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Abstract

Bayesian network models are widely used for su-
pervised prediction tasks such as classification.
Usually the parameters of such models are de-
termined using ‘unsupervised’ methods such as
maximization of the joint likelihood. In many
cases, the reason is that it is not clear how
to find the parameters maximizing the super-
vised (conditional) likelihood. We show how
the supervised learning problem can be solved
efficiently for a large class of Bayesian net-
work models, including the Naive Bayes (NB)
and tree-augmented NB (TAN) classifiers. We
do this by showing that under a certain gen-
eral condition on the network structure, the
supervised learning problem is exactly equiv-
alent to logistic regression. Hitherto this was
known only for Naive Bayes models. Since
logistic regression models have a concave log-
likelihood surface, the global maximum can be
easily found by local optimization methods.

1 Introduction

In recent years it has been recognized that for
supervised prediction tasks such as classifica-
tion, we should use a supervised learning al-
gorithm such as supervised (conditional) like-
lihood maximization (Friedman et al., 1997;
Greiner et al., 1997; Ng and Jordan, 2001; Kon-
tkanen et al., 2001; Greiner and Zhou, 2002).
Nevertheless, in most related applications the
model parameters are still determined using un-
supervised methods such as maximization of
the unsupervised (joint) likelihood or (ordinary,
unsupervised) Bayesian methods. One of the
main reasons for this discrepancy is the diffi-
culty in finding the global maximum of the su-
pervised likelihood. In this paper, we show that
this problem can be solved for Bayesian net-
work models, as long as they satisfy a particu-

lar additional condition. The condition is satis-
fied for many existing Bayesian-network based
classifiers including the Naive Bayes (NB), TAN
(tree-augmented NB) and ‘diagnostic’ classifiers
(Kontkanen et al., 2001).

We find the maximum supervised likelihood
parameters by parametrizing our models in a
different manner; roughly speaking, the param-
eters in our parametrization correspond to log-
arithms of parameters in the standard Bayesian
network parametrization. In this way, each con-
ditional Bayesian network model is mapped to
a logistic regression model. However, in some
cases the parameters of this logistic regression
model are not allowed to vary freely. In other
words, the Bayesian network model corresponds
to a subset of a logistic regression model rather
than a ‘full’ logistic regression model.

We provide a general condition on the net-
work structure under which, as we prove, the
Bayesian network model is mapped to a full lo-
gistic regression model with freely varying pa-
rameters. The supervised log-likelihood for lo-
gistic regression models is a concave function
of the parameters. Since, under our condi-
tion, these parameters are allowed to vary freely
over Rk for some k, our condition implies that
in the new parametrization the supervised log-
likelihood becomes a concave function of param-
eters in a convex set. This implies that we can
find the global maximum supervised likelihood
parameters by simple local optimization tech-
niques such as hill climbing.

We remark that viewing Bayesian network
classifiers as logistic regression models is not
new; it was used earlier in papers such as (Heck-
erman and Meek, 1997a; Ng and Jordan, 2001;
Greiner and Zhou, 2002). Also, the concavity
of the log-likelihood surface for logistic regres-
sion is known. Our main contribution is to sup-
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ply the condition under which Bayesian network
models correspond to logistic regression with
completely freely varying parameters. Only in
this latter case can we guarantee that there are
no local maxima in the likelihood surface. As
a direct consequence of our result, we show for
the first time that the supervised likelihood of,
for instance, the tree-augmented Naive Bayes
(TAN) model has no local maxima.

This paper is organized as follows. In Sec-
tion 2 we introduce Bayesian networks and an
alternative so-called L-parametrization. In Sec-
tion 3 we show that the L-parametrization al-
lows us to consider Bayesian network classifiers
as logistic regression models. Based on ear-
lier results in logistic regression, we conclude
that in the L-parametrization the supervised
log-likelihood is a concave function. In Sec-
tion 4 we present our main result, giving con-
ditions under which the two parametrizations
correspond to exactly the same conditional dis-
tributions and the L-parametrization preserves
all the independence assumptions encoded by
the network structure. Conclusions are summa-
rized in Section 5.

2 Bayesian Networks

We assume that the reader is familiar with the
basics of the theory of Bayesian networks see,
e.g., (Pearl, 1988).

