
Fast NML Computation for Naive Bayes Models

Tommi Mononen and Petri Myllymäki
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Abstract. The Minimum Description Length (MDL) is an information-
theoretic principle that can be used for model selection and other statis-
tical inference tasks. One way to implement this principle in practice is
to compute the Normalized Maximum Likelihood (NML) distribution for
a given parametric model class. Unfortunately this is a computationally
infeasible task for many model classes of practical importance. In this
paper we present a fast algorithm for computing the NML for the Naive
Bayes model class, which is frequently used in classification and cluster-
ing tasks. The algorithm is based on a relationship between powers of
generating functions and discrete convolution. The resulting algorithm
has the time complexity of O(n2), where n is the size of the data.

1 Introduction

The information-theoretical Minimum Description Length (MDL) principle [15,
4, 17, 3] for model selection is based on the conceptually simple idea that given
a data set, the best model for the data is the one which results in the shortest
description for the data together with the model. Hence, we wish to select a
model representing a balance between too simple models (in which case the
code length for the data is large) and too complex models (in which case the
code length for the data is small, but for the model itself large).

Consider a parametric probabilistic model class, i.e., a set of models each
defining a probability distribution over all possible data sets. Let us call the
shortest possible code length obtainable with the given set of models stochastic
complexity. Consequently, given a data set, we can choose between alternative
parametric models (model classes) with different number of parameters by com-
paring the corresponding stochastic complexities for the given data.

However, there remains the question of how to formally define the stochastic
complexity for a model class. As each of the probability distributions in a prob-
abilistic model class corresponds to a code length, it is obvious that no code can
be shorter than all the other codes in the model class for all data sets, because
no probability distribution can dominate another probability distribution over
all data sets. A universal model is a model (code) which can imitate any model



in a given parametric model class. The normalized maximum likelihood (NML)
distribution [16, 18] is the worst-case optimal universal model giving a desired
formal definition for the stochastic complexity (see the next Section).

Unfortunately, computing the NML is very difficult for many model classes
of practical interest. In this paper we consider Bayesian networks, probabilistic
model classes defined by acyclic directed graphs [14, 5]. The Naive Bayes model is
a simple Bayesian network, which is continuously used with success in areas such
as clustering and classification. It has been earlier shown [11] how to compute the
NML for the Naive Bayes model family in O(n2 log L) time, where L denotes the
number of values of the class variable of the Naive Bayes model. In this paper we
introduce a faster O(n2) algorithm for this task, based on generating functions.

2 The Problem

The normalized maximum likelihood (NML) distribution [16, 18] is defined by

PNML(xn|M) =
P (xn|θ̂(xn,M))

∑

yn P (yn|θ̂(yn,M))
, (1)

where the numerator is the maximum likelihood for the observed data xn within
the model class M. The normalizing term in the denominator is the sum over
maximum likelihoods of all possible data sets of size n, with respect to the
model class. As shown in [18], this yields the worst case universal distribution
with respect to the model class M.

Although NML was defined as the worst-case optimal universal model, with-
out considering model complexity regularization, it is interesting to note how it
behaves as a model class selection criterion. Namely, if the model class is very
complex, then the maximum likelihood for the given data (the numerator in (1))
is large, but so is also the denominator as a complex model gives a high max-
imum likelihood for many data sets. For simple model classes the sum in the
denominator is small, but so is the numerator. Consequently, the denominator
behaves a a regularization term, and the model class optimizing the stochastic
complexity − log(PNML(xn|M)) has to balance between model complexity and
fit to the given data.

Let us now consider Naive Bayes models. The Naive Bayes is a Bayesian
network with one root node and m leaf nodes attached to the root node. Vari-
ables related to nodes are multinomially distributed. The joint distribution cor-
responding to the Naive Bayes is defined by

P (x) = P (x0)
m
∏

i=1

P (xi|x0), (2)

where x = (x0, x1, . . . , xm) is a vector of variable value assignments and x0 is
the value in the root.

For Naive Bayes models, computing the numerator of (1) is trivial, but this is
not the case with the denominator. In this paper we derive an efficient algorithm



for computing the normalizing term for this model family and call it the Naive
Bayes normalizing term.

3 Generating Functions and the Naive Bayes

The normalizing term for a single multinomial variable is called multinomial
normalizing term. We can compute the multinomial normalizing term efficiently:
the most efficient known method is proved using generating functions [9, 10]. We
now use this same methodology in the Naive Bayes case. First we have to define
the needed operations, which we use with generating functions, and then take a
closer look at the Naive Bayes normalizing term.

