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omAbstra
tWe 
onsider probabilisti
 graphi
al models where a dire
ted a
y
li
 graph represents afa
torization of a joint probability distribution: the joint probability of the variables is rep-resented as a produ
t of 
onditional probabilities, one for ea
h variable 
onditioned on itsimmediate parents in the graph. For this type of models, 
omputing the normalized maxi-mum likelihood (NML) is 
omputationally very demanding. We suggest a 
omputationallyfeasible alternative to NML, the fa
torized NML, where the normalization is done lo
ally forea
h 
onditional distribution, and not globally.1 Introdu
tionThe Complex Systems Computation resear
h group1 (CoSCo) was established in the early 1990'sat the Department of Computer S
ien
e of University of Helsinki. The group was �rst led byProfessor Henry Tirri until 2002, and after that by Professor Petri Myllymäki. The �rst 
onta
tbetween CoSCo and Jorma Rissanen took pla
e in 1996, in an evaluation of the Hype resear
hproje
t, whi
h was a part of a large resear
h programme on Adaptive and Intelligent Systems,funded by Tekes, the Finnish Funding Agen
y for Te
hnology and Innovation. For the evaluation,Jorma interviewed Henry in a one-to-one meeting, whi
h did not go along quite the way we hadexpe
ted. Namely, the very �rst thing Jorma did was to write the formula for Je�reys prioron the board, and ask �What is this?�. When Henry re
ognized the formula Jorma 
ommentedthat he has read the papers and evidently Henry knows them so let's do some s
ien
e. Then therest of the session was spent on a pleasant 
onversation on re
ent developments of MDL. As amemento of this meeting, we still keep on the wall of our institute the drawings done during thesession (see Figure 1).All in all, it was apparent that Jorma had very 
arefully studied the material we had senthim beforehand, and he already had a 
lear opinion of our work. In his evaluation report, Jorma
ommends our work and points out thatThe material in this paper was presented in part at the 2008 Information Theory and Appli
ations Workshop(ITA-08), San Diego, CA, January�February 2008.1http://
os
o.hiit.fi



Figure 1: Jorma's notes from his �rst meeting with Henry Tirri in 1996.



� It is parti
ularly noteworthy that the di�
ult and important problem of determiningthe proper 
omplexity of the models is done by new information-theoreti
 methodsrather than resorting to usual ad ho
 ones. �He also had a quite 
lear opinion of the overall resear
h programme, whi
h fo
used on neuralnetworks and geneti
 algorithms, whi
h were popular at the time. Indeed, it is well known thatJorma is not s
ared to express his opinion quite dire
tly, even if it is a negative one. In theevaluation of the resear
h programme as a whole, Jorma 
hose to express his dissatisfa
tionsomewhat indire
tly, formulated 
leverly in a seemingly positive statement:� On the whole, the resear
h level of the teams using mainly the neural networkte
hniques is in my opinion 
omparable to the general international level, whi
h itselfwith a few ex
eptions, su
h as the work of A. Barron, is not parti
ularly high. �We were kind of an oddball in the programme, as we were just in the middle of a pro
ess ofmoving from neural networks and 
ase-based reasoning to parametri
 probabilisti
 models. Forthe models we had started to explore�Bayesian networks, �nite mixture models, Naive Bayes andother logisti
 regression type of 
lassi�ers�model regularization was 
learly one of the 
entralproblems, and we were immediately intrigued by MDL. This interest had nothing to do withJorma being Finnish, perhaps it was the information-theoreti
 approa
h that appealed to us as
omputer s
ientists. A
tually, for a long time we dis
ussed with Jorma in English only, and onlylater we have started to use more Finnish, at least for less te
hni
al dis
ussions (involving oftenimportant topi
s like good food, beer, and so

