
Applied Intelligence, 11, 31–44 (1999)
c© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Massively Parallel Probabilistic Reasoning with Boltzmann Machines

PETRI MYLLYMÄKI
Complex Systems Computation Group (CoSCo), Department of Computer Science, P.O. Box 26, FIN-00014,

University of Helsinki, Finland

Petri.Myllymaki@cs.Helsinki.FI, http://www.cs.Helsinki.FI/∼myllymak/

Abstract. We present a method for mapping a given Bayesian network to a Boltzmann machine architecture,
in the sense that the the updating process of the resulting Boltzmann machine model provably converges to a
state which can be mapped back to a maximum a posteriori (MAP) probability state in the probability distribution
represented by the Bayesian network. The Boltzmann machine model can be implemented efficiently on massively
parallel hardware, since the resulting structure can be divided into two separate clusters where all the nodes in one
cluster can be updated simultaneously. This means that the proposed mapping can be used for providing Bayesian
network models with a massively parallel probabilistic reasoning module, capable of finding the MAP states in a
computationally efficient manner. From the neural network point of view, the mapping from a Bayesian network
to a Boltzmann machine can be seen as a method for automatically determining the structure and the connection
weights of a Boltzmann machine by incorporating high-level, probabilistic information directly into the neural
network architecture, without recourse to a time-consuming and unreliable learning process.

Keywords: Boltzmann machines, probabilistic reasoning, Bayesian networks, simulated annealing

1. Introduction
Neural networks are massively parallel computational
models consisting of a large number of very simple
processing units (for a survey of neural models, see
e.g. the classic collections [1–4]. These models can
perform certain computational tasks extremely fast
when run on customized parallel hardware, and hence
they have been suggested as a computationally effi-
cient tool for solving NP-hard optimization problems
approximatively [5,6]. Especially suitable for this type
of tasks are stochastic neural network architectures, as
these models are based on a stochastic updating pro-
cess which converges to a state maximizing an ob-
jective function determined by the variable states of
the binary nodes of the network, and by the (con-
stant) parameters (“weights”) attached to the connect-
ing arcs. A well-known example of a stochastic neural
network architecture is theBoltzmann machine (BM)
model [7,8].

Boltzmann machines can be used as a computa-
tionally efficient tool for finding maximum points of

the objective function corresponding to a given net-
work structure, provided that suitable massively par-
allel hardware is available. In order to apply these
models for solving combinatorial optimization prob-
lems, we need also an efficient, theoretically justifi-
able method for constructing a neural network struc-
ture where the maximum point of the objective func-
tion corresponds to the solution to the optimization
problem to be solved. However, Boltzmann machines,
and neural network models in general, are typically
constructed by inefficient, partly quite ad-hoc meth-
ods. In particular, the neural network architecture is
usually selected in a more or less arbitrary manner
by fixing the number of nodes and the connections
between the nodes manually. The weights are then de-
termined by a learning algorithm which first assigns
(randomly chosen) initial weights to the connections,
and uses then some gradient-based greedy algorithm
for changing the weights until the behavior of the net-
work seems to be consistent with a sample of training
data [8–10].

32 Myllymäki

There are, however, several serious pitfalls with this
approach, which relate to the ”black box” nature of the
functioning of the resulting models: normally there is
no way of finding out what kind of knowledge a neural
network contains after the learning, nor is it possible to
explain the behavior of the model. In particular, as the
learning algorithms start with a randomly chosen ini-
tial state, “tabula rasa”, they are unable to use any prior
knowledge of the problem environment, although in
many cases this kind of information would be read-
ily available. This results in a very slow and unreli-
able learning process. Besides, as most of the learn-
ing algorithms are “steepest-descent” type greedy al-
gorithms, they are very likely to get stuck in local max-
imum points.

It follows that although Boltzmann machines
provide us with an efficient computational mechanism
for finding maximum points of the objective function,
finding a Boltzmann machine structure with a suit-
able objective function can be very difficult in prac-
tice. In this paper we present one possible solution to
this problem, focusing on a combinatorial optimiza-
tion problem of great practical importance, the prob-
lem of finding themaximum a priori (MAP)probabil-
ity value assignment of a probability distribution on a
set of discrete variables. More precisely, we show how
a Bayesian (belief) network model [11–13], a graph-
ical high-level representation of a probability distribu-
tion over a set of discrete variables, can be mapped to
a Boltzmann machine architecture so that the global
maximum of the Boltzmann machine objective func-
tion (theconsensusfunction) has the same maximum
points as the probability distribution represented by
the Bayesian network model.

Intuitively speaking, a Bayesian network model of a
probability distribution is constructed by explicitly de-
termining all the direct (causal) dependencies between
the random variables of the problem domain: each
node in a Bayesian network represents one of the ran-
dom variables of the problem domain, and the arcs
between the nodes represent the direct dependencies
between the corresponding variables. In addition, each
node has to be provided with a table of conditional
probabilities, where the variable in question is condi-
tioned by its predecessors in the network.

The importance of Bayesian network representa-
tions lies in the way such a structure can be used as
a compact representation for many naturally occurring
distributions, where the dependencies between vari-
ables arise from a relatively sparse network of connec-
tions, resulting in relatively small conditional probab-

ility tables. In these cases, a Bayesian network repres-
entation of the problem domain probability distribu-
tion can be constructed efficiently and reliably, assum-
ing that appropriate high-level expert domain know-
ledge is available. There exists also several interesting
approaches for constructing Bayesian networks from
sample data, and moreover, theoretically solid tech-
niques for combining domain expert knowledge with
the machine learning approach (see, e.g., [14]).

The Bayesian network theory offers a framework
for constructing algorithms for different probabilistic
reasoning tasks (for a survey of probabilistic reason-
ing algorithms, see [15]). In this paper, we focus on
the problem of finding the MAP state in the domain
modeled by a given Bayesian network. Unfortunately,
for a general network structure, the MAP problem can
be shown to be NP-hard [16, 17], which means that
very probably it is not possible for any algorithm to
solve this task (in the worst case) in polynomial time
with respect to the size of the network. Consequently,
recently there has been a growing interest in develop-
ing stochastic algorithms for solving the MAP prob-
lem, where instead of aiming at an accurate, determin-
istic solution, the goal is to find a good approximation
for a given problem with high probability.

A prominent example of such stochastic methods
is the simulated annealingalgorithm [18–21]. This
global optimization method can be used as the compu-
tational procedure for performing probabilistic reas-
oning on a Bayesian network, but the method can be
excruciatingly slow in practice. The efficiency of sim-
ulated annealing depends crucially on a set of para-
meters which control the behavior of the algorithm.
Elaborate techniques for optimizing these parameters
can be found in [22–29]. An alternative approach
for speeding up the simulated annealing method is
to develop parallel variants of the algorithm. Tech-
niques for implementing parallel forms of simulated
annealing on conventional hardware can be found
in [30, 21, 31]. On the other hand, as suggested in [21],
since the Boltzmann machine updating process pro-
duces a stochastic process similar to simulated anneal-
ing, this neural network model offers an interesting
possibility for an implementation on a massively par-
allel architecture.

