
Pp. 13{24 in Advances in Case-Based Reasoning, Proceedings of the 4th EuropeanWorkshop (EWCBR-98), edited by B. Smyth and P. Cunningham. Vol. 1488 inLecture Notes in Arti�cial Intelligence, Springer-Verlag, 1998.On Bayesian Case MatchingPetri Kontkanen, Petri Myllym�aki, Tomi Silander, and Henry TirriComplex Systems Computation Group (CoSCo)P.O.Box 26, Department of Computer ScienceFIN-00014 University of Helsinki, Finlandcosco@cs.Helsinki.FIhttp://www.cs.Helsinki.FI/research/cosco/Abstract. Case retrieval is an important problem in several commer-cially signi�cant application areas, such as industrial con�guration andmanufacturing problems. In this paper we extend the Bayesian proba-bility theory based approaches to case-based reasoning, focusing on thecase matching task, an essential part of any case retrieval system. Tra-ditional approaches to the case matching problem typically rely on somedistance measure, e.g., the Euclidean or Hamming distance, althoughthere is no a priori guarantee that such measures really re
ect the use-ful similarities and dissimilarities between the cases. One of the mainadvantages of the Bayesian framework for solving this problem is thatit forces one to explicitly recognize all the assumptions made about theproblem domain, which helps in analyzing the performance of the result-ing system. As an example of an implementation of the Bayesian casematching approach in practice, we demonstrate how to construct a caseretrieval system based on a set of independence assumptions between thedomain variables. In the experimental part of the paper, the Bayesiancase matching metric is evaluated empirically in a case-retrieval task byusing public domain discrete real-world databases. The results suggestthat case retrieval systems based on the Bayesian case matching scoreperform much better than case retrieval systems based on the standardHamming distance similarity metrics.1 IntroductionIn Bayesian modeling, a given database of feature vectors is regarded as a ran-dom sample from an unknown problem domain probability distribution. Fromthis perspective, traditional model-based machine learning methods estimatethis distribution by constructing a single model, e.g., a decision-tree or a neu-ral network, from the sample data. In contrast to this \eager" approach, themodel-free case-based reasoning (CBR) systems [1, 3, 14, 19, 21] base their pre-dictions directly on the sample data, without producing any explicit models ofthe problem domain. This type of machine learning is often also referred to aslazy learning, since the algorithms defer all the essential computation until theprediction phase [2].The CBR algorithms typically consist of two separate phases. In the �rst,case retrieval phase, the system recalls the most relevant cases for the task in



14question, by �rst performing case matching and then selecting the best subset.In the case matching phase typically some distance function (e.g., Hammingdistance) is used for scoring the cases with respect to the given query. In thesecond, case adaptation phase, the retrieved cases are used in problem solvingfor example by using majority voting or some kind of averaging, in order toproduce a solution to the task at hand. It has been shown in various studies(see e.g., [18] for references) that this type of an approach can in some casesperform well in tasks involving prediction when the results are compared tothose of alternative predictive approaches, e.g., machine learning algorithms. Themethod su�ers, however, from several drawbacks when applied in practice (see,e.g., the discussion in [24]). Most importantly, the performance of the algorithmsseems to be highly sensitive to the selection of the distance function used in casematching [4, 11].In [24, 23, 20] we proposed a Bayesian framework for CBR based on probabil-ity theory with a particular set of underlying distributional assumptions knownas �nite mixture assumptions [8, 25]. The approach suggested can be seen as apartially lazy approach [2], i.e., a hybrid between the traditional machine learn-ing and the CBR approach, which is based solely on the given data. The studieswere based on the probabilistic viewpoint, where groups of data vectors aretransformed into distributions, which can be seen as sample points in a distri-bution space. The predictive distributions required for making predictions couldthen be computed by using the CBR approach in this distribution space, i.e.,by introducing a probabilistic \distance metric". Somewhat similar frameworkshave been suggested in [9, 10, 13].In [16] we presented a new, improved probabilistic formalization of CBR of apurely lazy nature. The framework extended our earlier results by presenting aBayesian approach for making (discrete) predictions directly from data, withoutthe transformation step between the original sample space and the distributionspace. Intuitively speaking, the new approach is based on the following notion: ifwe wish to make predictions by using only the sample data given, avoiding thenotion of individual models, from the Bayesian point of view we can take thisas a requirement for marginalizing, i.e., integrating, out the individual models.Quite interestingly, in [16] we showed that with the Bayesian CBR approach, thecase adaptation problem can be solved directly in one pass, without the standardtwo-phase CBR methodology where the cases are �rst ordered according to somescoring function, and the best cases are then used in the adaptation phase formaking predictions. Nevertheless, there are many situations where it would alsobe important to retrieve the most relevant cases from a given database. Forexample, the list of the relevant cases could be used by an explanation mechanismfor increasing the credibility of the predictions. This raises the question of howto de�ne and solve the case matching problem in the general Bayesian CBRsetting. In [15] we described a probabilistic solution to this problem.In this paper we extend and elaborate the work on the Bayesian CBR frame-work suggested, and focus on the Bayesian case matching metric. In Section 2 we�rst review the basic idea underlying Bayesian model-free inference. In Section 3