er).Our view of MDL was initially pretty ad ho
, and we, as many resear
hers still do, �rstemployed the simple two-part/BIC types of 
odes, and later the �Bayes mixture� approa
h withvarious parameter priors [1�4℄. Nevertheless, we soon felt in
reasing uneasiness with the arbi-trariness of 
hoosing the parameter priors, and we shared with Jorma the feeling that taking thesubje
tive Bayesian approa
h is not as unproblemati
 as people often think, and that playingwith the parameter priors is not an intuitively easy task after all, leading easily to anomalies inpra
ti
al appli
ations.We kept seeing Jorma more and more often either in Helsinki or somewhere around the globe,and our appre
iation towards him as a person and as a s
ientist was in
reasing. In addition tothe pleasure of having a personal 
onta
t with Jorma, our work on MDL was greatly in�uen
edby Peter Grünwald from CWI, Amsterdam, who met Petri Myllymäki in 1996 in a workshoporganized by the NeuroCOLT working group of the European Union. Peter helped the CoSCopeople to understand the new theoreti
al framework behind MDL, like the normalized maximumlikelihood 
ode, and we started working together in this �eld. Peter also 
ame to Helsinki fora two month visit in 1997. Our joint work 
on
entrated on issues like supervised learning,predi
tive distributions and 
hoosing the parameter priors [5�11℄. Quite interestingly, we werealready then 
onsidering sequential (predi
tive) variants of MDL, whi
h have re
ently gainedpopularity�more about them later. The 
o-operation between CWI and Helsinki has 
ontinuedto this day, e.g. in the Pas
al Network of Ex
ellen
e2, where Myllymäki and Grünwald are
urrently leading the Pas
al Spe
ial Interest Group on Information-Theoreti
 Modeling. We arealso jointly maintaining a popular web site3 o�ering a (hopefully) useful portal to MDL-relatedwork world-wide.One of the a
tive resear
h areas in CoSCo nowadays is to study how to 
ompute the NML
riterion for Bayesian networks. This parametri
 model has be
ome quite popular, and one2http://www.pas
al-network.org3http://www.mdl-resear
h.org



of the most popular freely available tools, the B-Course software4, was developed and is beingmaintained by CoSCo. However, for pra
ti
al appli
ations, this model family introdu
es a 
oupleof serious problems. First, the model stru
tures are represented as a
y
li
 dire
ted graphs,whi
h are superexponential in number. This makes the sear
h for the best model stru
ture amost di�
ult problem, whi
h 
an 
urrently be solved in reasonable time only for moderate sizenetworks [12℄. Nevertheless, perhaps even more 
ru
ial problem than how to �nd a good model,is the question of optimality: good in what sense?Traditionally, in the Bayesian network 
ommunity the models are evaluated by their posteriorprobability, whi
h in the dis
rete Multinomial-Diri
hlet setting 
an be 
omputed in 
losed form,whi
h leads to the popular BDe (Bayesian Diri
hlet equivalent) s
ore [13℄. However, our re
entwork shows that the shape of the posterior is quite sensitive with respe
t to the 
hoi
e of thehyperparameters of the Diri
hlet prior [14℄. NML would of 
ourse avoid this problem by o�eringa non-informative s
ore that is not dependent on any parameter prior, but unfortunately, noe�
ient method for 
omputing NML for Bayesian networks in general has yet been dis
overed.In the CoSCo group, we have gradually moved towards this goal by developing 
omputationallye�
ient algorithms for independent multinomial variables, or equivalently, a Bayesian networkwith no ar
s [15℄, for the Naive Bayes model [16, 17℄, and for tree-stru
tured Bayesian net-works [18, 19℄. As an interesting appli
ation of the algorithm for 
omputing the NML e�
ientlyin the multinomial 
ase, we 
an mention the minimax-optimal histogram density estimator sug-gested in [20℄.As another a
tive area of 
ollaboration with Jorma, we have been fo
using on MDL-basedapproa
hes to signal denoising. Starting from the original MDL denoising paper [21℄, we havebeen able to develop improved denoising methods [22℄, whi
h are more robust with di�erent levelsof noise, a
hieve better frequen
y adaptivity, and employ the �soft thresholding� te
hnique foundvery useful in denoising methods based on other approa
hes. For an illustration of denoising, seeFigure 2. (The image in the example represents an Inter Milan so