In this paper we argue that we can achieve “the
best of both worlds” by building a hybrid Bayesian-
neural system, where the model construction module
uses Bayesian network techniques, while the probabil-
istic reasoning module is implemented as a massively
parallel Boltzmann machine. For constructing such a

Massively Parallel Probabilistic Reasoning 33

hybrid Bayesian-neural system, we need a way to map
a given Bayesian network to a Boltzmann machine ar-
chitecture, so that the consensus function of the result-
ing Boltzmann machine has the same maximum points
as the probability measure corresponding to the ori-
ginal Bayesian network. Although in some restricted
domains this kind of a transformation is fairly straight-
forward to construct [7,32–35], the methods presented
do not apply to general Bayesian network structures
(see the discussion in [36]). In [37, 38] we presented
a mapping from a binary-variable Bayesian network
to a harmony network [39], which can be regarded as
a special case of the Boltzmann machine architecture.
Following the work presented in [40, 41, 36], in this
paper we extend this framework to cases where the
Bayesian network variables can have an arbitrary num-
ber of values, and the neural network module uses the
standard Boltzmann machine structure.

Compared to other neural-symbolic hybrid systems
(see e.g. [42–45]), the Bayesian-neural hybrid sys-
tem suggested here has two clear advantages. First of
all, the mathematical model behind the system is the
theoretically sound framework of Bayesian reasoning,
compared to the more or less heuristic models of most
other hybrid systems (for our earlier, heuristic attempts
towards a hybrid system, see [46–48]). Secondly, al-
though some hybrid models provide theoretical jus-
tifications for the computations (see e.g. Shastri’s
system for evidential reasoning [49]), they may re-
quire fairly complicated and heterogeneous comput-
ing elements and control regimes, whereas the neural
network model behind our Bayesian-neural system is
structurally very simple and uniform, and confirms
to an already existing family of neural architectures,
the Boltzmann machines. In addition, the mapping
presented here creates a two-way bridge between the
symbolic and neural representations, which can be
used to create a “real” modular hybrid system where
two (or more) separate (neural or symbolic) inference
modules work together.

The mapping described in this paper produces a
Boltzmann machine updating process which corres-
ponds in a sense to a simulated annealing process
where all the Bayesian network variables are up-
dated simultaneously. Consequently, with suitable
massively parallel hardware, processing is quite effi-
cient and becomes independent of the size or the struc-
ture of the Bayesian network. On the other hand, the
BM updating process works in a state space much lar-
ger than the state space of the original Bayesian net-
work, and in terms of accuracy in sampling the prob-

ability distribution, the BM process is only an ap-
proximation of a simulated annealing process on the
Bayesian network. It is therefore an interesting ques-
tion whether the speedup gained from parallelization
compensates for the loss of accuracy in the stochastic
process. In the empirical part of the paper, we study
this question by using artificially generated test cases.

The paper is organized as follows. First in Sec-
tion 2 we give the formal definition of Bayesian net-
work models. The probabilistic reasoning task stud-
ied in this paper, the MAP problem, is discussed in
Section 3. In this section we also describe how sim-
ulated annealing can be used for solving this prob-
lem. The basic concepts of Boltzmann machine mod-
els are reviewed briefly in Section 4, and in Section 5
we describe the suggested mapping from a Bayesian
network to a Boltzmann machine. In Section 6 we
show results of simulation runs which demonstrate
that the massively parallel SA scheme provided by
the Boltzmann machine model clearly outperforms
the corresponding traditional sequential SA scheme,
provided that suitable massively parallel hardware is
available.

2. Bayesian Networks

Let U denote a set ofN discrete random variables,
U = {U1, . . . ,UN}. We call this set ourvariable base.
In the sequel, we use capital letters for denoting the ac-
tual variables, and small lettersu1, . . . ,uN for denoting
their values. The values of all the variables in the vari-
able base form aconfiguration vectoror astate vector
~u = (u1, . . . ,uN), and all theM possible configuration
vectors(~u1, . . . ,~uM) form our configuration spaceΩ.
Hence our variable baseU can also be regarded as a
random variable~U , the values of which are the config-
uration vectors. Generally, ifX ⊆U is a set of vari-
ables,X = {X1, . . . ,Xn}, by ~X =~x we mean that~x is a
vector(x1, . . . ,xn), andXi = xi , for all i = 1, . . . ,n.

Let F denote the set of all the possible subsets of
Ω, the set ofevents, and letP be a probability meas-
ure defined onΩ. The triple(Ω,F ,P) now defines a
joint probability distributionon our variable baseU .
Having fixed the configuration spaceΩ (and the set
of eventsF), any probability distribution can be fully
determined by giving its probability measureP , and
hence we will in the sequel refer to a probability dis-
tribution by simply saying “the probability distribution
is P ”.

34 Myllymäki

Bayesian networksare a formalism for storing and
retrieving the configuration probabilitiesP{~u} in a
compact and efficient manner. The theoretical found-
ations of such models were set up in [50, 11, 12, 13],
where it was shown how probability distributions can
be defined efficiently by explicitly identifying and ex-
ploiting conditional independencies between the vari-
ables ofU :

Definition 1. Let X,Yand Zbe sets of variables.
ThenX is conditionally independent ofY, givenZ, if

P{~X =~x|~Y =~y,~Z =~z}= P{~X =~x|~Z =~z}

holds for all vectors~x,~y,~zsuch thatP{~Y =~y,~Z =~z}>
0.

Consequently, the variables inZ intercept any de-
pendencies between the variables inX and the vari-
ables inY: knowing the values ofZ renders inform-
ation about the values ofY irrelevant to determining
the distribution ofX. Using the concept of condi-
tional independence we can now give the definition of
Bayesian network models:

Definition 2. A Bayesian (belief) network (BN)
representation for a probability distributionP on a
set of discrete variablesU = {U1, . . . ,UN} is a pair
{G ,PG}, whereG is a directed acyclic graph whose
nodes correspond to the variablesU = {U1, . . . ,UN},
and whose topology satisfies the following: each vari-
ableX ∈U is conditionally independent of all its non-
descendants inG , given its set of parentsFX, and
no proper subset ofFX satisfies this condition. The
second componentPG is a set consisting of the corres-
ponding conditional probabilitiesP{X | FX}.

As the parents of a nodeX can often be interpreted
as direct causes ofX, Bayesian networks are also
sometimes referred to ascausal networks, or as the
purpose is Bayesian reasoning, they are also called
inference networks. In the field of decision theory,
a model similar to Bayesian networks is known as
influence diagrams[51]. Rigorous introductions to
Bayesian network modeling can be found in [11, 13,
14, 52, 53].

