
Fatorized NML ModelsPetri Myllymäki Teemu Roos Tomi Silander Petri KontkanenComplex Systems Computation GroupHelsinki Institute for Information TehnologyUniversity of Helsinki and Helsinki University of Tehnologye-mail: �rstname.lastname�hiit.�Henry TirriNokia Researh Centere-mail: henry.tirri�nokia.omAbstratWe onsider probabilisti graphial models where a direted ayli graph represents afatorization of a joint probability distribution: the joint probability of the variables is rep-resented as a produt of onditional probabilities, one for eah variable onditioned on itsimmediate parents in the graph. For this type of models, omputing the normalized maxi-mum likelihood (NML) is omputationally very demanding. We suggest a omputationallyfeasible alternative to NML, the fatorized NML, where the normalization is done loally foreah onditional distribution, and not globally.1 IntrodutionThe Complex Systems Computation researh group1 (CoSCo) was established in the early 1990'sat the Department of Computer Siene of University of Helsinki. The group was �rst led byProfessor Henry Tirri until 2002, and after that by Professor Petri Myllymäki. The �rst ontatbetween CoSCo and Jorma Rissanen took plae in 1996, in an evaluation of the Hype researhprojet, whih was a part of a large researh programme on Adaptive and Intelligent Systems,funded by Tekes, the Finnish Funding Ageny for Tehnology and Innovation. For the evaluation,Jorma interviewed Henry in a one-to-one meeting, whih did not go along quite the way we hadexpeted. Namely, the very �rst thing Jorma did was to write the formula for Je�reys prioron the board, and ask �What is this?�. When Henry reognized the formula Jorma ommentedthat he has read the papers and evidently Henry knows them so let's do some siene. Then therest of the session was spent on a pleasant onversation on reent developments of MDL. As amemento of this meeting, we still keep on the wall of our institute the drawings done during thesession (see Figure 1).All in all, it was apparent that Jorma had very arefully studied the material we had senthim beforehand, and he already had a lear opinion of our work. In his evaluation report, Jormaommends our work and points out thatThe material in this paper was presented in part at the 2008 Information Theory and Appliations Workshop(ITA-08), San Diego, CA, January�February 2008.1http://oso.hiit.fi



Figure 1: Jorma's notes from his �rst meeting with Henry Tirri in 1996.



� It is partiularly noteworthy that the di�ult and important problem of determiningthe proper omplexity of the models is done by new information-theoreti methodsrather than resorting to usual ad ho ones. �He also had a quite lear opinion of the overall researh programme, whih foused on neuralnetworks and geneti algorithms, whih were popular at the time. Indeed, it is well known thatJorma is not sared to express his opinion quite diretly, even if it is a negative one. In theevaluation of the researh programme as a whole, Jorma hose to express his dissatisfationsomewhat indiretly, formulated leverly in a seemingly positive statement:� On the whole, the researh level of the teams using mainly the neural networktehniques is in my opinion omparable to the general international level, whih itselfwith a few exeptions, suh as the work of A. Barron, is not partiularly high. �We were kind of an oddball in the programme, as we were just in the middle of a proess ofmoving from neural networks and ase-based reasoning to parametri probabilisti models. Forthe models we had started to explore�Bayesian networks, �nite mixture models, Naive Bayes andother logisti regression type of lassi�ers�model regularization was learly one of the entralproblems, and we were immediately intrigued by MDL. This interest had nothing to do withJorma being Finnish, perhaps it was the information-theoreti approah that appealed to us asomputer sientists. Atually, for a long time we disussed with Jorma in English only, and onlylater we have started to use more Finnish, at least for less tehnial disussions (involving oftenimportant topis like good food, beer, and soer).Our view of MDL was initially pretty ad ho, and we, as many researhers still do, �rstemployed the simple two-part/BIC types of odes, and later the �Bayes mixture� approah withvarious parameter priors [1�4℄. Nevertheless, we soon felt inreasing uneasiness with the arbi-trariness of hoosing the parameter priors, and we shared with Jorma the feeling that taking thesubjetive Bayesian approah is not as unproblemati as people often think, and that playingwith the parameter priors is not an intuitively easy task after all, leading easily to anomalies inpratial appliations.We kept seeing Jorma more and more often either in Helsinki or somewhere around the globe,and our appreiation towards him as a person and as a sientist was inreasing. In addition tothe pleasure of having a personal ontat with Jorma, our work on MDL was greatly in�uenedby Peter Grünwald from CWI, Amsterdam, who met Petri Myllymäki in 1996 in a workshoporganized by the NeuroCOLT working group of the European Union. Peter helped the CoSCopeople to understand the new theoretial framework behind MDL, like the normalized maximumlikelihood ode, and we started working together in this �eld. Peter also ame to Helsinki fora two month visit in 1997. Our joint work onentrated on issues like supervised learning,preditive distributions and hoosing the parameter priors [5�11℄. Quite interestingly, we werealready then onsidering sequential (preditive) variants of MDL, whih have reently gainedpopularity�more about them later. The o-operation between CWI and Helsinki has ontinuedto this day, e.g. in the Pasal Network of Exellene2, where Myllymäki and Grünwald areurrently leading the Pasal Speial Interest Group on Information-Theoreti Modeling. We arealso jointly maintaining a popular web site3 o�ering a (hopefully) useful portal to MDL-relatedwork world-wide.One of the ative researh areas in CoSCo nowadays is to study how to ompute the NMLriterion for Bayesian networks. This parametri model has beome quite popular, and one2http://www.pasal-network.org3http://www.mdl-researh.org