er player in the 1950's. Asmany of us know, Jorma has always been a great fan of so

er, and a talented player himself: heeven got an invitation in the early 1950's for a try-out in Milan, but the entran
e examinationfor the Helsinki University of Te
hnology was at the same time, and Jorma made, a

ording tohis own words, "a wrong de
ision" and 
hose s
ien
e over football. Later he hurt his knee doingpole vault during his military servi
e in the Finnish army, whi
h �nally ended any ideas abouta potential 
areer as a professional football player. This was a lu
ky strike for the IBM so

erteam, who enjoyed having Jorma play for them for many years.)One of the 
on
lusions of the still ongoing work on denoising is the observation that the �modelindex�, identifying the optimal subset of wavelet 
oe�
ients, forms a pra
ti
ally important partof the overall 
ode length, and should not be ignored like was done in the original denoisingpaper. A similar phenomenon was observed already in the 
ontext of 
lustering [16℄. However,Jorma was not after all very surprised by the result: he had of 
ourse always been aware of themissing part of his 
ode, he just never thought it would make a di�eren
e in pra
ti
e.As the problem of 
omputing NML for Bayesian networks is so di�
ult, we started to 
onsideralternative solutions, other similar type of s
oring fun
tions that 
ould be used instead of NML.It is probably appropriate to point out that also the non-informative Bayesian solution of usingthe Je�reys prior is 
omputationally NP-hard [10℄. As already noted, we were already earlyon quite interested in predi
tive forms of MDL, while Jorma did not seem to share our interest.�Forget about predi
tion� was a frequently heard 
omment made by him when we tried to suggestexploring this area. One 
ould have thought that Jorma did not want to tou
h the elaborate4http://b-
ourse.hiit.fi



Figure 2: The MDL denoising methods in a
tion. Top row (from left) Original (size 128 × 128); noisy(noise std.dev. 20.0); original MDL denoising [21℄. Bottom row: Left to right, gradual improvements ofthe MDL denoising method [22℄.NML framework he had 
reated, but as it would turn out, nothing was further from the truth.Already sin
e 2004�2005, having studied a paper by Takimoto and Warmuth [23℄, we had starteddis
ussing the idea of sequential type NML variants in our group. Even though we found thetopi
 potentially worthwhile, we 
ouldn't see any obvious extensions beyond the basi
 idea. Whenwe �nally introdu
ed the idea to Jorma in 2006, he was suddenly full of new ideas, leading tosequential NML (see Se
. 3 below) and many other novel innovations, and he was more thanready to abandon the �old� NML as obsolete�mu
h more than we were! All in all, Jorma hasoften proved to be so fast and dynami
 in his work that we, many being less than half of his age,have had hard time trying to keep up.As the most re
ent result of our resear
h on NML-like universal models for Bayesian networks,we introdu
e in this paper the fa
torized NML (fNML) model. The rest of the paper is organizedas follows: In Se
tions 2 and 3 we dis
uss the normalized maximum likelihood (NML) andsequentially normalized maximum likelihood (sNML) models, respe
tively. In Se
tion 4 we reviewthe basi
s of Bayesian networks. The fa
torized NML model is introdu
ed in Se
tion 5, whereit is also shown to be 
omputationally feasible for all Bayesian networks. The new model isphilosophi
ally a relative of the sequential NML models dis
ussed in Se
tion 3. Finally, inSe
tion 6, we present experimental results, demonstrating that fNML 
ompares favorably in amodel sele
tion task, relative to the 
urrent state-of-the-art.