The importance of Bayesian network structures lies
in the way such networks facilitate computing the
joint configuration probabilitiesP{~u} as a product of

simple conditional probabilities:

P{~u}=
N

∏
i=1

P{Ui = ui |
^

U j∈FUi

U j = u j}, (1)

whereFUi denotes the predecessors of variableUi , and
the conditional probabilitiesP{Ui = ui |V

U j∈FUi
U j =

u j} can be found in the setPG . Consequently, having
defined a set of conditional independencies in a graph-
ical form as a Bayesian network structureG , we can
use the conditional probabilitiesPG to fully determ-
ine the underlying joint probability distribution. The
number of parameters needed,m= |PG |, depends on
the density of the Bayesian network structure:m =
∑i(|Ui |∏U j∈FUi

|U j |). In many natural situations, this
number can be several magnitudes smaller than the
size of the full configuration space. An example of
a simple Bayesian network is given in Figure 1.

LetCi denote a set consisting of a variableUi and all
its predecessors in a Bayesian network G,Ci = {Ui}+
FUi . We call theseN sets thecliquesof G. For each
cliqueCi , we define apotential functionVi which maps
a given state vector to a real number,

Vi(~u) = lnP{Ui = ui |
^

U j∈FUi

U j = u j}. (2)

The value of a potential functionVi depends only on
the values of the variables in setCi . As has been
noted in several occasions [33, 37, 38, 54–56], these
cliques can be used to construct an undirected graph-
ical Markov random fieldmodel of the probability dis-
tributionP , which means that the joint probability dis-
tribution (1) for a Bayesian network representation can
also be expressed as aGibbs distribution

P{~u}=
1
Z

e−∑i−Vi(~u) =
1
Z

e∑i Vi(~u), (3)

where the clique potential functionsVi are given in (2),
andZ = 1.

3. The MAP Problem and Simulated An-
nealing

Let X ⊆U be a set of variables,X = {X1, . . . ,Xn}. By
an event{~X =~x} we mean a subset ofF which in-
cludes all the configurations~u∈ Ω that are consistent
with the assignment〈X1 = x1, . . . ,Xn = xn〉. Now as-
sume we are given a partial value assignment〈~E =~e〉
on a setE⊂U of variables as an input, and letPmax de-
note the maximal marginal probability in the set{~E =

Massively Parallel Probabilistic Reasoning 35

���

��� � ��� � � 	
��� � � �
� � 	

���

��� � ��� � �
 � � 	
��� � � �
� �
 � � 	
��� � ��� � �

� � 	
��� � � �
� �

� � 	

� �

��� � � � � � 	
��� � � �
� � 	

� �

��� � � � � � 	
��� � � �
� � 	

���

��� � � � � �
 � � 	
��� � � �
� �
 � � 	
��� � � � � �

� � 	
��� � � �
� �

� � 	

���

��� � � 	

���

��� � � 	

Fig. 1. A simple Bayesian network structure with 7 binary variablesU1, . . . ,U7, and all the conditional probabilities required for determining
the corresponding probability distribution exactly. By “ui ” we mean here the value assignment〈Ui = 1〉, and by “ūi ” the value assignment
〈Ui = 0〉.

~e} consisting of all the configurations consistent with
the given value assignment,Pmax= max~u∈{~E=~e}P{~u}.
A state~ui ∈ {~E =~e}with the propertyP{~ui}= Pmax is
now called amaximum a posteriori probability (MAP)
state. In this study, we are interested in the task of find-
ing a MAP state of the configuration spaceΩ, given
some evidence〈~E =~e〉, and we call this problem the
MAP problem.

Let us consider a Bayesian network with a joint
probability distribution of the form (3), and let us
define the potential of a state~u as the sum of clique
potentials,

V(~u) = ∑
i

Vi(~u). (4)

We can now clearly find a MAP state by maximizing
the potential functionV.

In simulated annealing (SA)[18–21] this task is
solved by producing a stochastic process{~u(t) | t =
0,1, . . .}, which converges to a MAP solution with
high probability. The stochastic process used in SA
is a Markov chain, which means that, at timet, the
next state~u(t + 1) depends only on the current state
~u(t). Assuming that the current state~u(t) is~ui , the new
state~u(t +1) is produced by first generating a candid-
ate~u j for the next state, and the candidate is then ac-
cepted by anacceptance probabilityAi j , otherwise it
is rejected, and we set~u(t +1) =~u(t). For generating
a new candidate state~u j , most versions of simulated

annealing use a simple scheme calledGibbs sampling
where only one randomly chosen variable is allowed
to change its value to a new randomly chosen value.

In the Metropolis-Hastings version [18, 57] of
simulated annealing, the acceptance probabilities are
defined by

Ai j (T) =

{
1, if exp(V(~u j)−V(~ui)

T)≥ 1,

exp(V(~u j)−V(~ui)
T),otherwise,

where T(t), the computational temperature, is a
monotonely decreasing function converging to zero as
t approaches infinity. Barker [58] has introduced an al-
ternative method with acceptance probabilities of the
form

Ai j (t) =
1

1+exp(V(~ui)−V(~u j)
T(t))

. (5)

In both cases it can be shown that the resulting
stochastic process will converge to a MAP solu-
tion with probability p, where p approaches one
as the number of iterations approaches infinity [21].
Moreover, it can be shown that if the temperatureT(t)
decreases towards zero slowly enough, the conver-
gence is almost certain even with a finite time pro-
cess [20]. Unfortunately, for a theoretically guaran-
teed convergence, a computationally infeasible expo-
nential number of iterations is needed. Although in
practice good results are sometimes obtained with a

36 Myllymäki

relatively small number of iterations, the method can
be excruciatingly slow. In the following, we show how
to create a massively parallel implementation of sim-
ulated annealing by using the Boltzmann machine ar-
chitecture.

4. Boltzmann Machines

A Boltzmann machine (BM)[8] is a neural network
consisting of a set of binary nodes{S1, . . . ,Sn}, where
thestatesi of a nodeSi is either1 (“on”), or 0 (“off”).
Each arc from a unitSi to unit Sj is provided with a
real-valued parameterw ji , theweightof the arc. The
arcs are symmetric, sowi j = w ji . Each unitSi is also
provided with a real-valued parameterθi , thebias of
the unit.

Let ~s = (s1, . . . ,sn) ∈ {0,1}n denote a global state
vector of the nodes in the network. We define thecon-
sensusof a state~sas

C(~s) =
n

∑
j=1

n

∑
i= j

wi j sisj , (6)

wherewii denotes the biasθi of nodeSi , and the weight
wi j is defined to be0 if Si andSj are not connected
(disregarding the sign reversal, the consensus function
is equal to the the energy of a BM model used in most
definitions).