of the most popular freely available tools, the B-Course software4, was developed and is beingmaintained by CoSCo. However, for pratial appliations, this model family introdues a oupleof serious problems. First, the model strutures are represented as ayli direted graphs,whih are superexponential in number. This makes the searh for the best model struture amost di�ult problem, whih an urrently be solved in reasonable time only for moderate sizenetworks [12℄. Nevertheless, perhaps even more ruial problem than how to �nd a good model,is the question of optimality: good in what sense?Traditionally, in the Bayesian network ommunity the models are evaluated by their posteriorprobability, whih in the disrete Multinomial-Dirihlet setting an be omputed in losed form,whih leads to the popular BDe (Bayesian Dirihlet equivalent) sore [13℄. However, our reentwork shows that the shape of the posterior is quite sensitive with respet to the hoie of thehyperparameters of the Dirihlet prior [14℄. NML would of ourse avoid this problem by o�eringa non-informative sore that is not dependent on any parameter prior, but unfortunately, noe�ient method for omputing NML for Bayesian networks in general has yet been disovered.In the CoSCo group, we have gradually moved towards this goal by developing omputationallye�ient algorithms for independent multinomial variables, or equivalently, a Bayesian networkwith no ars [15℄, for the Naive Bayes model [16, 17℄, and for tree-strutured Bayesian net-works [18, 19℄. As an interesting appliation of the algorithm for omputing the NML e�ientlyin the multinomial ase, we an mention the minimax-optimal histogram density estimator sug-gested in [20℄.As another ative area of ollaboration with Jorma, we have been fousing on MDL-basedapproahes to signal denoising. Starting from the original MDL denoising paper [21℄, we havebeen able to develop improved denoising methods [22℄, whih are more robust with di�erent levelsof noise, ahieve better frequeny adaptivity, and employ the �soft thresholding� tehnique foundvery useful in denoising methods based on other approahes. For an illustration of denoising, seeFigure 2. (The image in the example represents an Inter Milan soer player in the 1950's. Asmany of us know, Jorma has always been a great fan of soer, and a talented player himself: heeven got an invitation in the early 1950's for a try-out in Milan, but the entrane examinationfor the Helsinki University of Tehnology was at the same time, and Jorma made, aording tohis own words, "a wrong deision" and hose siene over football. Later he hurt his knee doingpole vault during his military servie in the Finnish army, whih �nally ended any ideas abouta potential areer as a professional football player. This was a luky strike for the IBM soerteam, who enjoyed having Jorma play for them for many years.)One of the onlusions of the still ongoing work on denoising is the observation that the �modelindex�, identifying the optimal subset of wavelet oe�ients, forms a pratially important partof the overall ode length, and should not be ignored like was done in the original denoisingpaper. A similar phenomenon was observed already in the ontext of lustering [16℄. However,Jorma was not after all very surprised by the result: he had of ourse always been aware of themissing part of his ode, he just never thought it would make a di�erene in pratie.As the problem of omputing NML for Bayesian networks is so di�ult, we started to onsideralternative solutions, other similar type of soring funtions that ould be used instead of NML.It is probably appropriate to point out that also the non-informative Bayesian solution of usingthe Je�reys prior is omputationally NP-hard [10℄. As already noted, we were already earlyon quite interested in preditive forms of MDL, while Jorma did not seem to share our interest.�Forget about predition� was a frequently heard omment made by him when we tried to suggestexploring this area. One ould have thought that Jorma did not want to touh the elaborate4http://b-ourse.hiit.fi