15we present the Bayesian solution for the case matching problem, and discuss thereasons for choosing the metric proposed. In order to make our approach viablein practice, we have to make some restricting assumptions about the problemdomain. As an example, in Section 4 we show how to implement the suggestedapproach with a set of simple, generally applicable independence assumptions.At this point it is important to emphasize that although the Bayesian approachrequires one to �x some set of assumptions, which in some sense can be regardedas a \model", the same applies for any CBR system: any distance metric usedin a CBR system is based on the (implicit) assumption that the cases with ahigh matching score are relevant for the prediction task at hand. Consequently,strictly speaking there is no such thing as model-free inference, and all sys-tems are based on some set implicit or explicit of assumptions. One of the mainadvantages of the Bayesian CBR framework is that it forces one to explicitlyrecognize all the assumptions made about the problem domain, a fact whichhelps in analyzing the performance of the resulting system.Our earlier results [16] show that the Bayesian model-free inference schemecan perform extremely well in prediction tasks on a variety of di�erent classi�-cation problems. Evaluating the Bayesian case matching metric empirically is amuch more complicated issue. In Section 5.1 we discuss this question, and sug-gest a case retrieval setting that can be used for this purpose. In Section 5.2, wepresent results of a series of experiments, where the Bayesian case matching met-ric is evaluated empirically in the suggested case retrieval task by using publiclyavailable real-world databases. The results suggest that case retrieval systemsbased on the Bayesian case matching score perform much better than case re-trieval systems based on the standard Hamming distance similarity metrics usedfor comparison.2 Bayesian model-free inferenceSimilarly to most of the prediction oriented CBR research, we will restrict our-selves here to the situation where cases are represented as feature vectors. Fromthe Bayesian perspective, the case base D denotes a random sample of N i.i.d.(independent and identically distributed) data vectors d1; : : : ;dN . For simplic-ity, we assume in the following that the data is coded by using discrete, �nite-valued symbolic attributes from a set X = fX1; : : : ; Xmg, although the Bayesianapproach described here can be easily extended to continuous (numeric) at-tributes as well, or even to a mixed-attribute case with both symbolic and nu-meric attributes. In probabilistic modeling we regard each discrete attribute Xias a random variable with possible values from the set fxi1; : : : ; xinig. Conse-quently, each data vector d, i.e., case, is represented as a value assignment ofthe form (X1 = x1; : : : ; Xm = xm), where xi 2 fxi1; : : : ; xinig.The underlying idea here is that the data vectors are assumed to be dis-tributed according to some unknown probability distribution P . Therefore, givena case base D and a new case with some unknown features, if we knew P , wecould predict values of the unknown features based on this distribution. More



16precisely, given sample data D and the values of a subset U (the clamped vari-ables) of the variables in X, the predictive distribution for the free variablesV = X nU is now P(V j U = u; D): (1)Furthermore, each possible value combination v for the variablesV is assumed tobe associated with some value called utility or gain U(v). Informally, the utilitygives us a measure of how bene�cial this particular combination is, for examplethe pro�t of a particular sale action if the transaction is completed. Now we wishto establish a procedure which always gives us maximal gain in this decision-making setting. We regard the problem described above as a decision-theoreticformulation of the case adaptation problem: given some data, and the valuesfor some of the domain attributes, the task is to determine the values for theremaining attributes in such a way that the utility function is maximized.Theoretically speaking, there exists an optimal procedure for solving thecase adaptation problem as formulated above. Namely, it can be shown (seee.g., [5]) that if we always choose the value assignment maximizing the expectedutility, then the resulting procedure is optimal in the sense that in the long run,the expected amount of overall utility gained will be maximized. Nevertheless,determining the expected utility requires computing the predictive probability(1) for each possible value assignment V = v. As the \true" domain probabilitydistribution P is typically not known, we are left with approximative approaches.In traditional machine learning, the problem domain probability distributionis typically approximated byP(V j U = u; D) � P (V j U = u; �);where � is a model, e.g., a decision-tree or a neural network, constructed fromthe sample data D. In contrast to this model-based approach, in the case-basedreasoning (CBR) approach [1, 3, 14, 19, 21], the learning algorithms base theirpredictions directly on the sample data, without producing any speci�c mod-els of the problem domain. Nevertheless, it should be noted that the originalpredictive distribution (1) does not contain any notion of individual models, soit can be regarded as the Bayesian (or decision-theoretic) formalization of theintuitive idea of model-free case-based reasoning. Furthermore, in the Bayesianframework, (1) can be written asP(V j U = u; D) � Z P (V j U = u; D;�)P (� j U = u; D)d�: (2)Consequently, from the Bayesian point of view, we can regard the CBR approachas a requirement for marginalizing, i.e., integrating, out all the individual models.In the following, by Bayesian CBR we mean methods based on (2).To make the Bayesian CBR approach formally valid, the models consideredin the integral (2) must be limited to some restricted set of models | consideringall the possible models in all their possible varying forms corresponds to con-sidering all the possible probability distributions, which is of course infeasible.