The nodes of a BM network are updated stochastic-
ally according to the following probabilistic rule:

P(si = 1) =
1

1+exp(−Ii
T(t))

, (7)

whereIi = ∑ j wi j sj is thenet inputto nodeSi , andT(t)
is a real-valued parameter called temperature, which
decreases with increasing timet towards zero. Con-
sequently, each node is able to update its state loc-
ally, using the information arriving from the connect-
ing neighbors as the input for a sigmoid function, thus
offering a possibility for a massively parallel imple-
mentation of this algorithm.

Let us consider a state~s, and let~r be a new state
which is produced by changing the state of nodeSi . It
is now relatively easy too see [36] that the difference
in consensus between the two states is exactly the net
input in (7):

C(~r)−C(~s) = ∑
j

wi j sj = Ii .

It follows that the BM updating process can be re-
garded as a Gibbs sampling process with acceptance
probabilities identical to those given in (5), with re-
spect to a Gibbs distribution

P{~s}= exp(C(~s)/T(t)).

Consequently, in principle the BM model can be used
as a massively parallel tool for finding the maximum
of the consensus function. However, the acceptance
probability (7) sets here implicitly some additional re-
quirements to the generation probabilities, since the
difference in consensus is calculated by keeping all the
nodes except one constant. For this reason, if two or
more adjacent nodes of the BM network are to be up-
dated at the same time, the corresponding transition
probability matrix of the resulting process is no more
stochastic, and hence convergence of the algorithm
can not be guaranteed. On the other hand, if we allow
only one node to be updated at a time, convergence
can be guaranteed, but then the parallel nature of the
algorithm is lost.

To solve this dilemma, it has been suggested [59]
that the nodes of a BM network should be divided into
clusters, where no two nodes inside of a cluster are
connected to each other. Using this kind ofclustered
BM models we can maintain some parallelism and up-
date all the nodes in one cluster at the same time,
while a convergence theorem similar to the conver-
gence theorem of simulated annealing can be proved
[21, p. 139]. Obviously, the degree of parallelism
depends on the number of clusters in the network.
Unfortunately, the problem of finding a minimal set
of clusters in a given network is NP-complete [21,
p. 141]. In the next section we deal with a special
class of BM architectures which has by definition only
two clusters, being in this sense an optimal BM archi-
tecture.

5. Solving the MAP Problem
by Boltzmann Machines

Let us consider a Bayesian network{G ,PG} for a
probability distributionP of the form (3), and letm
denote the number of conditional probabilities inPG ,
PG = {p1, . . . , pm}. Furthermore, letλ1, . . . ,λm denote
the natural logarithms of the conditional probabilities
pi , λi = ln pi . We can now equally well forget about
the cliques altogether, and express the potential func-

Massively Parallel Probabilistic Reasoning 37

tion (4) as

V(~u) =
N

∑
i=1

Vi(~u) =
m

∑
j=1

χ j(~u)λ j , (8)

where the functionχ j(~u) has value one, if~u is consist-
ent with the value assignment corresponding to prob-
ability p j , otherwise it is zero. It is clear that if we
find the maximum of the potential functionV in (8),
we have found the maximum of the probability distri-
butionP .

For our purposes, we need the function to be max-
imized to be unbounded above, so we scale the strictly
negative potential function (8) by adding a constant
λ∗ to each of the parametersλ j . If we set λ∗ ≥
−min j ln p j , the new potential function becomes non-
negative. In our empirical tests described in Section 6,
we setλ∗ to be equal to−min j ln p j .

As the number of non-zero parametersχ j is always
exactly N, the number of cliques, the resulting new
potential function is equal to the original function plus
a constantNλ∗, and hence it has the same maximum
points as the original function. In the following, we
consider maximizing a potential function of the form
(8), with the parametersλ j scaled to positive numbers
as described above. If we manage to map this function
to a consensus function of a Boltzmann machine, we
have accomplished our goal: massively parallel solu-
tion to the MAP problem.

Let us now consider a two-layer Boltzmann ma-
chine, where the first layer consists ofn = ∑i |Ui | fea-
ture nodesA1, . . . ,An, one for each value for each of
the variables of the problem domain. The second layer
has altogetherm pattern nodesB1, . . . ,Bm, one node
for each of the parametersλ j in the sum in (8). Ini-
tially, let us assume that each pattern node is connec-
ted to all the feature nodes in the first layer, but no
two nodes in the same layer can be connected to each
other. The consensus function of such a network can
be expressed as

C(~s) = C(a1, . . . ,an,b1, . . . ,bm)

=
m

∑
j=1

b j

n

∑
i=1

w ji ai

=
m

∑
j=1

b j I j , (9)

whereI j = ∑i w ji ai is the net input to pattern nodeB j .
Let us now consider a pattern nodeB j correspond-

ing to a parameterλ j , and letP{Ui = ui |V
Uk∈FUi

Uk =
uk} be the conditional probability used for computing

λ j ,

λ j = lnP{Ui = ui |
^

Uk∈FUi

Uk = uk}+λ∗. (10)

We now set the weights of the arcs between pattern
nodeB j and feature nodesA1, . . . ,An in the following
way:

1. The weights of all the arcs connecting nodeB j to
feature nodes representing values of variables not
in {Ui ,FUi} are set to zero.

2. The weight from pattern nodeB j to a feature node
corresponding to the valueui is set toλ j , and the
weights of the arcs to feature nodes corresponding
to other values of the variableUi are set to−λ j .

3. The weight from nodeB j to feature nodes corres-
ponding to the valuesu j appearing on the right
hand side in (10) are set toλ j , and arcs to fea-
ture nodes representing other values of the prede-
cessors of the variableUi are set to−λ j .

4. The biasθ j of pattern nodeB j is set to(n+
j −1)λ j ,

wheren+
j is the number of positive arcs leaving

from nodeB j . However, ifn+
j = 0, we setθ j = 0.

Following this construction for each of the pattern
nodesB j , we get a structure which we call atwo-layer
Boltzmann machine (BM2). An example of a BM2

structure in a case of a simple Bayesian network is
shown in Figure 2. As arcs with a zero-valued weight
are irrelevant for the computations, they are excluded
from the network.

Let us now consider a Bayesian networkGBN, and
the corresponding BM2 networkGBM . In the sequel,
we use the termfeature vectorto denote the vec-
tor ~a = (a1, . . . ,an), consisting of the states of the
feature nodes ofGBM . Correspondingly, the vector
~b = (b1, . . . ,bm), consisting of the states of the pattern
nodes is called apattern vector.

Definition 3. The feature vector of a two-layer
Boltzmann machineGBM is consistent(with respect to
the corresponding Bayesian networkGBN), if there is
exactly one feature node active for each of variables in
GBN, representing one possible value of that variable.