3.1 Generating Functions

An ordinary generating function (OGF) of a sequence an is

F (z) =

∞
∑

n=0

anzn = a0 + a1z + a2z
2 + · · · , (3)

where z ∈ C [2]. We are only interested in coefficients an, not the value of the
function F (z) itself. The function F (z) is only used for computation of some an

coefficients or in derivation of recurrence formulas. With a recurrence formula
we can compute the coefficient an+1 with the help of the fixed and finite set of
previous coefficients. A generating function may have a closed form, in which
case manipulation is easier.

As a generating function is also a formal power series, all general formal power
series operations are applicable. In the case of the multinomial normalizing term,
however, we need the exponential generating function (EGF), which is of form

G(z) =

∞
∑

n=0

bn

zn

n!
. (4)

We need to define for later use also two operations: a coefficient extraction from a
formal power series and taking the power of the exponential generating function.
The first operation is defined by

[zn]G(z) =
bn

n!
, (5)

which means that [zn] gives us the coefficient of term zn. The second opera-
tion defines what happens to coefficients when we exponentiate the generating
function. Rising the generating function G(z) to the power of two, denoted by

G2(z) =

(

∞
∑

n=0

bn

zn

n!

)2

=

∞
∑

n=0

cn

zn

n!
, (6)



corresponds to the binomial convolution

cn =

n
∑

h=0

(

n

h

)

bhbn−h (7)

in the level of coefficients. Similarly, the power of L gives

dn =
∑

h1+···+hL=n

(

n!

h1!h2! · · ·hL!

)

bh1
bh2

· · · bhL
, (8)

which is the multinomial convolution [2, 8]. This relation between the expanded
form and the power form is the key feature for achieving a new, more efficient
algorithm for computing the Naive Bayes normalizing term.

3.2 Naive Bayes Generating Function in the Power Form

First we have to define the generating function for the multinomial normalizing
term. We do not give this function in the expanded form, but use a more compact
notation: Lth power of a generating function [9, 10]. The power form is

BL(z) =

(

∞
∑

n=0

nn
zn

n!

)L

. (9)

We call the series inside the parentheses a basic series. The basic series here is
of exponential type and formal power series coefficients are now n

n

n!
. Coefficients

of the exponential generating function are nn. When we expand power L, we get
an exponential generating function

BL(z) =

∞
∑

n=0

CMN (L, n)nn
zn

n!
, (10)

where CMN (L, n) is the multinomial normalizing term with L values and n data
vectors [9, 10]. By a strict definition of generating functions this is not such a
function, as it is not explicitly defined. However, we misuse the definition here
slightly and in same way also later in the Naive Bayes case, because the implicit
form is sufficient for our purposes. There are efficient ways to compute the term
CMN (L, n), and we will show one of them later.

Now we focus on the Naive Bayes normalizing term. The normalizing term is
represented in the previous papers only using the expanded form. We denote the
Naive Bayes normalizing term by CNB(L, K1, . . . , Km, n), where L is the number
of values of the root variable and Ki is the number of values in leaf variable i.
The following theorem shows the simple power form of the normalizing term.

Theorem 1.

nn

n!
CNB(L, K1, . . . , Km, n) = [zn]

(

∞
∑

n=0

nn

(

m
∏

i=1

CMN (Ki, n)

)

zn

n!

)L

.



Proof. A vector (h1, . . . , hL) is a sufficient statistics i.e. data counts of the root
variable. The used formula for the Naive Bayes normalizing term is from the
paper [11]. With standard manipulation we get

nn

n!
CNB(L, K1, . . . , Km, n) (11)

=
nn

n!

∑

h1+···+hL=n

n!

h1! · · ·hL!

(

L
∏

k=1

(

hk

n

)hk

)

m
∏

i=1

L
∏

k=1

CMN (Ki, hk) (12)

=
nn

n!

∑

h1+···+hL=n

n!

h1! · · ·hL!

(

1

nn

L
∏

k=1

hhk

k

)

L
∏

k=1

(

m
∏

i=1

CMN (Ki, hk)

)

(13)

=
1

n!

∑

h1+···+hL=n

n!

h1! · · ·hL!

L
∏

k=1

(

hhk

k

m
∏

i=1

CMN (Ki, hk)

)

(14)

= [zn]

(

∞
∑

n=0

nn

(

m
∏

i=1

CMN (Ki, n)

)

zn

n!

)L

. (15)

The last form is the power form, from where we can easily extract the basic
series. We started from the expanded form and ended up with the power form.
�

Let us compare the generating functions of the multinomial and the Naive
Bayes normalizing terms. In the multinomial case we have

(

∞
∑

n=0

nn
zn

n!

)L

(16)

and in the Naive Bayes case we have

EL =

(

∞
∑

n=0

CMN (K1, n) · · · CMN (Km, n)nn
zn

n!