Consider a random vector X = (X0, X1, . . . ,
XM ′), where each Xi takes values in {1, . . . , ni}.
Let B be a Bayesian network structure over X,
which factorizes P (X) into

P (X) =
M ′∏

i=0

P (Xi | Pai), (1)

where Pai ⊆ {X0, . . . , XM ′} is the parent set of
variable Xi in B.

We are interested in predicting some class
variable Xm for some m ∈ {0, . . . , M ′} condi-
tioned on all Xi, i 6= m. Without loss of gener-
ality we may assume that m = 0 (i.e., X0 is the
class variable) and that the children of X0 in
B are {X1, . . . , XM} for some M ≤ M ′. For in-
stance, in the so-called Naive Bayes model (left-
most picture in Figure 1), we have M = M ′ and
the children of the class variable X0 are indepen-
dent given the value of X0. The Bayesian net-
work model corresponding to B is the set of all

distributions satisfying the conditional indepen-
dencies encoded in B. It is usually parametrized
by vectors ΘB with components of the form
θBxi|pai

defined by

θBxi|pai
:= P (Xi = xi | Pai = pai), (2)

where pai is any configuration (set of values)
for the parents Pai of Xi. Whenever we want
to emphasize that each pai is determined by
the complete data vector x = (x0, . . . , xM ′), we
write pai(x) to denote the configuration of Pai

in B given by the vector x. For a given data vec-
tor x = (x0, x1, . . . , xM ′), we sometimes need to
consider a modified vector where x0 is replaced
by x′0 and the other entries remain the same.
We then write pai(x′0, x) for the same configu-
ration given by (x′0, x1, . . . , xM ′).

We let MB be the set of conditional distribu-
tions P (X0 | X1, . . . , XM ′ , ΘB) corresponding
to distributions P (X0, . . . , XM ′ | ΘB) satisfy-
ing the conditional independencies encoded in
B. The conditional distributions in MB can be
written as

P (x0 | x1, . . . , xM ′ ,ΘB)

=
θBx0|pa0(x)

∏M ′
i=1 θBxi|pai(x)∑n0

x′0=1 θB
x′0|pa0(x)

∏M ′
i=1 θB

xi|pai(x′0,x)

, (3)

extended to N outcomes by independence.
Given a complete data-matrix D = (x1, . . . ,

xN ), the supervised log-likelihood, SB(D; ΘB), of
parameters ΘB is given by

SB(D; ΘB) :=
N∑

j=1

SB(xj ; ΘB), (4)

where

SB(x; ΘB) := log P (x0 | x1, . . . , xM ′ , ΘB). (5)

Note that in (3), and hence also in (4), all
θBxi|pai

with i > M (standing for nodes that are
neither the class variable nor any of its chil-
dren) cancel out, since for these terms we have
pai(x) ≡ pai(x′0, x) for all x′0. Thus the only
relevant parameters for determining the con-
ditional likelihood are of the form θBxi|pai

with
i ∈ {0..M}, xi ∈ {1..ni} and pai any configura-
tion of values of Pai. We order these parameters
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lexicographically and define ΘB to be the set of
vectors constructed this way, with θBxi|pai

> 0
and

∑ni
xi=1 θBxi|pai

= 1 for all i ∈ {0, . . . ,M}, xi

and all values (configurations) of pai. Note that
we require all parameters to be strictly positive.

The model MB does not contain any notion
of the ‘unsupervised’ distributions: Probabili-
ties such as P (Xi | Pai), where M < i ≤ M ′,
are undefined, and neither are we interested
in them. Our task is prediction of X0 given
X1, . . . , XM ′ . Heckerman and Meek call models
such as MB Bayesian regression/classification
(BRC) models (Heckerman and Meek, 1997a;
Heckerman and Meek, 1997b).

For an arbitrary supervised Bayesian net-
work model MB, we now define the so-called L-
model, another set of conditional distributions
P (X0 | X1, . . . , XM ′). This model, which we
denote ML, is parametrized by vectors ΘL in
some set ΘL that closely resembles ΘB. Each
different MB will give rise to a corresponding
ML, although we do not necessarily haveMB =
ML. For each component θBxi|pai

of each vector
ΘB ∈ ΘB, there is a corresponding component
θL
xi|pai

of the vectors ΘL ∈ ΘL. The components
θL
xi|pai

take values in the range (−∞,∞) rather
than (0, 1). Each vector ΘL ∈ ΘL defines the
following conditional distribution:

P (x0 | x1, . . . , xM ′ , ΘL) :=

exp θL
x0|pa0(x)

∏M
i=1 exp θL

xi|pai(x)∑n0

x′0=1 exp θL
x′0|pa0(x)

∏M
i=1 exp θL

xi|pai(x′0,x)

. (6)

The model ML is the set of conditional dis-
tributions P (X0 | X1, . . . , XM ′ , ΘL) indexed by
ΘL ∈ ΘL, extended to N outcomes by indepen-
dence. Given a data-matrix D, let SL(D; ΘL)
be the supervised log-likelihood of parameters
ΘL, defined analogously to (4) with (6) in place
of (3).