From Definition 3 it follows directly that a consist-
ent feature vector can be mapped to an instantiation of
GBN. As before, letB j be a pattern node corresponding
to a parameterλ j , and letP{Ui = ui |V

Uk∈FUi
Uk = uk}

38 Myllymäki

� �

�

�

���

� �

� �

� �

	 �

	 �

	

� �

� �

�
���� ����� �����
 ����� �

� ����� ����� ��� � � ����� �

� !���� ����� "���#
 ����� �

� $���� ����� "���# � ����� �

� %���� ����� &���'
 (���)�
 * " ��#
 ����� �

� +���� ����� &���'
 (���)� � * " ��#
 ����� �

� ,���� ����� &���'
 (���)�
 * " ��# � ����� �

� -���� ����� &���'
 (���)� � * " ��# � ����� �

� .���� ����� &���' � (���)�
 * " ��#
 ����� �

�
 / ��� ����� &��)' � (����� � * "0�)#
 ����� �

�

���� ����� &��)' � (�����
 * "0�)# � ����� �

�
 �1��� ����� &��)' � (����� � * "0�)# � ����� �

�
 !1��� ����� &��)' ! (�����
 * "0�)#
 ����� �

�
 $1��� ����� &��)' ! (����� � * "0�)#
 ����� �

�
 %1��� ����� &��)' ! (�����
 * "0�)# � ����� �

�
 +1��� ����� &��)' ! (����� � * "0�)# � ����� �

�
 ,���� ����� 20��3
 (&���'
 ����� �

�
 -���� ����� 20��3
 (&���' � ����� �

�
 .���� ����� 20��3
 (&���' ! ����� �

� � /���� ����� 20��3 � (&���'
 ����� �

� �
���� ����� 20��3 � (&���' � ����� �

� � ����� ����� 20��3 � (&���' ! ����� �

Fig. 2. A simple Bayesian network (on the left), and the corresponding BM2 structure with the parametersλ j . Solid lines represent arcs with
positive weight, negative arcs are printed with dashed lines.

be the conditional probability used for computingλ j .
We now say that the pattern nodeB j is consistent with
a feature node~a if ~a is consistent with the assignment
〈Ui = ui ,

V
Uk∈FUi

Uk = uk〉. Moreover, a pattern activ-

ation vector~b is said to be consistent, if all the con-
sistent pattern nodes are on, and all the inconsistent
pattern nodes are off. Finally, a state~s= (~a,~b) of GBM

is called consistent if both~a and~b are consistent.

It is now easy to proof the following simple lemma:

Lemma 1. A BM2 network converges to a consist-
ent state.

Proof: Let ~s = (~a,~b) be the final state of a BM2
updating process. We know that~s is a state which
maximizes the consensusC(~s) = ∑m

j=1b j I j . It is now

easy too see that if~a is a consistent vector,~b must also
be consistent, since if there were inconsistent pattern
nodes active on the second layer in this case, switching
them off would increase the consensus of the network,
and correspondingly, switching any inactive consistent

Massively Parallel Probabilistic Reasoning 39

pattern node on would increase the consensus. On the
other hand,~a can not be inconsistent, since in this case
all the pattern nodes connected to inconsistent feature
nodes would be inactive, which means that removing
inconsistencies would increase the number of active
pattern nodes, thus increasing the consensus. It now
follows that~s = (~a,~b) must be a consistent state.

Using this lemma, we can show that the BM2 struc-
ture can be used for solving the MAP problem:

Proposition 1. The updating process of the BM2

network converges to a state which maximizes the po-
tential functionV of the corresponding Bayesian net-
workGBN, provided that all the parametersλ j are non-
negative.

Proof: According to Lemma 1, the network con-
verges to a maximum consensus state where all the
active pattern nodes are consistent with the consistent
feature vector. This means that each final feature vec-
tor~a corresponds to an instantiation~u. It is easy to see
that the net inputI j to a consistent pattern nodeB j is
λ j , and hence it follows that

max
~s

C(~s) = max
~a

max
~b

m

∑
j=1

b j I j

= max
~a

m

∑
j=1

max
b j∈{0,1}

(b j I j)

= max
~u

m

∑
j=1

χ j(~u)λ j

= max
~u

V(~u).

Please note that if the parametersλ j were not scaled
to nonnegative numbers as suggested earlier, the po-
tential function would be strictly negative, and the
BM2 construction would be useless, since the network
would then always have a trivial maximum point at
zero, corresponding to a state where all the nodes are
off.

6. Empirical Results

6.1. The Setup

To empirically test the effectiveness of the BM2 con-
struction, we generated several MAP instantiation

problems, withN, the number of variables, ranging
from 2 to 24. For eachN, we generated 10 random
Bayesian networks, and attached to each network a
random MAP instantiation problem by clamping half
of the variables to randomly chosen values. This same
test was performed with three different algorithms. As
a benchmark, we used a brute force search algorithm
(denoted by BF), which is guaranteed to find the MAP
solution in|ΩE|∗m time steps, where|ΩE| is the num-
ber of possible solutions, andm is the number of con-
ditional probabilities attached to the Bayesian network
in question. Secondly, we used a sequential simulated
annealing algorithm on the Bayesian network (denoted
by SSA), and the corresponding massively parallel
BM2 updating process (denoted here by BMSA). As
we did not have access to real neural hardware, the
BMSA model was tested by running simulations on
a conventional Unix workstation. The time require-
ment for one iteration of the SSA was assumed to be
O(m), whereas the time requirement for one iteration
for the BMSA algorithm was assumed to beO(1) (all
the nodes on one layer were updated at the same time,
so updating the whole network took 2 time steps).

When considering the performance of the SSA or
the BMSA algorithm, it is clear that the most crit-
ical issue is finding a suitable cooling scheme. Unfor-
tunately, the theoretically correct logarithmic cooling
scheme described in [20] can not be used in practice,
since the number of iterations required grows too high
even with relatively low starting temperatures: for in-
stance, starting with the initial temperature of 2, an-
nealing down to 0.1 would require more than 485 mil-
lion iteration steps. The problem with heuristic an-
nealing schemes is that if the annealing is done too
cautiously, an unnecessarily large amount of comput-
ing time may be spent. On the other hand, if the
annealing is done too quickly, the theoretical conver-
gence results do not apply, and the results are unreli-
able. Recent theoretical modifications applied infast
annealing (FA)[24] and adaptive simulated anneal-
ing (ASA)[22, 23] offer interesting alternatives to the
exponential Metropolis form of simulated annealing
used in this study, but it is currently not clear whether
the framework presented here can be extended to these
forms of simulated annealing as well. This poses
an interesting research problem that deserves further
study.

In the experiments performed, our primary object-
ive was not to study the efficiency of the sequen-
tial and massively parallel algorithms per se, but to
see whether the speedup gained from parallelization

40 Myllymäki

would be enough to compensate for the loss of accur-
acy in sampling — in other words, whether the BM2

construction would be computationally practical to use
in principle, if suitable hardware was available. It
should be noted that as SSA and BMSA use the same
parameters for determining the cooling schedule of the
annealing algorithm, it seems reasonable to assume
that use of the more sophisticated variants of simulated
annealing [22–29] would demonstrate roughly equal
speedup for both SSA and BMSA.

