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Petri Kontkanen, Petri Myllym�aki, Henry TirriComplex Systems Computation Group (CoSCo)P.O.Box 26, Department of Computer Science, FIN-00014 University of Helsinki, Finlandhttp://www.cs.Helsinki.FI/research/cosco/, cosco@cs.Helsinki.FIAbstractIn this paper we study prequential modelselection criteria in supervised learning do-mains. The main problem with this approachis the fact that the criterion is sensitive tothe ordering the data is processed with. Wediscuss several approaches for addressing theordering problem, and compare empiricallytheir performance in real-world supervisedmodel selection tasks. The empirical resultsdemonstrate that with the prequential ap-proach it is quite easy to �nd predictive mod-els that are signi�cantly more accurate clas-si�ers than the models found by the stan-dard unsupervised marginal likelihood crite-rion. The results also suggest that averagingover random orderings may be a more sensi-ble strategy for solving the ordering problemthan trying to �nd the ordering optimizingthe prequential model selection criterion.1 IntroductionIn this paper we are concerned with the problem ofde�ning practical model selection criteria for learningpredictive models from sample data | in other wordswe wish to �nd computationally feasible scoring func-tions that can be used for distinguishing accurate pre-dictive models from poor models in machine learningcontexts. It should be noted that as we de�ne the qual-ity of a model in terms of predictive accuracy, this def-inition is dependent on how we measure the accuracyof a predictive distribution, i.e., on the loss functionused. In the unsupervised setting the loss function isde�ned in terms of a joint distribution on the domainvariables. In contrast to this, in the following we con-sider supervised situations where the domain variablescan be partitioned into two separate sets, and we knowa priori that all future prediction tasks involve predict-

ing the values of variables in the second set, given thevalues of variables in the �rst set. In particular, in thispaper we focus on a special case of such problems, theclassi�cation problem, where the second set consists ofa single (class) variable.The standard Bayesian approach for solving the modelselection problem is to view the possible models asvalues of a random variable, and to choose the modelmaximizing the posterior probability, given the sam-ple data. Assuming all the models to be equally prob-able a priori, this leads to choosing the model maxi-mizing the marginal likelihood or the evidence of thedata. However, as discussed in [13], the maximal ev-idence model represents well the joint distribution ofthe domain variables, and is hence a solution for un-supervised model selection tasks. Nevertheless, thisapproach is frequently used also for supervised modelselection tasks, such as the classi�cation problem athand. This issue is discussed in more detail in Sec-tion 2.In our earlier work [15] we demonstrated empiricallythat marginal likelihood can be in practice a poormodel selection criterion for classi�cation domains,and that model selection criteria based on prequen-tial (predictive sequential) approaches [5, 6, 7, 19] orcross-validation [23, 9] lead to more accurate predic-tive models. In this paper we extend and elaborate ourprevious work in two ways. First, instead of constrain-ing ourselves to simple variants of the Naive Bayesmodel, here we change the model family to consist ofmore complex �nite mixture models, where the jointprobability distribution is obtained by a weighted sumof component distributions. The second extension con-cerns the use of the prequential approach in supervisedmodel selection. Namely, we assume that there is nonatural ordering in the data, but wish to treat the dataas an unordered list. However, as already pointed outin [15], in this case the value of the prequential modelselection criterion depends on the order of which thedata is processed. In Section 3 we discuss several ap-



234 Arti�cial Intelligence and Statistics 2001proaches for addressing the ordering problem.The empirical results obtained support the observa-tions reported in [15], and demonstrate similar behav-ior with the mixture models as with the Naive Bayesmodel: supervised model selection criteria clearly out-perform the unsupervised marginal likelihood criterionalso in this case. The results also suggest that thegreedy heuristic suggested in [19, 20] for handling theordering problem, or the simple variants consideredhere, do not yield satisfactory results in practice, butmore e�cient solutions are needed. In this set of ex-periments, better results were obtained by averagingthe prequential criterion over a number of random or-derings. The results are summarized in Section 4.2 The Supervised Model SelectionProblemLet D = xN denote the training data, a matrixof N vectors each consisting values of n randomvariables X1; : : : ; Xn. For simplicity, in the sequelwe will assume the random variables Xi to be dis-crete. By a model M we mean here a paramet-ric model form so that each parameterized instance(M; �) of the model produces a probability distribu-tion P (X1; : : : ; XnjM; �) on the space of possible datavectors x. Although it is intuitively appealing (and inmany cases conceptually convenient) to think of thedata D as a random sample from some \true" but un-known probability distribution, it should be pointedout that the model selection problem can also be for-malized without such an assumption, as demonstratedin, e.g., [5, 20, 18].Given a set F = fM1; : : : ;Mmg of possible models,and a data sample D, in the (unsupervised) modelselection problem, the task is to choose a modelM 2 Fso that the resulting predictive distributionP (X1; : : : ; XnjD;M)= Z P (X1; : : : ; XnjD;M; �)P (�jD;M)d� (1)yields more accurate predictions in the future than anyof the predictive distributions de�ned by the othermodels. Consequently, in this paper we do not con-sider the problem of choosing the model parameters,but use in each case the predictive distribution (1),and assume that the modelsM are such that this typeof marginalization can be done in closed form. We alsodo not address here the important problem of how to�nd good sets of models, but concentrate on modelvalidation, and assume the set F to be given.In the Bayesian approach, the model selection prob-lem is typically solved by regarding F as a random