Theorem 1. MB ⊆ML.

Proof. The theorem is immediate from doing
the log-parameter transformation, i.e., setting
θL
xi|pai

= log θBxi|pai
for all i, xi and pai.

In words, all the conditional distributions
that can be represented by parameters ΘB ∈
ΘB can also be represented by parameters

ΘL ∈ ΘL. However, whereas in the usual
parametrization we require

∑ni
xi=1 θBxi|pai

= 1 for
each i ∈ {0, . . . ,M ′} and pai, there is no cor-
responding condition for the parameters of the
L-model. Consequently, the converse of Theo-
rem 1, i.e., ML ⊆MB, is true only under some
additional conditions on the network structure.
We return to this topic in Section 4 but first we
take a closer look at the L-model.

3 The L-model Viewed as Logistic
Regression

Although the L-model is closely related to and
in some cases formally identical to Bayesian net-
work classifiers, it can also be interpreted in
terms of logistic regression. We can think of
the conditional model ML as a predictor that
combines the information of the attributes using
the so-called softmax rule (Bishop, 1995; Heck-
erman and Meek, 1997b; Ng and Jordan, 2001).
Figure 1 gives an interpretation of this, depict-
ing a Naive Bayes model and the corresponding
L-model in their Bayesian network guises.

In terms of logistic regression, the L-model
has one (binary) regressor variable for each con-
figuration of each of the parent sets Pai, and one
(binary) output variable for each possible value
of the class variable. Having established that
the L-model is a logistic regression model, we
may use a well-known fact that holds for logistic
regression models in general. Namely, the su-
pervised log-likelihood in the L-parametrization
is a concave function of the parameters:

Theorem 2. (Santner and Duffy, 1989) The
parameter set ΘL is convex, and the supervised
log-likelihood SL(D; ΘL) is concave, though not
strictly concave.

...X X X X1 2 3 M

X0

...X X X X1 2 3 M

 ~~ ~ ~
X0

Figure 1: Standard Naive Bayes structure (left)
and the corresponding L-model (right). The
arcs of the network have been reversed and the
resulting product distribution has been replaced
by softmax (denoted by tildes).
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Proof. The first part is obvious since each pa-
rameter can take values in (−∞,∞). Concav-
ity of SL(D; ΘL) is a direct consequence of the
fact that ML is a logistic regression model; see,
e.g., (Santner and Duffy, 1989, p. 234). For an
example where the supervised log-likelihood is
not strictly concave, see (Wettig et al., 2002).

From the theorem we directly obtain the fol-
lowing corollary.

Corollary 1. There are no local (non-global)
maxima in the likelihood surface of an L-model.

The conditions under which a global maxi-
mum exists are discussed in, e.g., (Santner and
Duffy, 1989) and references therein. A possible
solution in cases where no maximum exists is
to assign a prior on the model parameters and
maximize the ‘supervised posterior’ (Grünwald
et al., 2002; Wettig et al., 2002) instead of the
likelihood.

The global supervised maximum likelihood
parameters obtained from training data can be
used for prediction of future data. In addi-
tion, as discussed in (Heckerman and Meek,
1997a) they can be used to perform model se-
lection among several competing model struc-
tures using, e.g., the BIC (Schwarz, 1978) or
(approximate) MDL (Rissanen, 1978) criteria.
In (Heckerman and Meek, 1997a) it is stated
that for general supervised Bayesian network
models MB, “although it may be difficult to
determine a global maximum, gradient-based
methods [...] can be used to locate local max-
ima”. What is more, Theorem 2 shows that
when dealing with L-models even a global max-
imum can be found if it exists.

In the original parametrization, the log-
likelihood surface is not necessarily concave, as
the following example shows.