Figure 2: The MDL denoising methods in ation. Top row (from left) Original (size 128 × 128); noisy(noise std.dev. 20.0); original MDL denoising [21℄. Bottom row: Left to right, gradual improvements ofthe MDL denoising method [22℄.NML framework he had reated, but as it would turn out, nothing was further from the truth.Already sine 2004�2005, having studied a paper by Takimoto and Warmuth [23℄, we had starteddisussing the idea of sequential type NML variants in our group. Even though we found thetopi potentially worthwhile, we ouldn't see any obvious extensions beyond the basi idea. Whenwe �nally introdued the idea to Jorma in 2006, he was suddenly full of new ideas, leading tosequential NML (see Se. 3 below) and many other novel innovations, and he was more thanready to abandon the �old� NML as obsolete�muh more than we were! All in all, Jorma hasoften proved to be so fast and dynami in his work that we, many being less than half of his age,have had hard time trying to keep up.As the most reent result of our researh on NML-like universal models for Bayesian networks,we introdue in this paper the fatorized NML (fNML) model. The rest of the paper is organizedas follows: In Setions 2 and 3 we disuss the normalized maximum likelihood (NML) andsequentially normalized maximum likelihood (sNML) models, respetively. In Setion 4 we reviewthe basis of Bayesian networks. The fatorized NML model is introdued in Setion 5, whereit is also shown to be omputationally feasible for all Bayesian networks. The new model isphilosophially a relative of the sequential NML models disussed in Setion 3. Finally, inSetion 6, we present experimental results, demonstrating that fNML ompares favorably in amodel seletion task, relative to the urrent state-of-the-art.



2 Normalized Maximum Likelihood ModelsBefore desribing the sequential NML and fatorized NML models, we �x some notation andreview some basi properties of the well-known NML model. Let
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,be a data matrix where eah row, xi,: = (xi,1, xi,2, . . . , xi,m), 1 ≤ i ≤ n, is an m-dimensionalobservation vetor, and olumns of xn are denoted by x:,1, . . . ,x:,m.A parametri probabilisti model M := {p(xn ; θ) : θ ∈ Θ}, where Θ is a parameter spae,assigns a probability mass or density value to the data. A universal model for M is a singledistribution that, roughly speaking, assign almost as high a probability to any data as the themaximum likelihood parameters θ̂(xn).Formally, a universal model p̂(xn) satis�es
lim

n→∞

1

n
ln

p(xn ; θ̂(xn))

p̂(xn)
= 0 , (1)i.e., the log-likelihood ratio, often alled the `regret', is allowed to grow sublinearly in the samplesize n. The elebrated normalized maximum likelihood (NML) universal model [24, 25℄

pNML(xn) :=
p(xn ; θ̂(xn))

Cn

, Cn =

∫

Xn

p(xn ; θ̂(xn)) dxnis the unique minimax optimal universal model in the sense that the worst-ase regret is minimal.In fat, it diretly follows from the de�nition that the regret is a onstant dependent only on thesample size n:
ln

p(xn ; θ̂(xn))

pNML(xn)
= ln Cn .For some model lasses, the normalizing fator is �nite only if the range X n of the data isrestrited, see e.g. [21, 24, 26℄. For disrete models, the normalizing onstant, Cn, is given by asum over all data matries of size m × n:

Cn =
∑

xn∈Xn

p(xn ; θ̂(xn)) .The pratial problem arising in appliations of the NML universal model is then to evaluatethe normalizing onstant. For ontinuous models the integral an be solved in losed form foronly a few spei� models. For disrete models, the time omplexity of the naive solution, i.e.,summing over all possible data matries, grows exponentially in both n and m, and quiklybeomes intratable. Even the seond-most naive solution, summing over equivalene lasses ofmatries, sharing the same likelihood value, is usually intratable even though often polynomialin n.The usual Fisher information approximation [24℄
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where k is the dimension of the parameter spae, is also non-trivial to apply due to the integralinvolving the Fisher information I(θ). Using only the leading term (with or without 2π), i.e.,the BIC riterion [27℄, gives a rough approximation whih, as a rule, performs worse in modelseletion tasks than more re�ned approximations or, ideally, the exat solution, see e.g. [28,Chap. 9℄.3 Sequentially Normalized ML Models4A reent family of variants of NML, alled the sequentially (or onditional) normalized maximumlikelihood (sNML) [29, 30℄ has similar minimax properties like NML but is often signi�antlyeasier to use in pratie.For data matrix xn = (x1,:,x2,:, . . . ,xn,:)
′, the sNML-1 model is de�ned as

psNML1(x
n) :=

n
∏

i=1

p(xi,: | xi−1 ; θ̂(xi))

Ki(xi−1)
, (2)

Ki(x
i−1) :=

∫

p(xi,: | xi−1 ; θ̂(xi)) dxi,: , (3)where normalization ensures that eah fator in the produt is a proper density funtion.In some ases it is neessary to use a separate density, say q(xn0), for the �rst n0 observations,with n0 large enough, so that the maximimized likelihood is well-de�ned for longer sequenes
xi with i > n0. For instane, in linear regression n0 has to be at least the number of regressorvariables plus one.Seond variant (sNML-2). There is also another variant of sNML, whih we all here sNML-2. It an be de�ned in analogy with (2) as follows:
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∏
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, (4)

K ′
i(x

i−1) :=

∫

p(xi ; θ̂(xi)) dxi,: .Using the sNML-2 model is equivalent to prediting the ith observation using the standardNML model de�ned for sequenes of length i. Formally we have
pNML(xi,: | xi−1) = psNML2(xi,: | xi−1) .Note that the standard NML model is not in general a stohasti proess, whih makes it possiblethat

pNML(xi,: | xi−1) 6=
∑

xi+1,:

pNML(xi,:,xi+1,: | xi−1) , (5)and hene, typially two NML models, de�ned for sequenes of di�erent lengths, give di�erentpreditions. In ontrast, both sNML-1 and sNML-2 are by de�nition stohasti proesses, sothat for them we always have an equality in (5).4This setion is mostly based on as yet unpublished work by Rissanen, Myllymäki, and Roos.