In our empirical tests, the temperature was lowered
according to a simple cooling schedule, where the
temperature was multiplied after each iteration by a
constantannealing factor F, F < 1.0. A more detailed
study of the behavior of SSA and BMSA with different
annealing factors can be found in [36]. Based on this
study, in the tests reported here, the annealing factor
was set to0.66. Although simple, this type of cool-
ing schedule is very common, and has proven success-
ful in many applications [21]. It is also empirically
observed that more sophisticated annealing methods
do not necessarily produce any better results than this
simple method [60].

The main goal of the experiments was to study the
behavior of the SSA and BMSA algorithms with in-
creasingly complex MAP problems. The complexity
of these problems can be increased in two ways: by
changing the properties of the probability distribution
on the configuration space in question, or by chan-
ging the size of the configuration space. We experi-
mented with three methods for changing the configur-
ation space probability distribution: by restricting the
conditional probabilities of the Bayesian networks to
small regions near zero or one, by changing the dens-
ity of the Bayesian network structure, and by chan-
ging the size of the evidence setE, i.e. by changing
the number of clamped variables. The size of the con-
figuration space was increased in two ways: by allow-
ing more variables in the Bayesian networks, and by
allowing the variables to have more values.

6.2. The Results

It has been noted [61] that solving certain types of
probabilistic reasoning tasks can become very diffi-
cult if the Bayesian network contains a lot of extreme
probabilities (probabilities with values near zero or
one). However, as already noted in [38], in our MAP
problem framework this does not seem to be true.
We experimented by restricting the randomly gener-

ated conditional probabilities of the Bayesian network
model in the regions[0.0,δ], [1.0− δ,1.0], and varied
the value ofδ between0.5 and0.0001, but observed
no significant effect on the results with either SSA or
BMSA. It would be an interesting research problem to
study (analytically or empirically) how the Bayesian
network probability distributionP changes with the
parameterε, but this question was not addressed here.

Increasing the density of Bayesian networks not
only changes the shape of the probability distribution
on the configuration space, but it also imposes a com-
putational problem as it increasesm, the number of
the conditional probabilities that need to determined
for the model. Since the BMSA algorithm (or actu-
ally its simulated massively parallel implementation)
is independent ofm, increasing the density does not
affect the BMSA solution time very much, whereas
the solution time of SSA increases significantly (see
Figure 3). Nevertheless, it should be noted that we
have here extended our experiments to very dense,
and even fully connected networks. Naturally, this
does not make any sense in practice, since the whole
concept of Bayesian networks relies on the networks
being relatively sparse. For this reason, in the sequel
we use in our experiments relatively sparse networks
only (which does not, however, mean that the net-
works were singly-connected or otherwise structurally
simple).

The test set corresponding to Figure 3 consisted of
100 MAP problems on 10 Bayesian networks with
only 8 binary nodes. When considering the results,
it should be kept in mind that although the BF al-
gorithm seems to work relatively well with these small
networks, it does not scale up with increasing size of
the networks (as we shall see in Figure 6). For the
same reason, the exhaustive BF algorithm performs
well with a small number of unclamped variables (in
which case the search space is small), but from Fig-
ure 4 we see that as the number of unclamped variables
increases, the time required for running BF grows rap-
idly. Both SSA and BMSA appear to be quite insens-
itive to the number of instantiated variables. In these
tests, we used 100 MAP problems on 10 Bayesian net-
works with 16 binary variables.

In Figure 5, we plot the behavior of the algorithms
as a function of the increasing configuration space,
when the maximum number of variable values is in-
creased. The test set consisted of 100 MAP prob-
lems on 10 10-node Bayesian networks with half of
the variables clamped in advance. With networks of
this size, the SSA algorithm seems to perform only

Massively Parallel Probabilistic Reasoning 41

comparably to the BF algorithm. However, when the
size of the networks is increased, the general tendency
is clear: the exhaustive BF algorithm starts to suffer
from combinatorial explosion, and fails to provide a
computationally feasible solution to the MAP problem
(see Figure 6). The SSA and BMSA algorithms, on
the other hand, seem to scale up very well. In Fig-
ure 6, each data point corresponds to a test set consist-
ing of 100 MAP problems on 10 Bayesian networks
with binary nodes, and as before, half of the variables
were clamped in advance.

7. Conclusion and Future Work

We presented a method for solving probabilistic reas-
oning tasks, formulated as finding the MAP state of
a given Bayesian network, by a massively parallel
neural network computer. Our experimental simu-
lations strongly suggest that the massively parallel
BMSA algorithm outperforms the sequential SSA al-

0

20000

40000

60000

80000

100000

120000

140000

160000

20 30 40 50 60 70 80 90 100 110

A
ve

ra
ge

 ti
m

e
be

fo
re

 s
uc

ce
ss

Number of BN arcs (% of fully connected network)

SSA

BMSA
BF

Fig. 3. The behavior of the BMSA and SSA algorithms as a func-
tion of the density of Bayesian network.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 ti
m

e
be

fo
re

 s
uc

ce
ss

Number of unclamped variables

BMSA
SSA

BF

Fig. 4. The behavior of the algorithms as a function of the number
of the unclamped variables.

0

500000

1e+06

1.5e+06

2e+06

2 3 4 5 6 7 8

A
ve

ra
ge

 ti
m

e
be

fo
re

 s
uc

ce
ss

Max. number of values

BMSA

SSA

BF

Fig. 5. The behavior of the algorithms as a function of the number
of the values of the variables.

0

100000

200000

300000

400000

500000

600000

700000

5 10 15 20 25

A
ve

ra
ge

 ti
m

e
be

fo
re

 s
uc

ce
ss

Number of variables

BF

SSA

BMSA

Fig. 6. The behavior of the algorithms as a function of the number
of the variables.

gorithm, provided that suitable hardware is available.
As can be expected, the proportional speedup gained
from parallelization seems to increase with increasing
problem complexity.

It should be noted that our SSA realization of the
Gibbs sampling/annealing method uses a heuristic
cooling schedule which does not fulfill the theoretical
requirements of the convergence theorem of SA. What
is more, even as an approximation of the theoretically
correct algorithm, the SSA method is not a very soph-
isticated alternative, and there exist several elaborate
techniques for making the algorithm much more effi-
cient than in the experiments here. Nevertheless, it can
also be argued that the same techniques would prob-
ably yield a similar speedup for the BMSA algorithm
as well. Consequently, we believe that these results
show that if suitable neural hardware is available, the
BMSA algorithm offers a promising basis for building
an extremely efficient tool for solving MAP problems.