)L

. (17)

The two forms seem to be quite similar, except that in the Naive Bayes case
we have additional multinomial normalizing terms inside the basic series terms.
These extra multinomial normalizing terms makes the expanded form look quite
ugly. However, despite of the complex terms, there exists an O(n2 log L) algo-
rithm for computing the Naive Bayes normalizing term [11]. The basic idea is
very simple: we can split the exponent L into two parts. Let’s call these parts L∗

and L − L∗. Then we get EL = EL
∗

EL−L
∗

. Now we can simply take the normal
discrete convolution in the right hand side to get one term of the series in the
left hand side. If we require that the result is also a normalizing term, we get
the known recurrence formula

CNB(L, K1, . . . , Km, n) =
n
∑

k=0

(

n

k

)(

k

n

)k (

n − k

n

)n−k

· CNB(L∗, K1, . . . , Km, k) CNB(L − L∗, K1, . . . , Km, n − k). (18)



So two lower exponents produce a higher one. To achieve the log L -term in the
time complexity, we have to merge exponents wisely, so that we do not make any
unnecessary steps. For example, if we want to compute EL with L = 16, we first
compute E2 and then compute E2E2 to get E4. In the same way we get the series
E8 and finally the series E16. If the target value is not two to some power, then
we have to do more complicated multiplications based on same idea. However,
in the next section we present a novel, even more efficient way for computing
the Naive Bayes normalizing term.

4 Powers of Formal Power Series

As basic series are formal power series, we can use some known powers of formal
power series formula. One of these formulas is the Miller formula [6]. It is origi-
nally a result of Euler and it has time complexity of O(n2) for any real number
exponent, but of course only natural numbers are meaningful in our case.

The proof of the Miller formula has been sketched many times in history
[7, 13, 6], but we were not able to find a detailed proof in the literature. The
detailed proof is relatively straightforward and uses only standard manipulation.
We complete below the missing parts of Knuth’s proof for sake of clarity.

Theorem 2 (The Miller formula). If two formal power series are V (z) =
1 +

∑

∞

k=1
vkzk and W (z) =

∑

∞

k=0
wkzk and W (z) = (V (z))α, α ∈ R, then

w0 = 1 and wn =
∑

n

k=1

(

(α+1

n
)k − 1

)

vkwn−k.

Proof. It is evident that w0 = 1, since v0 = 1 and 1 = 1α. Next we derivate the
basic equation of the theorem and get

W ′(z) = αV (z)α−1V ′(z).

Then we multiply both sides with V (z) and substitute V (z)α = W (z), which
gives us the equation

W ′(z)V (z) = αW (z)V ′(z).

Let us now look at the zn−1-coefficients of both sides:

[zn−1]W ′(z)V (z) = α[zn−1]W (z)V ′(z) (19)
n
∑

k=0

kwkvn−k = α

n
∑

k=0

(n − k)wkvn−k (20)

n−1
∑

k=0

kwkvn−k + nwnv0 = α

n−1
∑

k=0

(n − k)wkvn−k + 0 (21)

nwnv0 =
n−1
∑

k=0

(

α(n − k)wkvn−k − kwkvn−k

)

(22)

wn =
1

nv0

n−1
∑

k=0

(

(α(n − k) − k)wkvn−k

)

(23)



wn =

n−1
∑

k=0

(

α(n − k) − k

n

)

wkvn−k (24)

wn =
n
∑

k=1

(

α(n − n + k) − n + k

n

)

wn−kvn−n+k (25)

wn =

n
∑

k=1

((

α + 1

n

)

k − 1

)

wn−kvk. (26)

After some straightforward manipulation we get the result. �

We can obviously use this method for computing the normalizing term of the
Naive Bayes model. It should be noted that while this result is elegant, if we use
the discrete Fourier transform, we can achieve the time complexity O(n log n)
by using the basic identity (V (z))α = exp(α log(V (z))) and the fast Fourier
transform (FFT). The FFT method involves utilization of Newton’s method
and is explained in the paper [1]. However, the usefulness of this approach is
unclear as some earlier tests with the multinomial normalizing term [12] show
that the used floating point numbers must have very high precision in practical
cases. This is due to the fact that the values of the normalizing terms can be quite
large, and consequently, as the data size increases, the precision of the floating
point numbers must also increase. This means that increasing the precision will
affect the efficiency of the algorithm, although the number of operations remains
in principle the same.

5 Computation of the Naive Bayes Normalizing Term

The computation of the Naive Bayes normalizing term is quite straightforward
given the results derived above. Now we collect these results in a form of an algo-
rithm. As we did not describe earlier how to compute efficiently the multinomial
normalizing term, we start by defining that.

