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Abstract

We consider probabilistic graphical models where a directed acyclic graph represents a
factorization of a joint probability distribution: the joint probability of the variables is rep-
resented as a product of conditional probabilities, one for each variable conditioned on its
immediate parents in the graph. For this type of models, computing the normalized maxi-
mum likelihood (NML) is computationally very demanding. We suggest a computationally
feasible alternative to NML, the factorized NML, where the normalization is done locally for
each conditional distribution, and not globally.

1 Introduction

The Complex Systems Computation research group! (CoSCo) was established in the early 1990’s
at the Department of Computer Science of University of Helsinki. The group was first led by
Professor Henry Tirri until 2002, and after that by Professor Petri Myllymaki. The first contact
between CoSCo and Jorma Rissanen took place in 1996, in an evaluation of the HYPE research
project, which was a part of a large research programme on Adaptive and Intelligent Systems,
funded by Tekes, the Finnish Funding Agency for Technology and Innovation. For the evaluation,
Jorma interviewed Henry in a one-to-one meeting, which did not go along quite the way we had
expected. Namely, the very first thing Jorma did was to write the formula for Jeffreys prior
on the board, and ask “What is this?”. When Henry recognized the formula Jorma commented
that he has read the papers and evidently Henry knows them so let’s do some science. Then the
rest of the session was spent on a pleasant conversation on recent developments of MDL. As a
memento of this meeting, we still keep on the wall of our institute the drawings done during the
session (see Figure 1).

All in all, it was apparent that Jorma had very carefully studied the material we had sent
him beforehand, and he already had a clear opinion of our work. In his evaluation report, Jorma
commends our work and points out that
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Figure 1: Jorma’s notes from his first meeting with Henry Tirri in 1996.




“ Tt is particularly noteworthy that the difficult and important problem of determining
the proper complexity of the models is done by new information-theoretic methods
rather than resorting to usual ad hoc ones.

W

He also had a quite clear opinion of the overall research programme, which focused on neural
networks and genetic algorithms, which were popular at the time. Indeed, it is well known that
Jorma is not scared to express his opinion quite directly, even if it is a negative one. In the
evaluation of the research programme as a whole, Jorma chose to express his dissatisfaction
somewhat indirectly, formulated cleverly in a seemingly positive statement:

“ On the whole, the research level of the teams using mainly the neural network
techniques is in my opinion comparable to the general international level, which itself
with a few exceptions, such as the work of A. Barron, is not particularly high. ”

We were kind of an oddball in the programme, as we were just in the middle of a process of
moving from neural networks and case-based reasoning to parametric probabilistic models. For
the models we had started to explore—Bayesian networks, finite mixture models, Naive Bayes and
other logistic regression type of classifiers model regularization was clearly one of the central
problems, and we were immediately intrigued by MDL. This interest had nothing to do with
Jorma being Finnish, perhaps it was the information-theoretic approach that appealed to us as
computer scientists. Actually, for a long time we discussed with Jorma in English only, and only
later we have started to use more Finnish, at least for less technical discussions (involving often
important topics like good food, beer, and soccer).

Our view of MDL was initially pretty ad hoc, and we, as many researchers still do, first
employed the simple two-part/BIC types of codes, and later the “Bayes mixture” approach with
various parameter priors [1-4|. Nevertheless, we soon felt increasing uneasiness with the arbi-
trariness of choosing the parameter priors, and we shared with Jorma the feeling that taking the
subjective Bayesian approach is not as unproblematic as people often think, and that playing
with the parameter priors is not an intuitively easy task after all, leading easily to anomalies in
practical applications.

We kept seeing Jorma more and more often either in Helsinki or somewhere around the globe,
and our appreciation towards him as a person and as a scientist was increasing. In addition to
the pleasure of having a personal contact with Jorma, our work on MDL was greatly influenced
by Peter Griinwald from CWI, Amsterdam, who met Petri Myllymé&ki in 1996 in a workshop
organized by the NeuroCOLT working group of the European Union. Peter helped the CoSCo
people to understand the new theoretical framework behind MDL, like the normalized maximum
likelihood code, and we started working together in this field. Peter also came to Helsinki for
a two month visit in 1997. Our joint work concentrated on issues like supervised learning,
predictive distributions and choosing the parameter priors [5-11]. Quite interestingly, we were
already then considering sequential (predictive) variants of MDL, which have recently gained
popularity—more about them later. The co-operation between CWI and Helsinki has continued
to this day, e.g. in the Pascal Network of Excellence?, where Myllymiki and Griinwald are
currently leading the Pascal Special Interest Group on Information-Theoretic Modeling. We are
also jointly maintaining a popular web site?® offering a (hopefully) useful portal to MDL-related
work world-wide.