Example 1. Consider a Bayesian network
where the class variable X0 has only one child,
X1, and both variables take values in {1, 2}. Let
the training data be given by

D =
(
(1, 1), (1, 2), (2, 1), (2, 2)

)
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
α

S
B (

D
;Θ

B )

Figure 2: The supervised log-likelihood of Ex-
ample 1 peaks twice in the original parametriza-
tion along a line defined by α ∈ (0, 1).

Set the parameters ΘB as follows:

θBx0
=

{
0.1 if x0 = 1,

0.9 if x0 = 2,

θBx1|x0
=





0.5 if x0 = 1, x1 = 1,

0.5 if x0 = 1, x1 = 2,

α if x0 = 2, x1 = 1,

1− α if x0 = 2, x1 = 2.

Figure 2 shows the supervised log-likelihood
given data D as a function of α. The figure
shows a bimodal curve that clearly violates con-
cavity. 3

If the network structure B is such that
the two models are equivalent, MB = ML,
we can find the global maximum of the su-
pervised likelihood by reparametrizing MB in
the L-parameterization, and using some lo-
cal optimization method. Because the log-
transformation is continuous, it follows (with
some calculus) that in this case all local maxima
of the supervised likelihood are global maxima
also in the original parametrization ΘB.

4 Main Result

Theorems 1 and 2 suggest that in order to
find parameters maximizing the supervised like-
lihood for any Bayesian network model, we
could use the L-model where optimization is
easy. However, the resulting parameters may
violate the ‘sum-up-to-one constraint’, i.e., we
may have

∑ni
xi=1 exp θL

xi|pai
6= 1 for some i ∈

{0, . . . , M ′} and pai. This could correspond to
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XX

X0

21 XX

X

1 0

2

Figure 3: A simple Bayesian network (the class
variable is denoted by X0) satisfying Condi-
tion 1 (left); and a network that does not satisfy
the condition (right).

a violation of the independence assumptions of
the model structure B as demonstrated by Ex-
ample 2 below. However, for some structures
B, we can show that even if ΘL is such that∑ni

xi=1 exp θL
xi|pai

6= 1 for some i ∈ {0, . . . ,M ′}
and pai, the conditional distribution indexed by
ΘL is still in MB.

Our main result is that the independence as-
sumptions encoded by B are guaranteed to be
preserved in the L-model if B satisfies the fol-
lowing condition:
Condition 1 For all j = 1..M , there exists
Xi ∈ Paj ∩ {X0, . . . , XM} such that Paj ⊆
Pai ∪ {Xi}.
Remark. Condition 1 holds for B (as can be
seen by induction) if and only if any parent set
Paj of a child Xj of the class X0 is ‘condition-
ally fully connected’, i.e., fully connected mod-
ulo arcs (between parents of X0) that have no
effect on the conditional P (X0 | Paj \ {X0}).
A necessary but not sufficient condition is that
the class X0 must be a ‘moral node’, i.e., it can-
not have a common child with a node it is not
directly connected with; see Figure 4. 3

Example 2. Consider the Bayesian networks
depicted in Figure 3. The leftmost network, B1,
satisfies Condition 1, unlike the rightmost net-
work, B2. Let MB

2 denote the ‘usual’ model
corresponding to B2 indexed by parameters in
ΘB, and let ML

2 denote the corresponding L-
model. The parameters used to define ML

2
are θL

x0
and θL

x2|x0,x1
where each xi varies in

{1, . . . , ni}. Consider the distributions in ML
2

indexed by a ΘL such that, for some x0 and x1,∑n2
x2=1 exp θL

x2|x0,x1
6= 1. Some of these distri-

butions violate the independence assumptions
of B2, and therefore, are not in MB

2 . For in-

X0

X1 X2 X3

X0

X1 X2 X3

Figure 4: A tree-augmented Naive Bayes (TAN)
model satisfying Condition 1 (left); and a net-
work that is not TAN (right). Note that even
though in both cases the class variable X0 is a
moral node, the network on the right does not
satisfy Condition 1.

stance, suppose that for x0 = x1 = 1, summing
over the values of X2 gives something more than
one, whereas for x0 = 2, x1 = 1, summing over
the values of X2 gives something less than one.
This would correspond to the situation where
given X1 = 1 it is more probable to have X0 = 1
than X0 = 2, i.e., X1 and X0 would be depen-
dent without X2 being given. It follows that in
this case ML

2 contains some conditional distri-
butions that do not satisfy the independence as-
sumptions encoded by B2. This can not happen
in the leftmost network B1 since the structure
allows all conditional distributions of X0 given
X1 and X2. 3

As examples of network structures that sat-
isfy Condition 1, we mention the Naive Bayes
(NB) and the tree-augmented Naive Bayes
(TAN) models (Friedman et al., 1997). The lat-
ter is a generalization of the former in which the
children of the class variable are allowed to form
tree-structures; see Figure 4.