5.1 Recurrence Formula for the Multinomial Normalizing Term

The multinomial normalizing term can be computed by using a recurrence for-
mula [9, 10]. Initial values for this formula are

CMN (1, n) = 1 and (27)

CMN (2, n) =

n
∑

k=0

(

n

k

)(

k

n

)k (

n − k

n

)n−k

, (28)

where CMN (2, n) is a binomial normalizing term. After this we use the recurrence
formula

CMN (L + 2, n) = CMN (L + 1, n) +
n

L
CMN (L, n) (29)



to get the normalizing term with the wanted number of values in a multinomial
variable. Time complexity of this whole method is O(n), as the number of values
in a variable is usually much smaller than the number of the data points n. If
we have to compute all normalizing terms between [0, n] and we choose to use
FFT, then binomial normalizing terms should be computed using (16). For the
multiplication we can apply FFT.

5.2 The Algorithm

Now we have all the components we need for our algorithm. As said before, our
main theorem is quite obvious given the earlier results (Theorems 1 and 2) and
needs no proof.

Theorem 3. The Naive Bayes normalizing term can be efficiently calculated in
following way:

1. Compute first n + 1 binomial normalizing terms.
2. Use the recurrence formula to get the needed multinomial normalizing terms.

3. Compute the basic series
∑

n

k=0
CMN (K1, k) · · · CMN (Km, k)kk z

k

k!
.

4. Use the Miller formula to compute a new series, which is the basic series to
the power of L.

5. Extract the Naive Bayes normalizing terms from the computed series by ex-
tracting coefficients and multiplying every coefficient so that the kth coeffi-
cient is multiplied by k!

kk .

Time complexity is O(n2) for any exponent, because complexities of the steps
are O(n2), O(n · max(Ki)), O(n · m), O(n2) and O(n), respectively. This way
we get all the Naive Bayes normalizing terms between [0, n] in the given time,
not just the nth of them. Notice that if the FFT approach could be used, time
complexities of the first (explained in the Sect. 5.1) and the fourth steps would
become O(n log n). In this case the Miller formula in the fourth step is replaced
with the algorithm mentioned in Section 4. Theorem 3 gives us actually a general
framework for designing this kind of algorithms, as step 4 can be replaced with
any exponentiation algorithm.

The method given in Theorem 3 is more efficient than the O(n2 log L)-algo-
rithm presented in [11]. This is easy to see, as the previous algorithm essentially
performs in the fourth step at minimum log L- power series multiplications in-
stead of something which corresponds just one power series multiplication. In
fact even when using the previous method, in some case it can be wise to compute
series coefficients and not to require that all sub-results has to be normalizing
terms. This way we can replace (18) just with normal convolution and achieve
some more efficiency by omitting unnecessary multipliers present in the old for-
mula. Furthermore, the old formula is applicable for values L greater than 2, but
we can use normal convolution for values L greater than 1. In the fifth step we
then convert wanted series coefficients into normalizing terms.

The new Miller method algorithm works perfectly fine with exact rational
numbers. However our preliminary implementations show that in practice this is



not necessarily the case with fixed precision floating point numbers and all formal
power series: for some tested basic series, small errors in elementary operations
tend to corrupt the normalizing terms very fast as n grows (because the algorithm
uses iteratively previous values). Therefore with finite precision floating point
numbers, using the previous, slower algorithm may be more advisable.

We have derived an efficient algorithm for computing the Naive Bayes nor-
malizing term exactly. The computational complexity of computing the NML
criterion for a Naive Bayes model is the same as for this algorithm, as the
numerator of (1) is trivial to compute. Further information on computing the
stochastic complexity for Naive Bayes models can be found in papers [11, 12].

6 Concluding Remarks

We presented an O(n2) time algorithm for computing the normalizing term of the
NML distribution exactly in the case of the Naive Bayes model. As the remaining
term of the NML distribution is trivial to compute in this case, this result leads
to a computationally efficient algorithm for computing the NML exactly for
Naive Bayes models. We also defined a general framework for developing efficient
algorithms for the NML computation in the Naive Bayes case and showed how
the old O(n2 log L)-algorithm can be seen as an special case of the framework,
and how to make the algorithm more efficient.

We believe that it is not possible to do formal power series exponentiation in
this case faster than O(n2) without resorting to the Fast Fourier transform, which
would easily lead to numerical problems, as discussed earlier. So unless the basic
series for the Naive Bayes model reveals new hidden regularities with respect to
exponentiation, our algorithm meets the lower limit of the time complexity for
computing the NML exactly for Naive Bayes models.
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