One of the active research areas in CoSCo nowadays is to study how to compute the NML
criterion for Bayesian networks. This parametric model has become quite popular, and one
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of the most popular freely available tools, the B-Course software?, was developed and is being

maintained by CoSCo. However, for practical applications, this model family introduces a couple
of serious problems. First, the model structures are represented as acyclic directed graphs,
which are superexponential in number. This makes the search for the best model structure a
most difficult problem, which can currently be solved in reasonable time only for moderate size
networks [12]. Nevertheless, perhaps even more crucial problem than how to find a good model,
is the question of optimality: good in what sense?

Traditionally, in the Bayesian network community the models are evaluated by their posterior
probability, which in the discrete Multinomial-Dirichlet setting can be computed in closed form,
which leads to the popular BDe (Bayesian Dirichlet equivalent) score [13]. However, our recent
work shows that the shape of the posterior is quite sensitive with respect to the choice of the
hyperparameters of the Dirichlet prior [14]. NML would of course avoid this problem by offering
a non-informative score that is not dependent on any parameter prior, but unfortunately, no
efficient method for computing NML for Bayesian networks in general has yet been discovered.
In the CoSCo group, we have gradually moved towards this goal by developing computationally
efficient algorithms for independent multinomial variables, or equivalently, a Bayesian network
with no arcs [15], for the Naive Bayes model [16, 17|, and for tree-structured Bayesian net-
works [18, 19]. As an interesting application of the algorithm for computing the NML efficiently
in the multinomial case, we can mention the minimax-optimal histogram density estimator sug-
gested in [20].

As another active area of collaboration with Jorma, we have been focusing on MDL-based
approaches to signal denoising. Starting from the original MDL denoising paper [21]|, we have
been able to develop improved denoising methods [22|, which are more robust with different levels
of noise, achieve better frequency adaptivity, and employ the “soft thresholding” technique found
very useful in denoising methods based on other approaches. For an illustration of denoising, see
Figure 2. (The image in the example represents an Inter Milan soccer player in the 1950’s. As
many of us know, Jorma has always been a great fan of soccer, and a talented player himself: he
even got an invitation in the early 1950’s for a try-out in Milan, but the entrance examination
for the Helsinki University of Technology was at the same time, and Jorma made, according to
his own words, "a wrong decision" and chose science over football. Later he hurt his knee doing
pole vault during his military service in the Finnish army, which finally ended any ideas about
a potential career as a professional football player. This was a lucky strike for the IBM soccer
team, who enjoyed having Jorma play for them for many years.)

One of the conclusions of the still ongoing work on denoising is the observation that the “model
index”, identifying the optimal subset of wavelet coefficients, forms a practically important part
of the overall code length, and should not be ignored like was done in the original denoising
paper. A similar phenomenon was observed already in the context of clustering [16]. However,
Jorma was not after all very surprised by the result: he had of course always been aware of the
missing part of his code, he just never thought it would make a difference in practice.

As the problem of computing NML for Bayesian networks is so difficult, we started to consider
alternative solutions, other similar type of scoring functions that could be used instead of NML.
It is probably appropriate to point out that also the non-informative Bayesian solution of using
the Jeffreys prior is computationally NP-hard [10]. As already noted, we were already early
on quite interested in predictive forms of MDL, while Jorma did not seem to share our interest.
“Forget about prediction” was a frequently heard comment made by him when we tried to suggest
exploring this area. One could have thought that Jorma did not want to touch the elaborate
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Figure 2: The MDL denoising methods in action. Top row (from left) Original (size 128 x 128); noisy
(noise std.dev. 20.0); original MDL denoising [21]. Bottom row: Left to right, gradual improvements of
the MDL denoising method [22].