17It should be observed, however, that in practice we are always forced to makesome restricting assumptions about the problem domain, although this fact isnot always explicitly recognized. For example, in many traditional CBR sys-tems, the algorithms typically use a distance function (e.g., Euclidean distance)for the feature vectors in order to determine the most relevant data items for theprediction task in question. The use of a speci�c distance function implicitly as-sumes that the distance function is relevant with respect to the problem domainprobability distribution, and hence restricts the set of distributions considered.In the following, let 	 denote the set of assumptions made about the prob-lem domain. If the assumptions 	 de�ne a parametric model class M, i.e., aparametric model form (e.g., a speci�c neural network topology), where eachmodel (parameter instantiation) � 2 M de�nes a probability distribution onthe problem domain, then we can rewrite (2) in a more formal manner asP(V j U = u; D) � Z P (V j U = u; D;�; 	)P (� j U = u; D; 	)d�; (3)where the integration goes over all the models in M. Consequently, as we areuncertain about which of the probability distributions P (V j U = u; D;�; 	)is the most accurate representation of the problem domain distribution P , inthe Bayesian setting this problem is solved by averaging over all the possibledistributions. In this in�nite sum, each probability distribution is weighted byP (� j U = u; D; 	), the probability that the distribution generated by model� coincides with the problem domain probability distribution P where D andu are generated from.3 A Bayesian metric for case matchingIn the previous section we discussed the Bayesian approach for case-based in-ference. If the integral in (3) can be solved analytically, it means that the cor-responding predictive distribution can be used as a tool for solving the caseadaptation problem in an optimal manner, with respect to the set of distribu-tions de�ned by the assumptions made. However, it should be noted that theBayesian approach does not follow the standard two-phase CBR methodology,where the cases are �rst ordered according to some scoring function, and the bestcases are then used in the adaptation phase for �nding con�gurations v so thatthe gained utility will be high. This means that the Bayesian case adaptationapproach described in [16] cannot be used for case matching tasks, i.e., for rank-ing the stored cases d 2 D with respect to their similarity to the given query.Nevertheless, it is quite evident that there are many situations where instead oftrying to predict the values of the free variables V as described above, a moreimportant task would be to retrieve the most relevant cases from a database D,given a query U = u. For example, the list of the relevant cases could be used byan explanation mechanism for increasing the credibility of the predictions. Thisraises the question of how to de�ne and solve a \pure" case retrieval problem



18in the general Bayesian CBR setting, in a similar way as the case adaptationproblem was solved above.An intuitively appealing solution to the above mentioned problem is to de�nea case matching score S for a case dj asS(dj j u) def= P (dj j u; D; 	):Unfortunately, there are several reasons why using this measure is not reasonablein practice: Firstly, the measure produces a non-zero score only to those caseswhich are fully consistent with the given query u. Nevertheless, in many practicalcase retrieval applications, this kind of behavior is not acceptable. On the otherhand, it should also be noted that this score favors cases with high \prior"probability P (dj j D) (probability given the sample data without a query). Thisfollows from the fact that the score tries to �nd the most probable case vectorconsistent with the query from the probability distribution de�ned by the casebase D. This, however, does not match our intuitive notion of the case matchingtask, where the goal is to �nd from the case base D the case most similar to thequery u, even if the solution would be a case with a very low prior probability.In order to avoid these problems, we instead propose the following Bayesiancase matching scoring function:S(dj j u) def= P (u j dj ; D; 	): (4)Intuitively speaking, the suggested case matching score ranks the cases accordingto the following question: \Which of the cases in D should be duplicated if onewishes to maximize the probability of the given query U = u?". On the otherhand, noting thatS(dj j u) def= P (u j dj ; D; 	) / P (dj j u; D; 	)P (dj j D;	) ;we see that the cases are ranked according to their \posterior" probability (prob-ability given the query and the sample data), normalized by their \prior" proba-bility. This means that also cases with very low initial probability can get a highscore if they match the given query well, which agrees with our intuitive notionof a good case matching score.It should be noted that the scoring metric suggested is \soft" in the sensethat the winning case may violate one or more of the variable-value assignmentsin the query U = u. Obviously, if the query u can not be regarded as a \wish-list", but as a set of absolute constraints which should not be violated, then thistype of hard constraint situation can be handled easily by restricting the searchfor the matching case to those cases consistent with the given query.4 Computing the Bayesian case matching metricSimilarly to the Bayesian model-free inference scheme described in Section 2,from the axioms of probability theory we can deduce that the Bayesian case