variable (with possible values M1; : : : ;Mm), and bychoosing the model maximizing the posterior proba-bility P (MijD). Assuming all the models to be equallyprobable a priori, this leads to choosing the modelM�maximizing the marginal likelihood or the evidence ofthe data D:M� = argmaxM P (M jD) = argmaxM P (DjM)= argmaxM Z P (DjM; �)P (�jM)d�: (2)We see that the marginal likelihood measure dependson the prior distribution P (�jM) de�ned on the modelparameters. This prior can either be regarded as aformalization of our prior domain knowledge, in whichcase we are faced with the question of compatibilityand consistency between di�erent priors [12, 3], or onlyas a technical parameter representing no such infor-mation. In the latter case, it can be shown that acertain prior known as Je�reys' prior [14, 1] can begiven strong theoretical justi�cation from the predic-tive performance point of view with respect to the socalled minimax loss formulation [21, 10]. Some em-pirical results concerning the e�ect of Je�reys' prioron predictive accuracy can be found in [16, 17, 11].In the remainder of this paper we do not address theimportant problem of choosing the prior distributions,but simply use uniform non-informative priors for themodel parameters � as well as for the models M .In the supervised classi�cation framework consideredin this paper, the goal in the model selection is tochoose from F the model M which yields the mostaccurate classi�cations with respect to the loss func-tion used, and the classi�cation predictive distributionP (V ju;M), where V denotes the class variable, thevalue of which is to be predicted, and u denotes thevalues of the other variables, which are assumed to begiven. It is now important to realize that althoughthe joint probability distribution P (v;ujM) can beused for producing the required classi�cation proba-bility distribution by marginalization,P (vju;M) = P (v;ujM)P (ujM) = P (v;ujM)Pv0 P (v0;ujM) ;the model M producing the most accurate predictivedistribution in the joint probability estimation sensedoes not necessarily have to produce the most accu-rate classi�cation probability distribution, unless thejoint distribution P (v;ujM) represents the \true" do-main probability distribution exactly. As we can safelysay that in reality this assumption is never true, wecan conjecture that proper supervised model selectioncriteria may favor di�erent models than unsupervisedmodel selection criteria.



Poster Papers 2353 Supervised Prequential ModelSelectionAs discussed in [15, 13], there are many alternativeapproaches for constructing theoretically valid modelselection criteria for the supervised framework dis-cussed in the previous section. In the following weconcentrate on prequential approaches where the modelselection criteria are typically computed predictivelyand sequentially (\prequentially"). Theoretical frame-works for prequential model selection can be foundin [5, 6, 7, 19, 20, 24]. It is noteworthy that althoughthese frameworks are motivated by various di�erentconsiderations, all the suggested approaches lead toquite similar results if the predictive accuracy is mea-sured by using the logarithmic loss function.As prequential model selection principles are usuallydescribed in the unsupervised model selection domain,the approach has to be modi�ed accordingly for our su-pervised classi�cation case. In [15] we followed the sug-gestion given in [6], based on the observation that themarginal likelihood can be factorized into two prod-ucts as follows:P (DjM) = P (vN ;uN jM)= NYi=1P (vi; uijvi�1;ui�1;M)= NYi=1P (vijvi�1;ui;M) NYi=1P (uijvi�1;ui�1;M): (3)Of these two products, the �rst one was called thepartial (marginal) likelihood in [4] and conditional nodemonitor in [22].We now see that if we use the partial marginal like-lihood as a basis for a prequential scoring function,this results in a sequential process where at time i, theclassi�cation predictive distributionP (Vijvi�1;ui;M) = P (Vijvi�1;ui�1; ui;M) (4)is computed by using the information preceding vi inthe matrix D (assuming that the values of V are storedin the last column of D). Consequently, assuming thelogarithmic loss function, this approach suggests thatone should select the model M minimizing the follow-ing prequential model selection criterionS(vN ;uN jM) = NXi=1 � logP (vi j vi�1;ui;M): (5)It is now important to notice that unlike in the un-supervised case, where the prequential log-loss scoreis equivalent to the marginal likelihood criterion and