NML framework he had created, but as it would turn out, nothing was further from the truth.
Already since 2004-2005, having studied a paper by Takimoto and Warmuth |23], we had started
discussing the idea of sequential type NML variants in our group. Even though we found the
topic potentially worthwhile, we couldn’t see any obvious extensions beyond the basic idea. When
we finally introduced the idea to Jorma in 2006, he was suddenly full of new ideas, leading to
sequential NML (see Sec. 3 below) and many other novel innovations, and he was more than
ready to abandon the “old” NML as obsolete much more than we were! All in all, Jorma has
often proved to be so fast and dynamic in his work that we, many being less than half of his age,
have had hard time trying to keep up.

As the most recent result of our research on NML-like universal models for Bayesian networks,
we introduce in this paper the factorized NML (fNML) model. The rest of the paper is organized
as follows: In Sections 2 and 3 we discuss the normalized maximum likelihood (NML) and
sequentially normalized maximum likelihood (sSNML) models, respectively. In Section 4 we review
the basics of Bayesian networks. The factorized NML model is introduced in Section 5, where
it is also shown to be computationally feasible for all Bayesian networks. The new model is
philosophically a relative of the sequential NML models discussed in Section 3. Finally, in
Section 6, we present experimental results, demonstrating that {NML compares favorably in a
model selection task, relative to the current state-of-the-art.



2 Normalized Maximum Likelihood Models

Before describing the sequential NML and factorized NML models, we fix some notation and
review some basic properties of the well-known NML model. Let

1,1 T1,2 cc Tim X1,:
" T2,1 T2t Tam X9 :
€T = . . . = = (X:,IX 2 ,m) )
Tnl Tn,2 *°° Tnm Xn,:
be a data matrix where each row, x;. = (2;1,%;2,---,Zim),1 < i < n, is an m-dimensional
’” ) ’ ) ]
observation vector, and columns of 2™ are denoted by x. 1,...,X. .

A parametric probabilistic model M := {p(z" ; 0) : 6 € ©}, where O is a parameter space,
assigns a probability mass or density value to the data. A wuniversal model for M is a single
distribution that, roughly speaking, assign almost as high a probability to any data as the the
maximum likelihood parameters 6(z™).

Formally, a universal model p(z™) satisfies
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i.e., the log-likelihood ratio, often called the ‘regret’, is allowed to grow sublinearly in the sample
size n. The celebrated normalized mazimum likelihood (NML) universal model |24, 25]

p(z" ; (™))

ny .__
pauvL(z") == c ,

Cn 2/ p(z"; é(x"))dx”

is the unique minimax optimal universal model in the sense that the worst-case regret is minimal.
In fact, it directly follows from the definition that the regret is a constant dependent only on the
sample size n:

p(a" 5 6(a"))
pNML(T™)
For some model classes, the normalizing factor is finite only if the range X™ of the data is
restricted, see e.g. [21, 24, 26]. For discrete models, the normalizing constant, C,,, is given by a

sum over all data matrices of size m x n:
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The practical problem arising in applications of the NML universal model is then to evaluate
the normalizing constant. For continuous models the integral can be solved in closed form for
only a few specific models. For discrete models, the time complexity of the naive solution, i.e.,
summing over all possible data matrices, grows exponentially in both n and m, and quickly
becomes intractable. Even the second-most naive solution, summing over equivalence classes of
matrices, sharing the same likelihood value, is usually intractable even though often polynomial
in n.

The usual Fisher information approximation [24]

InC,, = = n—+ln/ Vdet I(0)df +o(1)



where k is the dimension of the parameter space, is also non-trivial to apply due to the integral
involving the Fisher information I(#). Using only the leading term (with or without 27), i.e.,
the BIC criterion 27|, gives a rough approximation which, as a rule, performs worse in model
selection tasks than more refined approximations or, ideally, the exact solution, see e.g. |28,
Chap. 9].

3 Sequentially Normalized ML Models*

A recent family of variants of NML, called the sequentially (or conditional) normalized mazimum,
likelihood (sNML) [29, 30| has similar minimax properties like NML but is often significantly
easier to use in practice.

For data matrix z™ = (XL;,XZ;, ... ,xm;)/, the sSNML-1 model is defined as
n p(xi; | 2715 6(a))
= . 2
psnmL1(z") ¢|:|1 K,(z1) ) (2)

Ki(a"™1) = /p(xi,: |21 0(2)) dx;,. (3)

where normalization ensures that each factor in the product is a proper density function.