Proposition 1. Condition 1 is satisfied by
the Naive Bayes and the tree-augmented Naive
Bayes structures.

Proof. For Naive Bayes, we have Paj ⊆ {X0}
for all j ∈ {1, . . . , M}. For TAN models, all
children of the class variable have either one or
two parents. For children with only one parent
(the class variable), we can use the same argu-
ment as in the NB case. For any child Xj with
two parents, let Xi be the parent that is not the
class variable. Because Xi is also a child of the
class variable, we have Paj ⊆ Pai ∪ {Xi}.

Condition 1 is also automatically satisfied if

99



X0 only has incoming arcs1 (‘diagnostic’ clas-
sifiers, see (Kontkanen et al., 2001)). For
Bayesian network structures for which the con-
dition does not hold, we can always add some
arrows to arrive at a structure B′ for which the
condition does hold (for instance, add an arrow
from X1 to X3 in the rightmost network in Fig-
ure 4). Therefore, the model MB is always a
submodel of a larger model MB′ for which the
condition holds. For these reasons, we regard
Condition 1 as relatively mild.

We are now ready to present our main result:

Theorem 3. If B satisfies Condition 1, then
MB = ML.

Together with Corollary 1, this shows that if
Condition 1 holds for B, then the supervised
likelihood surface of MB has no local (non-
global) maxima. Proposition 1 now implies
that, for example, the supervised likelihood sur-
face for the TAN classifiers has no local (non-
global) maxima. Therefore, this maximum can
be found by local optimization techniques.

Proof. In the following, we will often speak of
the parent configuration pa0 of X0. In case X0

has no parents (i.e., M = M ′), Pa0 is the empty
set and pa0(x) is constant with respect to x =
(x0, . . . , xM ′).

We introduce some more notation. For j ∈
{1, . . . ,M}, let mj be the maximum number
in {0, . . . , M} such that Xmj ∈ Paj , Paj ⊆
Pamj ∪ {Xmj}. Such an mj exists by Condi-
tion 1. Condition 1 implies that paj is com-
pletely determined by the pair (xmj , pamj ). We
can therefore introduce functions Qj mapping
(xmj , pamj ) to the corresponding paj . Hence,
for all x = (x0, . . . , xM ′) and j ∈ {1, . . . ,M} we
have

paj = Qj(xmj , pamj ). (7)

We introduce, for all i ∈ {0, . . . ,M} and for
each configuration pai of Pai, a constant ci|pai

and define, for any ΘL ∈ ΘL,

θ
(c)
xi|pai

:= θL
xi|pai

+ci|pai
−

∑

j:mj=i

cj|Qj(xi,pai). (8)

1It is easy to see that in that case the maximum su-
pervised likelihood parameters may even be determined
analytically.

The parameters θ
(c)
xi|pai

constructed this way are

combined to a vector Θ(c) which is clearly a
member of ΘL.

After introducing this additional notation, we
proceed to the first stage of the proof.
Stage 1 In this stage of the proof, we show
that no matter how we choose the constants
ci|pai

, for all ΘL and corresponding Θ(c) we have
SL(D; Θ(c)) = SL(D; ΘL).

We first show that, for all possible vectors x
and the corresponding parent configurations, no
matter how the ci|pai

are chosen, it holds that

M∑

i=0

θ
(c)
xi|pai

=
M∑

i=0

θL
xi|pai

+ c0|pa0
. (9)

To derive (9) we substitute all terms of∑M
i=0 θ

(c)
xi|pai

by their definition (8). Clearly, for
all j ∈ {1, . . . , M}, there is exactly one term
of the form cj|paj

that appears in the sum with
a positive sign. Since for each j ∈ {1, . . . , M}
there exists exactly one i ∈ {0, . . . , M} with
pj = i, it must be the case that for all j ∈
{1, . . . , M}, a term of the form cj|Qj(xi,pai) ap-
pears exactly once in the sum with a nega-
tive sign. By (7) we have cj|Qj(xi,pai) = cj|paj