From the Bayesian network point of view, the map-
ping presented here provides an efficient implement-
ational platform for performing probabilistic reason-

42 Myllymäki

ing with the stochastic simulated annealing algorithm.
From the neural network point of view, the map-
ping offers an interesting opportunity for construct-
ing neural models from expert knowledge, instead of
learning them from raw data. The resulting neural
network could also be used as a (cleverly chosen)
initial starting point to some of the existing learn-
ing algorithms [8–10, 62] for Boltzmann machines,
in which case the learning problem should become
much easier than with a randomly chosen initial state.
Moreover, the resulting “fine-tuned” neural network
could also be mapped back to a Bayesian network
representation after the learning, which means that
the mapping can also be seen as a tool for extracting
high-level knowledge from neural networks. From the
Bayesian network point of view, this kind of a “fine-
tuning” learning process could also be useful in detect-
ing mutually inconsistent probabilities, or other incon-
sistencies in the underlying Bayesian network repres-
entation.

It should also be noted that the results presented
here can in principle be used as a computationally effi-
cient, massively parallel tool for solving optimization
problems in general, and not only for solving MAP
problems as formulated here. Naturally, the efficiency
of such an approach would largely depend on the de-
gree to which the function to be maximized can be de-
composed as a linear sum of functions, each depend-
ing only on a small subset of variables (correspond-
ing to the cliques in the Bayesian network formalism).
Further studies on this subject are left as a goal for fu-
ture research.

Acknowledgements

This research has been supported by the Academy
of Finland, Jenny and Antti Wihuri Foundation, Leo
and Regina Wainstein Foundation, and the Technology
Development Center (TEKES).

References

1. J.A. Anderson and E. Rosenfeld, editors.Neurocomputing:
Foundations of Research. MIT Press, Cambridge, MA, 1988.

2. J.A. Anderson and E. Rosenfeld, editors.Neurocomputing 2:
Directions for Research. MIT Press, Cambridge, MA, 1991.

3. D.E. Rumelhart and J.L. McClelland, editors.Parallel Dis-
tributed Processing, volume 1. MIT Press, Cambridge, MA,
1986.

4. J.L. McClelland and D.E. Rumelhart, editors.Parallel Dis-
tributed Processing, volume 2. MIT Press, Cambridge, MA,
1986.

5. J.J. Hopfield and D.W. Tank. Neural computation of decisions
in optimization problems.Biological Cybernetics, 52:141–
152, 1985.

6. E.B. Baum. Towards practical ’neural’ computation for com-
binatorial optimization problems. In Denker, J., editor,Pro-
ceedings of the AIP Conference 151: Neural Networks for
Computing, pages 53–58, Snowbird, UT, 1986. American In-
stitute of Physics, New York, NY.

7. G.E. Hinton and T.J. Sejnowski. Optimal perceptual infer-
ence. InProceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, pages
448–453, Washington DC, June 1983. IEEE, New York, NY.

8. G.E. Hinton and T.J. Sejnowski. Learning and relearning
in Boltzmann machines. In Rumelhart and McClelland [3],
pages 282–317.

9. Y. Freund and D. Haussler. Unsupervised learning of dis-
tributions on binary vectors using two layer networks. In
J. Moody, S.J. Hanson, and R.P. Lippmann, editors,Neural
Information Processing Systems 4, pages 912–919. Morgan
Kaufmann Publishers, San Mateo, CA, 1992.

10. C. Galland. Learning in Deterministic Boltzmann Machine
Networks. PhD thesis, Department of Physics, University of
Toronto, 1992.

11. J. Pearl.Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann Publishers,
San Mateo, CA, 1988.

12. R.D. Shachter. Probabilistic inference and influence diagrams.
Operations Research, 36(4):589–604, July-August 1988.

13. R.E. Neapolitan.Probabilistic Reasoning in Expert Systems.
John Wiley & Sons, New York, NY, 1990.

14. D. Heckerman, D. Geiger, and D.M. Chickering. Learning
Bayesian networks: The combination of knowledge and stat-
istical data. Machine Learning, 20(3):197–243, September
1995.

15. M. Henrion. An introduction to algorithms for inference in
belief nets. In M. Henrion, R.D. Shachter, L.N. Kanal, and
J.F. Lemmer, editors,Uncertainty in Artificial Intelligence
5, pages 129–138. Elsevier Science Publishers B.V. (North-
Holland), Amsterdam, 1990.

16. G.F. Cooper. The computational complexity of probabilistic
inference using Bayesian belief networks.Artificial Intelli-
gence, 42(2–3):393–405, March 1990.

17. S.E. Shimony. Finding MAPs for belief networks is NP-hard.
Artificial Intelligence, 68:399–410, 1994.

18. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, M.N.
Teller, and E. Teller. Equations of state calculations by fast
computing machines.Journal of Chem. Phys., 21:1087–1092,
1953.

19. S. Kirkpatrick, D. Gelatt, and M.P. Vecchi. Optimization
by simulated annealing.Science, 220(4598):671–680, May
1983.

20. S. Geman and D. Geman. Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 6:721–
741, 1984.

21. E. Aarts and J. Korst.Simulated Annealing and Boltzmann
Machines: A Stochastic Approach to Combinatorial Optimiz-
ation and Neural Computing. John Wiley & Sons, Chichester,
1989.

22. L. Ingber. Very fast simulated re-annealing.Mathematical
Computer Modelling, 8(12):967–973, 1989.

23. L. Ingber. Adaptive simulated annealing (ASA): Lessons
learned.Control and Cybernetics, 25(1):33–54, 1996.

24. H. Szu and R. Hartley. Nonconvex optimization by fast simu-
lated annealing.Proceedings of the IEEE, 75(11):1538–1540,
November 1987.

Massively Parallel Probabilistic Reasoning 43

25. G. Bilbro, R. Mann, and T. Miller. Optimization by mean
field annealing. In D.S. Touretzky, editor,Advances in
Neural Information Processing Systems I, pages 91–98. Mor-
gan Kaufmann Publishers, San Mateo, CA, 1989.

26. C. Peterson and J.R. Anderson. A mean field theory learn-
ing algorithm for neural networks.Complex Systems, 1:995–
1019, 1987.

27. J. Alspector, T. Zeppenfeld, and S. Luna. A volatility measure
for annealing in feedback neural networks.Neural Computa-
tion, 4:191–195, 1992.

28. N. Ansari, Rajendra S., and G. Wang. An efficient anneal-
ing algorithm for global optimization in Boltzmann machines.
Journal of Applied Intelligence, 3(3):177–192, 1993.

29. S. Rajasekaran and John H. Reif. Nested annealing: A prov-
able improvement to simulated annealing.Theoretical Com-
puter Science, 99:157–176, 1992.

30. D. Greening. Parallel simulated annealing techniques.Phys-
ica D, 42:293–306, 1990.

31. L. Ingber. Simulated annealing: Practice versus theory.Math-
ematical Computer Modelling, 18(11):29–57, 1993.

32. H. Geffner and J. Pearl. On the probabilistic semantics of con-
nectionist networks. Technical Report R-84, UCLA Computer
Science Department, Los Angeles, CA, 1987.