In some cases it is necessary to use a separate density, say q(z™), for the first ng observations,
with ng large enough, so that the maximimized likelihood is well-defined for longer sequences
o' with i > ng. For instance, in linear regression ng has to be at least the number of regressor
variables plus one.

Second variant (sSNML-2). There is also another variant of SNML, which we call here sSNML-
2. Tt can be defined in analogy with (2) as follows:

pomra(z”) = [ [ % ; (4)
=1

Kl(z'1) = /p(xl ; é(ﬁ))dxi,; .

Using the sNML-2 model is equivalent to predicting the ¢th observation using the standard
NML model defined for sequences of length i. Formally we have

prun (% | 277 = ponmra(xi | 271

Note that the standard NML model is not in general a stochastic process, which makes it possible
that
paun(xic | 271 # D pawn (i Xips |21 (5)
Xit+1,:
and hence, typically two NML models, defined for sequences of different lengths, give different
predictions. In contrast, both sNML-1 and sNML-2 are by definition stochastic processes, so
that for them we always have an equality in (5).

“This section is mostly based on as yet unpublished work by Rissanen, Myllymiki, and Roos.



Regrets Visualized. Figure 3 gives a visualization of the regrets of four universal models in
the Bernoulli case: the Laplace predictor (“add-one”), the Krichevsky Trofimov predictor (“add-
half”), sSNML-2, and NML. For NML, the initial sequence probabilities, g(x?), are obtained from
a fixed NML model, defined for n = 5, by summing over the possible continuations of length
n —t.

Note that for NML, while the intermediate regrets, for t < n, depend on the prefix zf, the
total regret for 2™ is a constant. For sNML, the difference between the regret for 2! and z'*! is
constant with respect to x; but varies with 2'~1; in the figure this means that each pair of edges
originating from the same branching point are of equal length, but their length depends on the
path from the origin. For the Bernoulli model, SNML-1 is equivalent to the Laplace predictor.
Figure 4 shows the regrets with n = 5 as a function of the number of 1s.

Related Work. The sNML-2 model has been analysed earlier in conjuction with discrete
Markov models, including as a special case the Bernoulli model, by Shtarkov |25] (see his Eq. 45).
Also, Takimoto and Warmuth [23] analyze a slightly more restricted minimax problem, the solu-
tion of which agrees with sSNML-2 for Markov models. Griinwald [29] uses the term “conditional
NML” (CNML) for a family of universal models, conditioned on an initial sequence without
considering the joint model obtained as a product of such conditional densities. Our sNML-1
corresponds to his CNML-3, and our sNML-2 corresponds to his CNML-2. The conditional mix-
ture codes studied by Liang and Barron [31] are also closely related to sNML, and have similar
minimax properties.

4 Bayesian Networks

In Sec. 5, we describe a new NML variant, similar to the sSNML models discussed in the previous
section. This new variant gives a computationally feasible universal model, and a correspond-
ing model selection criterion, for general Bayesian network models. This section presents the
necessary background in Bayesian networks.

First, let us associate with the columns, x. 1,...,X. p, a directed acyclic graph (DAG), G, so
that each column is represented by a node. Each node, X;,1 < j < m, has a (possibly empty)
set of parents, Pa;, defined as the set of nodes with an outgoing edge to node X;. Without
loss of generality, we require that all the edges are directed towards increasing node index, i.e.,
Pa; C {1,...,j —1}. If this is not the case, the columns in the data, and the corresponding
nodes in the graph, can be simply relabeled, which does not change the resulting model. Figure 5
gives an example.

The idea is to model dependencies among the nodes (i.e. columns) by defining the joint
probability distribution over the nodes in terms of local distributions: each local distribution
specifies the conditional distribution of each node given its parents, p(X; | Pa;),1 < j < m. It
is important to notice that these are not dependencies among the subsequent rows of the data
matrix z", but dependencies ‘inside’ each row, x;.,1 <4 < n. Indeed, in all of the following, we
assume that the rows are independent realizations of a fixed (memoryless) source.