2 Normalized Maximum Likelihood ModelsBefore des
ribing the sequential NML and fa
torized NML models, we �x some notation andreview some basi
 properties of the well-known NML model. Let
xn :=











x1,1 x1,2 · · · x1,m

x2,1 x2,2 · · · x2,m... ... . . . ...
xn,1 xn,2 · · · xn,m











=











x1,:

x2,:...
xn,:











=
(

x:,1x:,2 · · ·x:,m

)

,be a data matrix where ea
h row, xi,: = (xi,1, xi,2, . . . , xi,m), 1 ≤ i ≤ n, is an m-dimensionalobservation ve
tor, and 
olumns of xn are denoted by x:,1, . . . ,x:,m.A parametri
 probabilisti
 model M := {p(xn ; θ) : θ ∈ Θ}, where Θ is a parameter spa
e,assigns a probability mass or density value to the data. A universal model for M is a singledistribution that, roughly speaking, assign almost as high a probability to any data as the themaximum likelihood parameters θ̂(xn).Formally, a universal model p̂(xn) satis�es
lim

n→∞

1

n
ln

p(xn ; θ̂(xn))

p̂(xn)
= 0 , (1)i.e., the log-likelihood ratio, often 
alled the `regret', is allowed to grow sublinearly in the samplesize n. The 
elebrated normalized maximum likelihood (NML) universal model [24, 25℄

pNML(xn) :=
p(xn ; θ̂(xn))

Cn

, Cn =

∫

Xn

p(xn ; θ̂(xn)) dxnis the unique minimax optimal universal model in the sense that the worst-
ase regret is minimal.In fa
t, it dire
tly follows from the de�nition that the regret is a 
onstant dependent only on thesample size n:
ln

p(xn ; θ̂(xn))

pNML(xn)
= ln Cn .For some model 
lasses, the normalizing fa
tor is �nite only if the range X n of the data isrestri
ted, see e.g. [21, 24, 26℄. For dis
rete models, the normalizing 
onstant, Cn, is given by asum over all data matri
es of size m × n:

Cn =
∑

xn∈Xn

p(xn ; θ̂(xn)) .The pra
ti
al problem arising in appli
ations of the NML universal model is then to evaluatethe normalizing 
onstant. For 
ontinuous models the integral 
an be solved in 
losed form foronly a few spe
i�
 models. For dis
rete models, the time 
omplexity of the naive solution, i.e.,summing over all possible data matri
es, grows exponentially in both n and m, and qui
klybe
omes intra
table. Even the se
ond-most naive solution, summing over equivalen
e 
lasses ofmatri
es, sharing the same likelihood value, is usually intra
table even though often polynomialin n.The usual Fisher information approximation [24℄
ln Cn =

k

2
ln

n

2π
+ ln

∫

Θ

√

det I(θ) dθ + o(1) ,



where k is the dimension of the parameter spa
e, is also non-trivial to apply due to the integralinvolving the Fisher information I(θ). Using only the leading term (with or without 2π), i.e.,the BIC 
riterion [27℄, gives a rough approximation whi
h, as a rule, performs worse in modelsele
tion tasks than more re�ned approximations or, ideally, the exa
t solution, see e.g. [28,Chap. 9℄.3 Sequentially Normalized ML Models4A re
ent family of variants of NML, 
alled the sequentially (or 
onditional) normalized maximumlikelihood (sNML) [29, 30℄ has similar minimax properties like NML but is often signi�
antlyeasier to use in pra
ti
e.For data matrix xn = (x1,:,x2,:, . . . ,xn,:)
′, the sNML-1 model is de�ned as

psNML1(x
n) :=

n
∏

i=1

p(xi,: | xi−1 ; θ̂(xi))

Ki(xi−1)
, (2)