19matching metric (4) can be computed by marginalizing (integrating) over all thepossible models consistent with the given assumptions 	 :S(dj j u) = P (u j dj ; D; 	) = Z�2M(	) P (u j �;	)P (� j dj ; D; 	)d�: (5)In order to be able to use this formula in practice, the assumptions 	 have to besuch that the integral in (5) can be solved analytically, or at least approximatedwell. One commonly used simplifying assumption is that the other variables areindependent given the value of a special class variable, denoted here by Xm. Thissame assumption is also used in constructing a model called the Naive Bayesclassi�er. In this case, the joint probability distribution for a data vector d canbe written asP (d j �) = P (Xm = xm)m�1Yi=1 P (Xi = xi j Xm = xm):Consequently, a single distribution P can be uniquely determined by �xingthe values of the parameters � = (�; �), where � = (�1; : : : ; �K) and � =(�11; : : : ; �1;m�1; : : : ; �K1; : : : ; �K;m�1). Here K denotes the number of valuesof the class variable Xm, �k the probability P (Xm = k), and �ki denotes avector (�ki1 ; : : : ; �kini ), where �kil = P (Xi = xil j Xm = xm).For being able to implement the Bayesian case matching in practise, we alsoneed some technical assumptions. In the following we assume that �k > 0 and�kil > 0 for all k,i, and l, and that both the class variable distribution P (Xm) andthe intra-class conditional distributions P (Xijk) = P (Xi j Xm = k) are multi-nomial, i.e., Xm � Multi(1;�1; : : : ; �K), and Xijk � Multi(1;�ki1; : : : ; �kini ).Since the family of Dirichlet densities is conjugate (see e.g. [7]) to the family ofmultinomials, it is convenient to assume that the prior distributions of the param-eters are from this family. More precisely, we let (�1; : : : ; �K) � Di (�1; : : : ; �K),and (�ki1 ; : : : ; �kini ) � Di (�ki1; : : : ; �kini ), where f�k; �kil j k = 1; : : : ;K; i =1; : : : ;m � 1; l = 1; : : : ; nig are the hyperparameters of the corresponding dis-tributions. Finally, assuming that the parameter vectors � and �ki are indepen-dent, and applying the results in [6, 12], the Bayesian case matching score (5)for case dj can be computed byS(dj j u) = KXk=1P (u; Xm = k j dj ; D; 	)= KXk=1 hk + �kN +PKc=1 �cYi fkiui + �kiuihk +Pnil=1 �kil ; (6)where the product goes over all the variables instantiated in the query u, andhk and fkil are the su�cient statistics of the data D[dj , i.e., hk is the numberof cases where Xm = k, and fkil is the number of cases where Xm = k andXi = xil. If no expert knowledge about the problem domain is available, it is



20usually reasonable to use the noninformative uniform prior, in which case allhyperparameters �k and �kij are set to 1. A more detailed discussion of thepriors can be found in [17].To get an idea of the implementation performance of the above Bayesian casematching formula, we performed an experiment where we generated an arti�cialcase base with 2 million data vectors, each consisting of 14 discrete attributeshaving on the average 3-4 values. Using a 200MHz Pentium machine runningLinux, matching a given query against the whole case base, corresponding toperforming 2 million case matches, took 27.23 seconds, i.e., about 13.6 microsec-onds per matching operation (approximately 74000 matches per second). Thesize of this case base serves also as an example of the scalability of the approach.5 Empirical results5.1 Experimental setupValidating a case matching metric is a di�cult problem. Of course, in practicalsituations a metric can be evaluated by building a case retrieval system, andby using a domain expert for evaluating the performance of the case retrievalprocess. This, however, does not produce an objective criterion for comparingdi�erent metrics, as the evaluations of domain experts are based on subjectiveconsiderations. On the other hand, in machine learning, objective measures ofprediction accuracy, notably the cross-validation scheme [22], has been used fre-quently for comparing the performance of alternative classi�cation methods. Inleave-one-out cross-validation, each data vector is classi�ed in turn by using theN � 1 remaining data vectors as the training data. The cross-validated clas-si�cation accuracy is then the average of all the N individual