The local distributions can be modeled in various ways, but here we focus on the discrete
case. The probability of a child node taking value x; ; = r given the parent nodes’ configuration,
pa; j = s, is determined by the parameter

Ojipa; (r,s) = p(xij=r|pa;=5s; Ojps;) , 1<i<n1<j<m,

where the notation 0;p,, (r,s) refers to the component of the parameter vector 0;|pa; indexed by
the value 7 and the configuration s of the parents of X;. For empty parent sets, we let pa; ; = 0.



Laplace Krichevsky—Trofimov

sNML-2 NML

Figure 3: Regrets of four universal models in the Bernoulli case. Each path from the origin (center) to
the boundary represents a binary sequence of length n = 5. Red edges correspond to 1s, black edges to
0s. The path for sequence 01111 is emphasized. The distances from the origin of the branching points
are given by the regrets In[p(z ; 0(2'))/q(z")] for each prefix z*. The blue circle shows the regret of
NML. Note the similarity between SNML-2 and NML.
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Figure 4: Per-symbol regrets of four universal models in the Bernoulli case as a function of the number
of 1s in the sequence with n = 5 (for the same figure with n = 30, see [30]). For sNML-2 the regret

depends not only on the number of 1s, but also on the actual sequence. (The dependency is very slight,
see Fig. 3.) The graph shows the average regret.
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Figure 5: An example of a directed acyclic graph (DAG). The parents of node Xg are {X;, X5, X7}. The
descendants of X, are {X5, Xg}.



For instance, consider the graph of Fig. 5; on each row, 1 < ¢ < n, the parent configuration of
column j = 8 is the vector pa; g = (i1, @i5,z57); the parent configuration of column j =1 is
pa;; = 0, etc.

The joint distribution is obtained as a product of local distributions:

0) = Hp(xz,j | Paj 5 0jpa;) - (6)

This type of probabilistic graphical models are called Bayesian networks [32]. Factorization (6)
entails a set of conditional independencies, characterized by so called Markov properties, see [33].
For instance, the local Markov property asserts that each node is independent of its non-descendants
given its parents, generalizing the familiar Markov property of Markov chains.

It is now possible to define the NML model based on (6) and a fixed graph structure G:

" p(x. Pa-;é n
pamL(z” 5 G) = L ]C" 5 96) ; (7)

where .
Co=> [Ipx.;|Pa;; 6")) . (8)
" g=1
The required maximum likelihood parameters are easily evaluated since it is well known that the
ML parameters are equal to the relative frequencies:

. {i + @5 =r,pa,;=s}
) = e ot )

: (9)

where |S| denotes the cardinality of set S. However, as pointed out in Sec. 2, summing over all
possible data matrices is not tractable except in toy problems where n and m are both very small.
Efficient algorithms have been discovered only recently for restricted graph structures [17 19].

5 Factorized NML Models

As a computationally less demanding alternative to NML in the context of Bayesian networks,
we define the factorized NML (fNML) in a similar spirit as sSNML. We let the joint probability
distribution be given by a product of locally normalized maximum likelihood distributions:

penvn(z” 3 G H plx., | Palia’ )9(3:”)) (10)
j
B H;?Llp<><:,j | Pay ; 6a™)

where each of the local normalizing factors

Zj(Pay) Zp (X | Pay 5 6(X], Pay)) (12)
is a sum over all possible instantiations of column x. ;, and the global normalizing factor

=[ID_p(x} | Pay; 6(X],Pay)) (13)

y— !
7j=1 Xj



is a product of the local normalizing factors. The local normalizing factors Z;(Pa;) can be
decomposed further into simple multinomial NML normalization constants, one for each parent
configuration in Pa;. Using the recently discovered linear-time algorithm [15] for the multinomial
case, the total computation time becomes feasible even for large sample sizes and for many
variables (columns).

In practice, we not only want to evaluate the likelihood of the data under a given model
class, but we also wish to find the structure that maximizes the likelihood of the data. This is
made hard by the fact that the number of possible DAG structure is superexponential. Unlike
the standard NML criterion, the fNML criterion is ‘modular’ in the sense that it decomposes
column-wise into independent terms. This enables the use dynamic programming techniques
that find the global optimum in o(n2") time, see [12], which is manageable for networks with up
to about 30 nodes. For larger networks, local search heuristics are necessary.