.
Therefore all terms cj|paj

that appear once with
a positive sign also appear once with a negative
sign. It follows that, except for c0|pa0

, all terms
cj|paj

cancel. This establishes (9). By plugging
in (9) into (6), it follows that SL(D; Θ(c)) =
SL(D; ΘL) for all D. This concludes Stage 1 of
the proof.
Stage 2 Set, for all xi and pai,

θBxi|pai
= exp θ

(c)
xi|pai

. (10)

In this stage we show that we can determine the
constants ci|pai

such that for all i ∈ {0, . . . , M}
and pai, the ’sum up to one’ constraint is satis-
fied, i.e., we have

ni∑

xi=1

θBxi|pai
= 1. (11)

We will achieve this by sequentially determin-
ing values for ci|pai

in a particular order. We
now need some terminology: we say ‘ci is de-
termined’ if for all configurations pai of Pai, we
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have already determined ci|pai
. We say ‘ci is un-

determined’ if we have determined ci|pai
for no

configuration pai of Pai. We say ‘ci is ready to
be determined’ if ci is undetermined and at the
same time all cj with pj = i have been deter-
mined.

We first note that as long as some ci with
i ∈ {0, . . . , M} are undetermined, there must
exist ci′ that are ready to be determined. To
see this, first take any i ∈ {0, . . . ,M} with
ci undetermined. Either ci itself is ready to
be determined (in which case we are done),
or there exists j ∈ {1, . . .M} with pj = i
(and hence Xi ∈ Paj) such that cj is undeter-
mined. If cj is ready to be determined, we are
done. Otherwise, there must exist some k with
Xj ∈ Pak such that ck is undetermined. We can
now repeat the argument, and move forward in
the Bayesian network structure B restricted to
{X0, . . . , XM} until we find a cl that is ready to
be determined. Because B is acyclic, we must
find such a cl (within M + 1 steps).

We now describe an algorithm that sequen-
tially assigns values to ci|pai

such that (11) will
be satisfied. We start with all ci undetermined
and repeat the following steps:

WHILE there exists i ∈ {0, . . . , M} such that ci

is undetermined
DO

1. Pick the largest i such that ci is ready to be
determined.

2. Set, for all configurations pai of Pai, ci|pai

such that
∑ni

xi=1 θBxi|pai
= 1 holds.

DONE

The algorithm will loop M + 1 times and then
halt. Step 2 does not affect the values of
cj|paj

for any j, paj such that cj|paj
has already

been determined. Therefore, after the algo-
rithm halts, (11) holds. This concludes Stage
2 of the proof.

Let ΘL ∈ ΘL. Each choice of constants ci|pai
de-

termines a corresponding vector Θ(c) with com-
ponents given by (8). This in turn determines a
corresponding vector ΘB with components given
by (10). In Stage 2 we showed that we can take
the ci|pai

such that (11) holds. This is the choice

of ci|pai
which we adopt. With this particular

choice, ΘB indexes a distribution in MB. By
applying the log-transformation to the compo-
nents of ΘB we find that for any D of any length,
SB(D; ΘB) = SL(D; Θ(c)), where SB(D; ΘB)
denotes the supervised log-likelihood of ΘB as
given by summing the logarithm of (3). The
result of Stage 1 now implies that ΘB indexes
the same conditional distribution as ΘL. Since
ΘL ∈ ΘL was chosen arbitrarily, this shows that
ML ⊆MB. Together with Theorem 1 this con-
cludes the proof.

5 Concluding Remarks

We showed that by using the parameter trans-
formation described above, one can effectively
find the parameters maximizing the supervised
(conditional) likelihood of NB, TAN and many
other Bayesian network models. For an ar-
bitrary Bayesian network, this transformation
may yield a slightly more powerful model class,
i.e., remove some of the independence assump-
tions of the network structure. We also gave a
condition under which the transformation does
not change the class of models considered. Test
runs for the Naive Bayes case in (Wettig et al.,
2002) have shown that maximizing the super-
vised likelihood in contrast to the usual prac-
tice of maximizing the unsupervised (joint) like-
lihood is feasible and yields greatly improved
classification. In the future we intend to study
more complicated models as well as use the L-
parametrization for model selection.
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