33. K.B. Laskey. Adapting connectionist learning to Bayesian
networks. International Journal of Approximate Reasoning,
4:261–282, 1990.

34. T. Hrycej. Common features of neural-network models of
high and low level human information processing. In T. Ko-
honen, K. M̈akisara, O. Simula, , and J. Kangas, editors,Pro-
ceedings of the International Conference on Artificial Neural
Networks (ICANN-91), pages 861–866, Espoo, Finland, June
1991. Elsevier Science Publishers B.V. (North-Holland).

35. R.M. Neal. Connectionist learning of belief networks.Artifi-
cial Intelligence, 56:71–113, 1992.

36. P. Myllymäki. Mapping Bayesian Networks to Stochastic
Neural Networks: A Foundation for Hybrid Bayesian-Neural
Systems. PhD thesis, Report A-1995-1, Department of Com-
puter Science, University of Helsinki, December 1995.

37. P. Myllymäki and P. Orponen. Programming the Har-
monium. InProceedings of the International Joint Confer-
ence on Neural Networks, volume 1, pages 671–677, Singa-
pore, November 1991. IEEE, New York, NY.

38. P. Myllymäki. Bayesian Reasoning by Stochastic Neural Net-
works. Ph.Lic. Thesis, Tech. Rep. C-1993-67, Department of
Computer Science, University of Helsinki, 1993.

39. P. Smolensky. Information processing in dynamical systems:
Foundations of harmony theory. In Rumelhart and McClel-
land [3], pages 194–281.

40. P. Myllymäki. Using Bayesian networks for incorporating
probabilistic a priori knowledge into Boltzmann machines.
In Proceedings of SOUTHCON’94, pages 97–102, Orlando,
March 1994. IEEE, Piscataway, NJ.

41. P. Myllymäki. Mapping Bayesian networks to Boltzmann ma-
chines. In A. Gammerman, editor,Proceedings of Applied
Decision Technologies 1995, pages 269–280, London, April
1995. Unicom Seminars, London. Also: NeuroCOLT Tech-
nical Report NC-TR-95-034.

42. J.A. Barnden and J.B. Pollack, editors.Advances in Connec-
tionist and Neural Computation Theory, Vol. I: High Level
Connectionist Models. Ablex Publishing Company, Norwood,
NJ, 1991.

43. G.E.(ed.) Hinton. Special issue on connectionist symbol pro-
cessing.Artificial Intelligence, 46(1–2), 1990.

44. S. Goonatilake and S. Khebbal, editors.Intelligent Hybrid
Systems. John Wiley & Sons, Chichester, 1995.

45. R. Sun. Integrating Rules and Connectionism for Robust
Commonsense Reasoning. John Wiley & Sons, Chichester,
1994.

46. P. Floŕeen, P. Myllym̈aki, P. Orponen, and H. Tirri. Neural
representation of concepts for robust inference. In F. Gardin
and G. Mauri, editors,Proceedings of the International Sym-
posium Computational Intelligence II, pages 89–98, Mil-
ano, Italy, September 1989. Elsevier Science Publishers B.V.
(North-Holland).

47. P. Myllymäki, H. Tirri, P. Floŕeen, and P. Orponen. Com-
piling high-level specifications into neural networks. InPro-
ceedings of the International Joint Conference on Neural Net-
works, volume 2, pages 475–478, Washington D.C., January
1990. IEEE, New York, NY.

48. P. Floŕeen, P. Myllym̈aki, P. Orponen, and H. Tirri. Compiling
object declarations into connectionist networks.AI Commu-
nications, 3(4):172–183, December 1990.

49. L. Shastri.Semantic Networks: An Evidential Formalization
and Its Connectionist Realization. Pitman, London, 1988.

50. J. Pearl. Fusion, propagation and structuring in belief net-
works. Artificial Intelligence, 29:241–288, 1986.

51. R.A. Howard and J.E. Matheson. Influence diagrams. In
R.A.Howard and J.E.Matheson, editors,Readings in Decision
Analysis, pages 763–771. Strategic Decisions Group, Menlo
Park, CA, 1984.

52. F. Jensen.An Introduction to Bayesian Networks. UCL Press,
London, 1996.

53. E. Castillo, J. Gutiérrez, and A. Hadi.Expert Systems and
Probabilistic Network Models. Monographs in Computer Sci-
ence. Springer-Verlag, New York, NY, 1997.

54. T. Hrycej. Gibbs sampling in Bayesian networks.Artificial
Intelligence, 46:351–363, 1990.

55. S.L. Lauritzen and D.J. Spiegelhalter. Local computations
with probabilities on graphical structures and their application
to expert systems.J. Royal Stat. Soc., Ser. B, 50(2):157–224,
1988. Reprinted as pp. 415–448 in [63].

56. D.J. Spiegelhalter. Probabilistic reasoning in predictive ex-
pert systems. In L.N. Kanal and J.F. Lemmer, editors,Uncer-
tainty in Artificial Intelligence 1, pages 47–67. Elsevier Sci-
ence Publishers B.V. (North-Holland), Amsterdam, 1986.

57. W.K. Hastings. Monte Carlo sampling methods using Markov
chains and their applications.Biometrika, 57:97–109, 1970.

58. A.A. Barker. Monte Carlo calculations of the radial distribu-
tion functions for a proton-electron plasma.Aust. J. Phys.,
18:119–133, 1965.

59. A. de Gloria, P. Faraboschi, and M. Olivieri. Clustered
Boltzmann machines: Massively parallel architectures for
constrained optimization problems.Parallel Computing,
pages 163–175, 1993.

60. D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon.
Optimization by simulated annealing: an experimental eval-
uation; Part I, graph partitioning. Operations Research,
37(6):865–892, November-December 1989.

61. H.L. Chin and G.F. Cooper. Bayesian belief network inference
using simulation. In L.N. Kanal and J.F. Lemmer, editors,Un-
certainty in Artificial Intelligence 3, pages 129–147. Elsevier
Science Publishers B.V. (North-Holland), Amsterdam, 1989.

62. G.E. Hinton. Connectionist learning procedures.Artificial
Intelligence, 40(1–3), September 1989.

63. G. Shafer and J. Pearl, editors.Readings in Uncertain Reas-
oning. Morgan Kaufmann Publishers, San Mateo, CA, 1990.

44 Myllymäki

Petri Myllym äki is one of the founders of the Complex Sys-
tems Computation (CoSCo) research group at the Depart-
ment of Computer Science of University of Helsinki. For
the past ten years, the CoSCo group has been studying com-
plex systems focusing on issues related to uncertain reas-
oning, machine learning and data mining. Research areas
include Bayesian networks and other probabilistic models,
information theory, neural networks, case-based reasoning,
and stochastic optimization methods. Dr. Myllymäki is cur-
rently working at the University of Helsinki as a research
scientist for the Academy of Finland.