Ki(x
i−1) :=

∫

p(xi,: | xi−1 ; θ̂(xi)) dxi,: , (3)where normalization ensures that ea
h fa
tor in the produ
t is a proper density fun
tion.In some 
ases it is ne
essary to use a separate density, say q(xn0), for the �rst n0 observations,with n0 large enough, so that the maximimized likelihood is well-de�ned for longer sequen
es
xi with i > n0. For instan
e, in linear regression n0 has to be at least the number of regressorvariables plus one.Se
ond variant (sNML-2). There is also another variant of sNML, whi
h we 
all here sNML-2. It 
an be de�ned in analogy with (2) as follows:

psNML2(x
n) :=

n
∏

i=1

p(xi ; θ̂(xi))

K ′
i(x

i−1)
, (4)

K ′
i(x

i−1) :=

∫

p(xi ; θ̂(xi)) dxi,: .Using the sNML-2 model is equivalent to predi
ting the ith observation using the standardNML model de�ned for sequen
es of length i. Formally we have
pNML(xi,: | xi−1) = psNML2(xi,: | xi−1) .Note that the standard NML model is not in general a sto
hasti
 pro
ess, whi
h makes it possiblethat

pNML(xi,: | xi−1) 6=
∑

xi+1,:

pNML(xi,:,xi+1,: | xi−1) , (5)and hen
e, typi
ally two NML models, de�ned for sequen
es of di�erent lengths, give di�erentpredi
tions. In 
ontrast, both sNML-1 and sNML-2 are by de�nition sto
hasti
 pro
esses, sothat for them we always have an equality in (5).4This se
tion is mostly based on as yet unpublished work by Rissanen, Myllymäki, and Roos.



Regrets Visualized. Figure 3 gives a visualization of the regrets of four universal models inthe Bernoulli 
ase: the Lapla
e predi
tor (�add-one�), the Kri
hevsky�Tro�mov predi
tor (�add-half�), sNML-2, and NML. For NML, the initial sequen
e probabilities, q(xt), are obtained froma �xed NML model, de�ned for n = 5, by summing over the possible 
ontinuations of length
n − t.Note that for NML, while the intermediate regrets, for t < n, depend on the pre�x xt, thetotal regret for xn is a 
onstant. For sNML, the di�eren
e between the regret for xt and xt+1 is
onstant with respe
t to xt but varies with xt−1; in the �gure this means that ea
h pair of edgesoriginating from the same bran
hing point are of equal length, but their length depends on thepath from the origin. For the Bernoulli model, SNML-1 is equivalent to the Lapla
e predi
tor.Figure 4 shows the regrets with n = 5 as a fun
tion of the number of 1s.Related Work. The sNML-2 model has been analysed earlier in 
onju
tion with dis
reteMarkov models, in
luding as a spe
ial 
ase the Bernoulli model, by Shtarkov [25℄ (see his Eq. 45).Also, Takimoto and Warmuth [23℄ analyze a slightly more restri
ted minimax problem, the solu-tion of whi
h agrees with sNML-2 for Markov models. Grünwald [29℄ uses the term �
onditionalNML� (CNML) for a family of universal models, 
onditioned on an initial sequen
e without
onsidering the joint model obtained as a produ
t of su
h 
onditional densities. Our sNML-1
orresponds to his CNML-3, and our sNML-2 
orresponds to his CNML-2. The 
onditional mix-ture 
odes studied by Liang and Barron [31℄ are also 
losely related to sNML, and have similarminimax properties.4 Bayesian NetworksIn Se
. 5, we des
ribe a new NML variant, similar to the sNML models dis
ussed in the previousse
tion. This new variant gives a 
omputationally feasible universal model, and a 
orrespond-ing model sele
tion 
riterion, for general Bayesian network models. This se
tion presents thene
essary ba
kground in Bayesian networks.First, let us asso
iate with the 
olumns, x:,1, . . . ,x:,m, a dire
ted a
y
li
 graph (DAG), G, sothat ea
h 
olumn is represented by a node. Ea
h node, Xj , 1 ≤ j ≤ m, has a (possibly empty)set of parents, Paj , de�ned as the set of nodes with an outgoing edge to node Xj. Withoutloss of generality, we require that all the edges are dire
ted towards in
reasing node index, i.e.,
Paj ⊆ {1, . . . , j − 1}. If this is not the 
ase, the 
olumns in the data, and the 
orrespondingnodes in the graph, 
an be simply relabeled, whi
h does not 
hange the resulting model. Figure 5gives an example.The idea is to model dependen
ies among the nodes (i.e. 
olumns) by de�ning the jointprobability distribution over the nodes in terms of lo
al distributions: ea
h lo
al distributionspe
i�es the 
onditional distribution of ea
h node given its parents, p(Xj | Paj), 1 ≤ j ≤ m. Itis important to noti
e that these are not dependen
ies among the subsequent rows of the datamatrix xn, but dependen
ies `inside' ea
h row, xi,:, 1 ≤ i ≤ n. Indeed, in all of the following, weassume that the rows are independent realizations of a �xed (memoryless) sour
e.The lo
al distributions 
an be modeled in various ways, but here we fo
us on the dis
rete
ase. The probability of a 
hild node taking value xi,j = r given the parent nodes' 
on�guration,
pai,j = s, is determined by the parameter

