponding set of
documents where this dominates, the majority of doc-
uments mix many different components. For instance,
a “Mother Teresa” component was discovered whose
extreme documents were all about Mother Teresa but
whose general role in other documents was to isolate
facets of motherhood and elderly women.

Fig. 4 shows EW/C the mean expected number of
words for component sets of different size K, 20 com-
ponents, 80, 200, 400, and 1000. Fig. 4 shows the
components themselves have a wide variety of speci-
ficity, some targeting just small numbers of words,
and some representing a wide topical vocabulary. For
all these runs, the component base rates (modelled
by αk/

∑
k αk and also extracted empirically as the

mean occurrence of the component across the docu-
ment set) are surprisingly uniform and EC is O(K).
For K = 1000, most components have base rates
within a factor of 3 of 0.001. The uniformity of the
base rates for components holds for all K tested and
implies mPCA can be used for hierarchical modelling.

7 CONCLUSION

The mPCA algorithm is driven by the goal of improv-
ing the log likelihood, with no concern for being either
a multi-faceted clustering algorithm or a dimensional-
ity reduction algorithm exists. Previous experiments
reported by others on small document collections im-
plicitly present the algorithm as a multi-faceted clus-
tering algorithm. Here, we teased out the behaviour
of mPCA when is applied to significantly larger cases.
We used EC/D, the mean effective components per

REFERENCES 307

document, as a proxy for differentiating multi-faceted
clustering versus feature reduction. Our experiments
demonstrated the following:

Component scaling: Approaches such as the In-
formation Bottleneck method (Tishby et al.,
1999) and hierarchical approaches in general yield
different clustering at different scales. PCA and
LSI do not change with scale: the first 10 com-
ponents of a 100-dimensional PCA decomposition
are exactly the same as a 10-dimensional PCA de-
composition. In mPCA, components change with
scale.

Document size effects EC/D: It seems that large
documents can statistically support larger num-
bers of components, and smaller documents are
unable to distinguish between a large choice of
different components.

Collection size effects EC/D: With very large
collections, components can now select on indi-
vidual features which makes the business of iden-
tifying components far easier. When rarer words
only appear in a few components, and most docu-
ments contain several rare words, it becomes eas-
ier to statistically identify components and thus
more components can be found in a document.

Synonym sets versus topics: Moreover, compo-
nents themselves tended to play a mixed role.
Most components had a prototypical style of doc-
ument for which the component dominated. How-
ever, the components also appeared throughout
many other documents focusing on words in a
broader area of interest (“motherhood”, “corpo-
rate losses”).

Acknowledgments

Thanks to Reuters for providing their Corpus as de-
scribed in Section 6.

References

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern in-
formation retrieval. Addison Wesley.

Baker, L., & McCallum, A. (1998). Distributional cluster-
ing of words for text classification. In 21th annual
intl. ACM SIGIR conference.

Blei, D., Ng, A., & Jordan, M. (2002). Latent Dirichlet
allocation. In NIPS*14.

Bradley, P., Fayyad, U., & Reina, C. (1998). Scaling
clustering algorithms to large databases. In Proc.
kdd’98.

Buntine, W. (2002). Variational extensions to EM and
multinomial PCA. In Ecml 2002.

Chakrabarti, K., & Mehrotra, S. (2000). Local dimension-
ality reduction: A new approach to indexing high
dimensional spaces. In The VLDB journal (pp. 89–
100).

Crammer, K., & Singer, Y. (2002). A new family of online
algorithms for category ranking. In 25th annual intl.
ACM SIGIR conference.

Han, E.-H., Karypis, G., Kumar, V., & Mobasher, B.
(1997). Clustering based on association rule hyper-
graphs. In Sigmod’97 workshop on research issues
on data mining and knowledge.

Hofmann, T. (1999). Probabilistic latent semantic index-
ing. In Research and development in information
retrieval (p. 50-57).

Kanth, K., Agrawal, D., Abbadi, A. E., & Singh, A. (1999).
Dimensionality reduction for similarity searching in
dynamic databases. Computer Vision and Image
Understanding: CVIU, 75 (1–2), 59–72.

Karypis, G., & Han, E.-H. (2000). Concept indexing: A
fast dimensionality reduction algorithm with appli-
cations to document retrieval and categorization. In
Cikm-2000.

Lee, D., & Seung, H. (1999). Learning the parts of objects
by non-negative matrix factorization. Nature, 401,
788–791.

Minka, T. (2000). Estimating a Dirichlet distribution.
CMU. (Course notes)

Minka, T., & Lafferty, J. (2002). Expectation-propagation
for the generative aspect model. In UAI-2002. Ed-
monton.

Moore, A. (1998). Very fast EM-based mixture model
clustering using multiresolution kd-tree. In Neural
information processing systems. Denver.

Papadimitriou, C., Raghavan, P., Tamaki, H., & Vempala,
S. (1998). Latent sematic indexing: A probabilis-
tic analysis. In Proc. of symposium on principles of
database systems.

Pereira, F., Tishby, N., & Lee, L. (1993). Distributional
clustering of English words. In Proceedings of ACL-
93.

Shi, J., & Malik, J. (2000). Normalized cuts and image seg-
mentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22 (8), 888–905.

Tipping, M., & Bishop, C. (1999). Mixtures of probabilistic
principal component analysers. Neural Computation,
11 (2), 443-482.

Tishby, N., Pereira, F., & Bialek, W. (1999). The infor-
mation bottleneck method. In 37-th annual allerton
conference on communication, control and comput-
ing (pp. 368–377).

Vaithyanathan, S., & Dom, B. (2000). Model-based hier-
archical clustering. In UAI-2000. Stanford.