hence order-independent, the value of the partialmarginal log-likelihood (5) depends on the ordering ofthe data. The ordering is of course irrelevant asymp-totically, but this raises the question of whether theordering is relevant with small sample sizes, and if itis, how should we then select the data ordering?We can now distinguish two alternative approaches foraddressing the ordering problem. First of all, if wethink of our data as an unordered list (of vectors) in-stead of a vector (of vectors), this suggests that weshould marginalize over di�erent orderings; in otherwords, we should sum the partial marginal likelihoodscore (5) over all the permutations of the data. Thismarginalization is obviously computationally infeasi-ble in practice, which leaves us with approximativemethods. The simplest solution is to generate a num-ber of random data orderings, and average the resultsover the individual prequential scores obtained.An alternative viewpoint was taken in [19], where itwas suggested that instead of summing over data or-derings, given a model M , one should try to �nd theordering minimizing the prequential score (5). Nev-ertheless, as in performing the marginalization, thisminimization is again of course computationally infea-sible in practice. For this reason, Rissanen suggestedin [19, 20] a simple greedy procedure, where the datais ordered so that at each step the data vector yield-ing (locally) the largest gain in the prequential scoreis processed next. In the sequel we call the resultingmodel selection score the best-�rst prequential score.The greedy best-�rst search is in most cases probablya poor optimization method that is prone to get stuckin a local optimum. Nevertheless, even this simpleheuristic requires O(N2) time to run, which can becomputationally demanding with large data sets. Forthis reason, in this paper we do not consider moreelaborate optimization methods, but focus on usingsimple heuristics.One alternative to the best-�rst approach is to use theworst-last procedure, where the ordering is determinedfrom the last vector to the �rst vector in a greedy fash-ion, but so that at each stage the data vector yieldingthe smallest local gain in the prequential score (5) ischosen. This approach can be motivated by argument-ing that the cases that are the most di�cult to predictshould be given as much history data as possible, hencethose vectors should be processed last. Two obviouscounterparts of the best-�rst and worst-last proceduresare given by the best-last and worst-�rst heuristics.



236 Arti�cial Intelligence and Statistics 20014 Empirical Results4.1 The SetupIn �nite mixture models the classi�cation predictivedistribution (4) is obtained by a weighted sum of com-ponent distributions,P (Vi+1jvi;ui;ui+1) =Xz P (Vi+1jvi;ui+1; Z = z)P (Z = zjvi;ui+1); (6)where Z denotes a (hidden) latent variable indexingthe component distributions of the mixture. In thefollowing setup we consider only �nite mixture modelswhere the variables Xi are assumed to be independentof each other, given the value of the latent variable Z.One way to look at �nite mixture models is to treatthe latent variable Z as a clustering variable, the hid-den values of which index the data source (a probabil-ity distribution representing a cluster of cases) wherea data vector \originates" from. However, assum-ing this type of a latent variable is in contradictionwith the assumption made in Section 2, where we as-sumed that the models used are such that the pre-dictive distributions can be obtained by integratingover the parameters. For this reason, in the followingwe simplify the setup and assume that the values ofthe latent variable corresponding to each of the train-ing vectors x1; : : : ;xN are set to some �xed valuesz = (z1; : : : ; zN ). We do not address the problem ofhow to �nd the clustering z, but assume it to be given.In this case the predictive distribution (6) is fully de-termined by z, and we can regard the clusterings z asour models M .The prequential model selection criterion alternativesdiscussed in Section 3 were empirically validated byusing 14 classi�cation data sets from the UCI datarepository [2]. A single model selection experimentwas performed in the following way. The data was�rst partitioned into two equal size sets, the trainingdata and the test data. A pool of 40 candidate models(clusterings) z1; : : : ; z100 was then produced by run-ning the K-means clustering algorithm (see, e.g., [8])40 times with the training data, starting from randominitial points. The number of mixture components (thenumber of clusters, i.e., the number of possible valuesof Z) varied randomly between 3 and 20.With each model selection criterion, all the 40 candi-date models were then evaluated by using the criterionwith the training data, and with each criterion, themodel with the best score was selected. After that,all the selected models were evaluated by using thepreviously unseen test data, by computing both thelog-score and 0/1-score for each of the test vectors.