θj|Paj
(r, s) = p(xi,j = r | pai,j = s ; θj|Paj

) , 1 ≤ i ≤ n, 1 ≤ j ≤ m ,where the notation θj|Paj
(r, s) refers to the 
omponent of the parameter ve
tor θj|Paj

indexed bythe value r and the 
on�guration s of the parents of Xj . For empty parent sets, we let pai,j ≡ 0.



Lapla
e Kri
hevsky�Tro�mov

sNML-2 NMLFigure 3: Regrets of four universal models in the Bernoulli 
ase. Ea
h path from the origin (
enter) tothe boundary represents a binary sequen
e of length n = 5. Red edges 
orrespond to 1s, bla
k edges to0s. The path for sequen
e 01111 is emphasized. The distan
es from the origin of the bran
hing pointsare given by the regrets ln[p(xt ; θ̂(xt))/q(xt)] for ea
h pre�x xt. The blue 
ir
le shows the regret ofNML. Note the similarity between sNML-2 and NML.
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Figure 4: Per-symbol regrets of four universal models in the Bernoulli 
ase as a fun
tion of the numberof 1s in the sequen
e with n = 5 (for the same �gure with n = 30, see [30℄). For sNML-2 the regretdepends not only on the number of 1s, but also on the a
tual sequen
e. (The dependen
y is very slight,see Fig. 3.) The graph shows the average regret.
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Figure 5: An example of a dire
ted a
y
li
 graph (DAG). The parents of node X8 are {X1, X5, X7}. Thedes
endants of X4 are {X5, X8}.



For instan
e, 
onsider the graph of Fig. 5; on ea
h row, 1 ≤ i ≤ n, the parent 
on�guration of
olumn j = 8 is the ve
tor pai,8 = (xi,1, xi,5, xi,7); the parent 
on�guration of 
olumn j = 1 is
pai,1 = 0, et
.The joint distribution is obtained as a produ
t of lo
al distributions:

p(xn ; θ) =

m
∏

j=1

p(x:,j | Paj ; θj|Paj
) . (6)This type of probabilisti
 graphi
al models are 
alled Bayesian networks [32℄. Fa
torization (6)entails a set of 
onditional independen
ies, 
hara
terized by so 
alled Markov properties, see [33℄.For instan
e, the lo
al Markov property asserts that ea
h node is independent of its non-des
endantsgiven its parents, generalizing the familiar Markov property of Markov 
hains.It is now possible to de�ne the NML model based on (6) and a �xed graph stru
ture G:

pNML(xn ; G) =

∏m
j=1

p(x:,j | Paj ; θ̂(xn))