Regrets Visualized. Figure 3 gives a visualization of the regrets of four universal models inthe Bernoulli ase: the Laplae preditor (�add-one�), the Krihevsky�Tro�mov preditor (�add-half�), sNML-2, and NML. For NML, the initial sequene probabilities, q(xt), are obtained froma �xed NML model, de�ned for n = 5, by summing over the possible ontinuations of length
n − t.Note that for NML, while the intermediate regrets, for t < n, depend on the pre�x xt, thetotal regret for xn is a onstant. For sNML, the di�erene between the regret for xt and xt+1 isonstant with respet to xt but varies with xt−1; in the �gure this means that eah pair of edgesoriginating from the same branhing point are of equal length, but their length depends on thepath from the origin. For the Bernoulli model, SNML-1 is equivalent to the Laplae preditor.Figure 4 shows the regrets with n = 5 as a funtion of the number of 1s.Related Work. The sNML-2 model has been analysed earlier in onjution with disreteMarkov models, inluding as a speial ase the Bernoulli model, by Shtarkov [25℄ (see his Eq. 45).Also, Takimoto and Warmuth [23℄ analyze a slightly more restrited minimax problem, the solu-tion of whih agrees with sNML-2 for Markov models. Grünwald [29℄ uses the term �onditionalNML� (CNML) for a family of universal models, onditioned on an initial sequene withoutonsidering the joint model obtained as a produt of suh onditional densities. Our sNML-1orresponds to his CNML-3, and our sNML-2 orresponds to his CNML-2. The onditional mix-ture odes studied by Liang and Barron [31℄ are also losely related to sNML, and have similarminimax properties.4 Bayesian NetworksIn Se. 5, we desribe a new NML variant, similar to the sNML models disussed in the previoussetion. This new variant gives a omputationally feasible universal model, and a orrespond-ing model seletion riterion, for general Bayesian network models. This setion presents theneessary bakground in Bayesian networks.First, let us assoiate with the olumns, x:,1, . . . ,x:,m, a direted ayli graph (DAG), G, sothat eah olumn is represented by a node. Eah node, Xj , 1 ≤ j ≤ m, has a (possibly empty)set of parents, Paj , de�ned as the set of nodes with an outgoing edge to node Xj. Withoutloss of generality, we require that all the edges are direted towards inreasing node index, i.e.,
Paj ⊆ {1, . . . , j − 1}. If this is not the ase, the olumns in the data, and the orrespondingnodes in the graph, an be simply relabeled, whih does not hange the resulting model. Figure 5gives an example.The idea is to model dependenies among the nodes (i.e. olumns) by de�ning the jointprobability distribution over the nodes in terms of loal distributions: eah loal distributionspei�es the onditional distribution of eah node given its parents, p(Xj | Paj), 1 ≤ j ≤ m. Itis important to notie that these are not dependenies among the subsequent rows of the datamatrix xn, but dependenies `inside' eah row, xi,:, 1 ≤ i ≤ n. Indeed, in all of the following, weassume that the rows are independent realizations of a �xed (memoryless) soure.The loal distributions an be modeled in various ways, but here we fous on the disretease. The probability of a hild node taking value xi,j = r given the parent nodes' on�guration,
pai,j = s, is determined by the parameter

θj|Paj
(r, s) = p(xi,j = r | pai,j = s ; θj|Paj

) , 1 ≤ i ≤ n, 1 ≤ j ≤ m ,where the notation θj|Paj
(r, s) refers to the omponent of the parameter vetor θj|Paj

indexed bythe value r and the on�guration s of the parents of Xj . For empty parent sets, we let pai,j ≡ 0.



Laplae Krihevsky�Tro�mov

sNML-2 NMLFigure 3: Regrets of four universal models in the Bernoulli ase. Eah path from the origin (enter) tothe boundary represents a binary sequene of length n = 5. Red edges orrespond to 1s, blak edges to0s. The path for sequene 01111 is emphasized. The distanes from the origin of the branhing pointsare given by the regrets ln[p(xt ; θ̂(xt))/q(xt)] for eah pre�x xt. The blue irle shows the regret ofNML. Note the similarity between sNML-2 and NML.
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Figure 4: Per-symbol regrets of four universal models in the Bernoulli ase as a funtion of the numberof 1s in the sequene with n = 5 (for the same �gure with n = 30, see [30℄). For sNML-2 the regretdepends not only on the number of 1s, but also on the atual sequene. (The dependeny is very slight,see Fig. 3.) The graph shows the average regret.
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Figure 5: An example of a direted ayli graph (DAG). The parents of node X8 are {X1, X5, X7}. Thedesendants of X4 are {X5, X8}.



For instane, onsider the graph of Fig. 5; on eah row, 1 ≤ i ≤ n, the parent on�guration ofolumn j = 8 is the vetor pai,8 = (xi,1, xi,5, xi,7); the parent on�guration of olumn j = 1 is
pai,1 = 0, et.The joint distribution is obtained as a produt of loal distributions:

p(xn ; θ) =

m
∏

j=1

p(x:,j | Paj ; θj|Paj
) . (6)This type of probabilisti graphial models are alled Bayesian networks [32℄. Fatorization (6)entails a set of onditional independenies, haraterized by so alled Markov properties, see [33℄.For instane, the loal Markov property asserts that eah node is independent of its non-desendantsgiven its parents, generalizing the familiar Markov property of Markov hains.It is now possible to de�ne the NML model based on (6) and a �xed graph struture G:

pNML(xn ; G) =

∏m
j=1

p(x:,j | Paj ; θ̂(xn))