The score obtained by the candidate model selectedby a model selection criterion was recorded as the pre-diction accuracy associated with this criterion.One should observe that the test vectors were treatedas independent classi�cation tasks, not as a sequence,and with each model selection criterion, the averageof the resulting N individual classi�cation predictionscores was stored as the predictive accuracy obtainedby using the criterion with this training data and testdata. This whole procedure was then repeated 15times by splitting the full data set randomly into train-ing data and test data, and the same was repeatedwith all the 14 classi�cation data sets. It should beemphasized that the experiment is completely fair inthe sense that at no time before the actual classi�ca-tion task had the model selection criteria access to thetest data.4.2 The ResultsThe model selection scoring methods used in the ex-periments are listed in Table 1, and the results of theexperiments are summarized in Figures 1 and 2. Thepredictive scores obtained with each model selectioncriterion are scaled with respect to the score obtainedby the marginal likelihood model selection criterion,so that a score of 0,0% means the equivalent resultas with the marginal likelihood criterion, and a scoreof, say +5.0%, means that the corresponding classi�-cation score was on the average 5.0% better than thescore obtained with the marginal likelihood criterion.Table 1: The methods used in the experiments.ABBREVIATION EXPLANATIONL-O-O Leave-one-out crossvalidation.PREQ-RAND(N) The prequential score (5) aver-aged over N random permuta-tions of the data.PREQ-MAX(N) The prequential score (5) opti-mized over N random permuta-tions of the data.BEST-FIRST The prequential score (5) withthe data ordering determined bya greedy best-�rst optimization.WORST-LAST The prequential score (5) withthe data ordering determinedby a greedy worst-last optimiza-tion.From the �gures we can see that all the relative scoresare positive, which means that the supervised modelselection criteria clearly outperformed the \unsuper-vised" marginal likelihood in the classi�cation domainsused in the experiments. Actually, all the supervisedmodel selection scores tested gave almost always a pos-itive relative score, and the score was in many cases
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Figure 1: Average relative prediction gains with thelogarithmic loss.
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Figure 2: Average relative prediction gains with the0/1-loss.over 50% with the 0/1-score and over 30% with thelog-score. It should be noted that in the log-score casethe scale is logarithmic, which means that the di�er-ences in the relative score are in this case much moresigni�cant.The results obtained with the PREQ-RAND(N) sam-pling method �rst improve as N increases, but de-crease slightly after N reaches 30. However, the re-sults are consistently better than those obtained withthe greedy heuristics, or with the PREQ-MAX(N)method. These results suggest that averaging over theorderings gives better results than optimizing. An ad-ditional interesting observation is that in the log-scorecase the worst-last heuristic gave on the average betterresults than the best-�rst method suggested. The best-last and worst-�rst heuristics performed clearly worsethan best-�rst and worst-last and were excluded from�gures.

5 Conclusions and Future WorkWe studied the model selection problem in supervisedclassi�cation domains, and demonstrated empiricallythat the inherently unsupervised marginal likelihoodmodel selection criterion can be outperformed in prac-tice by the prequential approach and by crossvali-dation, which were both designed for the supervisedmodel selection problem at hand. The models used inthis study consisted of �nite mixture models with thetypical assumption of independence between the do-main variables, given the value of the clustering vari-able.For addressing the ordering problem inherent to theprequential method used, we considered two alterna-tive approaches: the sampling approach and the op-timization approach. In the sampling approach thee�ect of data ordering was smoothed out by averagingthe score over a number of random data permutations.In the optimization approach, motivated by the pre-dictive MDL approach advocated by Rissanen [19, 20],the prequential score was determined by using the sin-gle data ordering optimizing the prequential score.The results show that the prequential score with thesampling approach can lead to better results thancrossvalidation. However, in the experiments reportedhere, the results do not seem to improve monotoni-cally with the number of random orderings used, aftera certain sample size is reached. We believe that thisis probably a random e�ect caused by the relativelysmall number of repetitions used in the experiments.On the other hand, it is also possible that this resultindicates that the limits of the naive random samplinghave been reached, and in order to get better resultswith the sampling approach, one needs to use moreelaborate sampling methods. This question will bestudied in more detail in our future work.The prequential score with the minimization approachdid not produce as good results as the sampling ap-proach, although the results were signi�cantly betterthan with the \vanilla" marginal likelihood approach.Whether this means that the greedy search methodsused were just overly naive, or that the sampling ap-proach is the more proper solution for the orderingproblem, remains as an open question that will alsobe studied in the future.AcknowledgmentsThis research has been supported by the NationalTechnology Agency and the Academy of Finland.
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