Cn

, (7)where
Cn =

∑

xn

m
∏

j=1

p(x:,j | Paj ; θ̂(xn)) . (8)The required maximum likelihood parameters are easily evaluated sin
e it is well known that theML parameters are equal to the relative frequen
ies:
θ̂j|Paj

(r, s) =

∣

∣{i : xi,j = r,pai,j = s}
∣

∣

∣

∣{i′ : pai′,j = s}
∣

∣

, (9)where |S| denotes the 
ardinality of set S. However, as pointed out in Se
. 2, summing over allpossible data matri
es is not tra
table ex
ept in toy problems where n and m are both very small.E�
ient algorithms have been dis
overed only re
ently for restri
ted graph stru
tures [17�19℄.5 Fa
torized NML ModelsAs a 
omputationally less demanding alternative to NML in the 
ontext of Bayesian networks,we de�ne the fa
torized NML (fNML) in a similar spirit as sNML. We let the joint probabilitydistribution be given by a produ
t of lo
ally normalized maximum likelihood distributions:
pfNML(xn ; G) :=

m
∏

j=1

p(x:,j | Paj ; θ̂(xn))

Zj(Paj)
(10)

=

∏m
j=1

p(x:,j | Paj ; θ̂(xn))

Z(xn)
, (11)where ea
h of the lo
al normalizing fa
tors

Zj(Paj) =
∑

X′

j

p(X ′
j | Paj ; θ̂(X ′

j ,Paj)) (12)is a sum over all possible instantiations of 
olumn x:,j, and the global normalizing fa
tor
Z(xn) =

m
∏

j=1

∑

X′

j

p(X ′
j | Paj ; θ̂(X ′

j ,Paj)) (13)



is a produ
t of the lo
al normalizing fa
tors. The lo
al normalizing fa
tors Zj(Paj) 
an bede
omposed further into simple multinomial NML normalization 
onstants, one for ea
h parent
on�guration in Paj . Using the re
ently dis
overed linear-time algorithm [15℄ for the multinomial
ase, the total 
omputation time be
omes feasible even for large sample sizes and for manyvariables (
olumns).In pra
ti
e, we not only want to evaluate the likelihood of the data under a given model
lass, but we also wish to �nd the stru
ture that maximizes the likelihood of the data. This ismade hard by the fa
t that the number of possible DAG stru
ture is superexponential. Unlikethe standard NML 
riterion, the fNML 
riterion is `modular' in the sense that it de
omposes
olumn-wise into independent terms. This enables the use dynami
 programming te
hniquesthat �nd the global optimum in o(n2n) time, see [12℄, whi
h is manageable for networks with upto about 30 nodes. For larger networks, lo
al sear
h heuristi
s are ne
essary.Note that, as 
an be seen from (9), the maximum likelihood parameters of ea
h lo
al distri-bution, θj|Paj
, depend only on 
olumn x:,j and 
olumn(s) Paj. In parti
ular, sin
e we require

Paj ⊆ {1, . . . , j − 1}, we have
p(x:,j | Paj ; θ̂(xn)) = p(x:,j | Paj ; θ̂(x:,1, . . . ,x:,j)) = p(x:,j | Paj ; θ̂(x:,j,Paj)) , (14)of whi
h the se
ond form, where only the �rst j 
olumns appear, is the one that should be usedin (10) by analogy with (2). Due to the above identity, the expressions are used inter
hangeably.The sum-produ
t view. It is interesting to 
ompare the NML and fNML models. ConsiderEqs. (7) and (11): the 
onstant normalizer of NML, Cn, an exponential sum of produ
ts, isrepla
ed in fNML by Z(xn), a produ
t of sums that depends on the data. The fNML model
an therefore be seen as `
heating' by using a sum-produ
t algorithm, where the distributive law(see [34℄)
{

f(x1, x2) ≡ f(x1)

g(x1, x2) ≡ g(x2)
=⇒

∑

x1,x2

f(x1, x2)g(x1, x2) =

(

∑

x1

f(x1)