Cn

, (7)where
Cn =

∑

xn

m
∏

j=1

p(x:,j | Paj ; θ̂(xn)) . (8)The required maximum likelihood parameters are easily evaluated sine it is well known that theML parameters are equal to the relative frequenies:
θ̂j|Paj

(r, s) =

∣

∣{i : xi,j = r,pai,j = s}
∣

∣

∣

∣{i′ : pai′,j = s}
∣

∣

, (9)where |S| denotes the ardinality of set S. However, as pointed out in Se. 2, summing over allpossible data matries is not tratable exept in toy problems where n and m are both very small.E�ient algorithms have been disovered only reently for restrited graph strutures [17�19℄.5 Fatorized NML ModelsAs a omputationally less demanding alternative to NML in the ontext of Bayesian networks,we de�ne the fatorized NML (fNML) in a similar spirit as sNML. We let the joint probabilitydistribution be given by a produt of loally normalized maximum likelihood distributions:
pfNML(xn ; G) :=

m
∏

j=1

p(x:,j | Paj ; θ̂(xn))

Zj(Paj)
(10)

=

∏m
j=1

p(x:,j | Paj ; θ̂(xn))

Z(xn)
, (11)where eah of the loal normalizing fators

Zj(Paj) =
∑

X′

j

p(X ′
j | Paj ; θ̂(X ′

j ,Paj)) (12)is a sum over all possible instantiations of olumn x:,j, and the global normalizing fator
Z(xn) =

m
∏

j=1

∑

X′

j

p(X ′
j | Paj ; θ̂(X ′

j ,Paj)) (13)



is a produt of the loal normalizing fators. The loal normalizing fators Zj(Paj) an bedeomposed further into simple multinomial NML normalization onstants, one for eah parenton�guration in Paj . Using the reently disovered linear-time algorithm [15℄ for the multinomialase, the total omputation time beomes feasible even for large sample sizes and for manyvariables (olumns).In pratie, we not only want to evaluate the likelihood of the data under a given modellass, but we also wish to �nd the struture that maximizes the likelihood of the data. This ismade hard by the fat that the number of possible DAG struture is superexponential. Unlikethe standard NML riterion, the fNML riterion is `modular' in the sense that it deomposesolumn-wise into independent terms. This enables the use dynami programming tehniquesthat �nd the global optimum in o(n2n) time, see [12℄, whih is manageable for networks with upto about 30 nodes. For larger networks, loal searh heuristis are neessary.Note that, as an be seen from (9), the maximum likelihood parameters of eah loal distri-bution, θj|Paj
, depend only on olumn x:,j and olumn(s) Paj. In partiular, sine we require

Paj ⊆ {1, . . . , j − 1}, we have
p(x:,j | Paj ; θ̂(xn)) = p(x:,j | Paj ; θ̂(x:,1, . . . ,x:,j)) = p(x:,j | Paj ; θ̂(x:,j,Paj)) , (14)of whih the seond form, where only the �rst j olumns appear, is the one that should be usedin (10) by analogy with (2). Due to the above identity, the expressions are used interhangeably.The sum-produt view. It is interesting to ompare the NML and fNML models. ConsiderEqs. (7) and (11): the onstant normalizer of NML, Cn, an exponential sum of produts, isreplaed in fNML by Z(xn), a produt of sums that depends on the data. The fNML modelan therefore be seen as `heating' by using a sum-produt algorithm, where the distributive law(see [34℄)
{

f(x1, x2) ≡ f(x1)

g(x1, x2) ≡ g(x2)
=⇒

∑

x1,x2

f(x1, x2)g(x1, x2) =

(

∑

x1

f(x1)

)(

∑

x2

g(x1)