classi�cations.Inspired by this scheme, we planned the following setup for comparing di�erentcase matching metrics.In our setup, the idea is to make a duplicate of a case, distort it, and tryto recover the original case by matching the distorted case against the wholecase base. For measuring the success of the recovery process, we propose thefollowing rank measure: Given a query (a distorted version of a duplicate of oneof the cases), all cases in the case base are �rst ordered according to the similaritymetric used, with respect to the query. In situations where there are several caseswith the same value of the similarity score as with the correct case, the othercases are put ahead of the correct case in the ordering. The rank is now de�nedto be the position of the correct case in the resulting ordering. Consequently, arank of 1 means that we have succeeded in recovering the original case, and arank of 5 means that there are 4 cases (with a higher or equal value of similarityscore) our similarity metrics prefers over the correct case. This whole procedureis then repeated N times, once for each case in the case base (as in leave-one-outcrossvalidation), and the actual rank measure is then the average of the N ranksobtained.For distorting the cases in this test setup, it may seem at �rst natural to usea procedure, where some of the components of the selected case are changed to



21random values. This kind of a setup would however produce severe problems, asthe following example illustrates. Say we take case dj to be the original case,and through the random distortion process produce a query vector equal to someother case, say di. Now any reasonable matching metric surely would say thatthe closest vector nearest to the query vector di (the distorted dj) would be di,but we would obtain rank 1 by giving the case dj the highest similarity score. Forthis reason, the distortion process can not be based on randomly changing thecomponents of the chosen vector. Instead, in our experiments we used a setupwhere we randomly removed some of the components of the chosen case, andused the remaining components as the query with which to match the cases inthe case base. To see how the rank measure behaves as a function of the numberof components in the query, we used a procedure where we �rst removed onecomponent from the selected case, then two, and so on. As the outcome of thistest setup is dependent on the ordering in which the components are removed,this whole process was repeated 100 times by using random orderings, and therank was de�ned to be the average of the 100 ranks obtained. This means thattesting a case metric on a case base with N vectors requires 100N2 case matchingoperations, and that the ranks reported are averages of this many numbers.5.2 The resultsTo validate the suggested Bayesian case matching score (4), we used several pub-lic domain classi�cation data sets of varying size from the UCI data repository1.The datasets were all discretized by using a very simple discretization schemewhere the data intervals were chosen so that each interval contained an equalnumber of data points. The datasets used in the experiments are described inTable 1. It should be emphasized that the datasets were chosen randomly, notby any selection process.Table 1. The data sets used in the experiments.Data set Size Attributes ClassesBreast cancer 286 10 2Glass 214 10 6Heart disease 270 14 2Hepatitis 150 20 2Iris 150 5 3Lymphography 148 19 4In Figure 1, the average ranks are plotted as a function of the number of �xedvariables, i.e., the variables that were not removed from the query in the distor-tion process described in the previous section. In this picture we see that withall six case bases, as the number of �xed variables increases, the case retrieval1 \http://www.ics.uci.edu/�mlearn/".
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Fig. 1. Average ranks with the Bayesian (B) and Hamming (H) matching score as afunction of the number of the �xed variables in the query.system recovers the original case with both the Bayesian matching metric andthe Hamming metric (the rank converges to one). However, with the Bayesianmatching metric the rank converges to 1 much faster, which means that themetric is more e�cient in extracting the relevant cases from the case base.It should be noted that by not restricting the search to those cases consistentwith the given query, we allowed the assignments u to be violated, although itis easy to see that in the case retrieval test setup described above, the hard con-straint approach would always have given better results. However, as discussedearlier, our goal was not to produce a metric for the hard constrained case, andso this type of metric was not used in this set of experiments. A more natu-ral experimental testing of the soft constraint approach is currently in progress
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