)(

∑

x2

g(x1)

) (15)is applied to 
ompute the sum in Cn even though the terms do not a
tually fa
tor 
olumn-wiseinto independent parts. No 
heating is ne
essary when the graph is empty, i.e., when Paj = ∅for all 1 ≤ j ≤ m. This means that we have Z(xn) = Cn, whi
h by (7) and (11) implies that forempty graphs pNML and pfNML are equivalent.The regrets of the two models are easily seen to be ln Cn and ln Z(xn), for NML and fNMLrespe
tively. Noti
e also that the regret of fNML, ln Z(xn), depends on the data only throughthe parents, Paj, 1 ≤ j ≤ m, and hen
e, is independent of all the leaf nodes, i.e., nodes that haveno des
endants. Again, if the graph is empty, all nodes are leafs and Z(xn) = Cn for all xn sothat the NML and fNML models are equivalent.Finally, we observe that for fNML the two variants of sNML, sNML-1 and sNML-2, 
oin
ide.Letting x(j) := (x:,1,x:,2, . . . ,x:,j) denote the �rst j 
olumns, we obtain
p(x(j) ; θ̂(x(j))) =

j
∏

l=1

p(x:,l | Pal ; θ̂(x:,l,Pal))

= p(x:,j | Paj ; θ̂(xn))

j−1
∏

l=1

p(x:,l | Pal ; θ̂(x:,l,Pal)) ,



where both equalities depend on (14). The last fa
tor on the right-hand side is independent of
olumn x:,j. When the above is normalized with respe
t to x:,j, this fa
tor 
an
els and we areleft with p(x:,j | Paj ; θ̂(xn)), whi
h is exa
tly what is normalized in (10). Hen
e, it doesn'tmatter whether we de�ne fNML as in (10) or as the produ
t over 1 ≤ j ≤ m of the normalizedversions of p(x(j) ; θ̂(x(j))), and sNML-1 is equivalent to sNML-2 for Bayesian network model
lasses.6 ExperimentsTo empiri
ally test performan
e of the fNML-
riterion in Bayesian network stru
ture learningtask, we generated several Bayesian networks, and then studied how di�erent model sele
tion
riteria su

eeded in learning the model stru
ture from data. The most often used sele
tion 
ri-terion for the task is the BDe (Bayesian Diri
hlet equivalent) s
ore [13℄, but due to its sensitivityto the 
hoi
e of prior hyperparameter, we 
hose two di�erent versions of it: BDe0.5 and BDe1.0.We also in
luded the Bayesian Information Criterion, BIC. All these s
ores 
an be interpretedas implementing some version of the MDL 
riterion or an approximation thereof.We present the results for an experiment in whi
h we generated 1800 di�erent Bayesiannetwork models, whi
h we tried to learn ba
k using the data generated from these models.We generated the networks using 5, 10 and 15 variables, and also varied the density and theparameters of the networks. We then generated 1000, 10000 and 10000 data ve
tors from ea
hnetwork, and tried to learn the models ba
k using these data samples and di�erent s
oring
riteria. It turned out that learning the models ba
k with these sample sizes was pra
ti
allypossible only for smallest networks 
ontaining 5 nodes. However, varying the number of ar
s andparameters did not seem to have a strong e�e
t on the out
ome. This made it possible us to
on
entrate on 
omparing the performan
e of di�erent s
oring 
riteria for di�erent sample sizes(Figure 6).The results 
learly show that fNML ex
els with small sample sizes. With large sample sizes,the di�eren
e is not that big, whi
h is hardly surprising, sin
e asymptoti
ally, they all 
onvergeto the data generating model. This result is signi�
ant, sin
e BDe s
ore(s) 
an be regarded as the
urrent state-of-the-art. Furthermore, the fNML s
ore is 
omputationally no more demandingthan the BDe s
ore.A
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