) (15)is applied to ompute the sum in Cn even though the terms do not atually fator olumn-wiseinto independent parts. No heating is neessary when the graph is empty, i.e., when Paj = ∅for all 1 ≤ j ≤ m. This means that we have Z(xn) = Cn, whih by (7) and (11) implies that forempty graphs pNML and pfNML are equivalent.The regrets of the two models are easily seen to be ln Cn and ln Z(xn), for NML and fNMLrespetively. Notie also that the regret of fNML, ln Z(xn), depends on the data only throughthe parents, Paj, 1 ≤ j ≤ m, and hene, is independent of all the leaf nodes, i.e., nodes that haveno desendants. Again, if the graph is empty, all nodes are leafs and Z(xn) = Cn for all xn sothat the NML and fNML models are equivalent.Finally, we observe that for fNML the two variants of sNML, sNML-1 and sNML-2, oinide.Letting x(j) := (x:,1,x:,2, . . . ,x:,j) denote the �rst j olumns, we obtain
p(x(j) ; θ̂(x(j))) =

j
∏

l=1

p(x:,l | Pal ; θ̂(x:,l,Pal))

= p(x:,j | Paj ; θ̂(xn))

j−1
∏

l=1

p(x:,l | Pal ; θ̂(x:,l,Pal)) ,



where both equalities depend on (14). The last fator on the right-hand side is independent ofolumn x:,j. When the above is normalized with respet to x:,j, this fator anels and we areleft with p(x:,j | Paj ; θ̂(xn)), whih is exatly what is normalized in (10). Hene, it doesn'tmatter whether we de�ne fNML as in (10) or as the produt over 1 ≤ j ≤ m of the normalizedversions of p(x(j) ; θ̂(x(j))), and sNML-1 is equivalent to sNML-2 for Bayesian network modellasses.6 ExperimentsTo empirially test performane of the fNML-riterion in Bayesian network struture learningtask, we generated several Bayesian networks, and then studied how di�erent model seletionriteria sueeded in learning the model struture from data. The most often used seletion ri-terion for the task is the BDe (Bayesian Dirihlet equivalent) sore [13℄, but due to its sensitivityto the hoie of prior hyperparameter, we hose two di�erent versions of it: BDe0.5 and BDe1.0.We also inluded the Bayesian Information Criterion, BIC. All these sores an be interpretedas implementing some version of the MDL riterion or an approximation thereof.We present the results for an experiment in whih we generated 1800 di�erent Bayesiannetwork models, whih we tried to learn bak using the data generated from these models.We generated the networks using 5, 10 and 15 variables, and also varied the density and theparameters of the networks. We then generated 1000, 10000 and 10000 data vetors from eahnetwork, and tried to learn the models bak using these data samples and di�erent soringriteria. It turned out that learning the models bak with these sample sizes was pratiallypossible only for smallest networks ontaining 5 nodes. However, varying the number of ars andparameters did not seem to have a strong e�et on the outome. This made it possible us toonentrate on omparing the performane of di�erent soring riteria for di�erent sample sizes(Figure 6).The results learly show that fNML exels with small sample sizes. With large sample sizes,the di�erene is not that big, whih is hardly surprising, sine asymptotially, they all onvergeto the data generating model. This result is signi�ant, sine BDe sore(s) an be regarded as theurrent state-of-the-art. Furthermore, the fNML sore is omputationally no more demandingthan the BDe sore.AknowledgmentThis work was supported in part by the Finnish Funding Ageny for Tehnology and Innovationunder projets Kukot and PMMA, by the Aademy of Finland under projet Civi, and bythe IST Programme of the European Community, under the Pasal Network of Exellene,IST-2002-506778. We thank the reviewers for useful omments.Referenes[1℄ P. Kontkanen, P. Myllymäki, T. Silander, and H. Tirri, �Comparing stohasti omplexity minimiza-tion algorithms in estimating missing data,� in Proeedings of WUPES'97, the 4th Workshop onUnertainty Proessing, Prague, Czeh Republi, January 1997, pp. 81�90.[2℄ ��, �On the auray of stohasti omplexity approximations,� in Proeedings of the Causal Modelsand Statistial Learning Seminar, London, UK, Marh 1997, pp. 103�117.
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