Note that, as can be seen from (9), the maximum likelihood parameters of each local distri-
bution, 6;p,,, depend only on column x. ; and column(s) Pa;. In particular, since we require
Pa; C{1,...,j — 1}, we have

~ ~

p(x.; | Paj ; 0(z") = p(x.; | Paj 5 O(x.1,...,%.)) = p(x.; | Paj ; O(x.;,Pa;)) , (14)

of which the second form, where only the first 7 columns appear, is the one that should be used
in (10) by analogy with (2). Due to the above identity, the expressions are used interchangeably.

The sum-product view. It is interesting to compare the NML and fNML models. Consider
Egs. (7) and (11): the constant normalizer of NML, C),, an exponential sum of products, is
replaced in fNML by Z(2"), a product of sums that depends on the data. The fNML model
can therefore be seen as ‘cheating’ by using a sum-product algorithm, where the distributive law
(see [34])

{f(x1,372) = f(@) — Z f(z1,22)g9(21,22) = <Zf(x1)> (Z g(m1)> (15)

9(@1,22) = g(x2) ot

is applied to compute the sum in C), even though the terms do not actually factor column-wise
into independent parts. No cheating is necessary when the graph is empty, i.e., when Pa; = ()
for all 1 < j <m. This means that we have Z(z") = C,,, which by (7) and (11) implies that for
empty graphs pyyvr and penvr, are equivalent.

The regrets of the two models are easily seen to be InC), and In Z(z"), for NML and f{NML
respectively. Notice also that the regret of fNML, In Z(2"), depends on the data only through
the parents, Pa;,1 < j < m, and hence, is independent of all the leaf nodes, i.e., nodes that have
no descendants. Again, if the graph is empty, all nodes are leafs and Z(2") = C,, for all 2" so
that the NML and fNML models are equivalent.

Finally, we observe that for {NML the two variants of SNML, sSNML-1 and sNML-2, coincide.

Letting z(j) := (x.1,X.2,...,X. ;) denote the first j columns, we obtain
A~ j A~
p(a(h) 5 0(x(5))) = [ [ p(x.0 | Pag s O(x.1,Pay))
=1

j—1

= p(x.; | Paj ; 0(2™) [[ p(x.0 | Par s O(x.0,Pay)) |
=1



where both equalities depend on (14). The last factor on the right-hand side is independent of
column x. ;. When the above is normalized with respect to x. ;, this factor cancels and we are
left with p(x.; | Pa; ; 0(2™)), which is exactly what is normalized in (10). Hence, it doesn’t
matter whether we define fNML as in (10) or as the product over 1 < j < m of the normalized
versions of p(z(j) ; 6(z(j))), and sSNML-1 is equivalent to SNML-2 for Bayesian network model
classes.

6 Experiments

To empirically test performance of the fNML-criterion in Bayesian network structure learning
task, we generated several Bayesian networks, and then studied how different model selection
criteria succeeded in learning the model structure from data. The most often used selection cri-
terion for the task is the BDe (Bayesian Dirichlet equivalent) score [13], but due to its sensitivity
to the choice of prior hyperparameter, we chose two different versions of it: BDegy 5 and BDeq g.
We also included the Bayesian Information Criterion, BIC. All these scores can be interpreted
as implementing some version of the MDL criterion or an approximation thereof.

We present the results for an experiment in which we generated 1800 different Bayesian
network models, which we tried to learn back using the data generated from these models.
We generated the networks using 5, 10 and 15 variables, and also varied the density and the
parameters of the networks. We then generated 1000, 10000 and 10000 data vectors from each
network, and tried to learn the models back using these data samples and different scoring
criteria. It turned out that learning the models back with these sample sizes was practically
possible only for smallest networks containing 5 nodes. However, varying the number of arcs and
parameters did not seem to have a strong effect on the outcome. This made it possible us to
concentrate on comparing the performance of different scoring criteria for different sample sizes
(Figure 6).

The results clearly show that fNML excels with small sample sizes. With large sample sizes,
the difference is not that big, which is hardly surprising, since asymptotically, they all converge
to the data generating model. This result is significant, since BDe score(s) can be regarded as the
current state-of-the-art. Furthermore, the {NML score is computationally no more demanding
than the BDe score.
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