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Abstract

Bayesian network models are widely used for supervised prediction tasks such
as classification. Usually the parameters of such models are determined using
‘unsupervised’ methods such as likelihood maximization, as it has not been clear
how to find the parameters maximizing the supervised likelihood or posterior
globally. In this paper we show how this supervised learning problem can be
solved efficiently for a large class of Bayesian network models, including the Naive
Bayes (NB) and Tree-augmented NB (TAN) classifiers. We show that there
exists an alternative parameterization of these models in which the supervised
likelihood becomes concave. From this result it follows that there can be at most
one maximum, easily found by local optimization methods.



1 Introduction

In recent years it has been recognized that for supervised prediction tasks such
as classification, we should use a supervised learning algorithm such as supervised
(conditional) likelihood maximization (Greiner & Zhou, 2001; Ng & Jordan, 2001;
Greiner et al. , 1997; Kontkanen et al. , 2001; Friedman et al. , 1997). Neverthe-
less, in most applications related to this type of task, model parameters are still
determined using unsupervised methods such as ordinary likelihood maximization
or (ordinary) Bayesian methods. One of the main reasons for this discrepancy is
the difficulty in finding the global maximum of the supervised likelihood. In this
technical report, we show that this problem can be solved for Bayesian network
models, as long as they satisfy a particular additional condition. The condition
is satisfied for many existing Bayesian-network based classifiers such as Naive
Bayes (NB), TAN (Tree-augmented NB) and ‘diagnostic’ classifiers (Kontkanen
et al. , 2001).

We find the maximum supervised likelihood by parameterizing our models in
a non-standard manner; roughly speaking, the parameters in our parameteriza-
tion correspond to logarithms of parameters in the standard Bayesian network
parameterization. The new parameterization has the remarkable property that
it makes the supervised likelihood a concave function of the parameters. We can
therefore find the global maximum supervised likelihood parameters by simple
local optimization techniques such as hill climbing. In the experimental part
of the paper, we demonstrate the usefulness of our idea by applying it to infer
supervised Naive Bayes distributions for a variety of real-world data sets. For
most of our data sets, the supervised NB classifiers lead to (sometimes substan-
tially) better predictions than those obtained by the ordinary, ‘unsupervised’ NB
classifiers.

This paper is organized as follows. For ease of exposition, we use the Naive
Bayes model as our running example, and first present all our main results in
terms of it. We first in Section 2 review the standard (unsupervised) Naive
Bayes classifier and its supervised version. Then we show that when this model
is parameterized in the usual way, the supervised likelihood is not a concave
function of the parameters, which hinders its optimization. In Section 3 we
introduce the L-model. Although the L-model looks different from supervised
NB, in Section 4 we show that the two models in fact represent exactly the same
conditional distributions. In Section 5 we show that the supervised likelihood
of the data, as a function of the parameters of the L-model, is concave, while
the parameter set itself is convex. Section 6 provides alternative interpretations
of the L-model. In Section 7 we generalize our results to more general classes
of Bayesian network models. In Section 8 we argue that for technical reasons,
it is useful to equip our models with such a prior that we effectively maximize
the ‘supervised Bayesian posterior’ rather than the plain supervised likelihood.
Finally, in Section 9, we compare our supervised NB to standard NB on a variety



of real-world data sets. An outlook on future research is given in Section 10.

2 The Supervised Naive Bayes Model

Let (Xo, Xy,..., X)) be a discrete random vector, where each variable X;
takes on values | € {1,...,n;}. The first variable X is called the class variable,
while the remaining X, ..., X, are the predictor variables or attributes. The

(training) data set D consists of N vectors containing M + 1 entries each: D =
(di,...,dn), with d; = (djo,...,d;n). In the classification task, the goal is
to build from the training data D a model that predicts the value of the class
variable, given the values of the predictors.

The standard (multinomial) Naive Bayes classifier (NB) (see e.g. (Kontkanen
et al. , 2000)) consists of parameters ©° = (a®, &%), where o® = (af,..., o )
and <I>S (®7,), with k€ {1,... . no}, i€ {l,...,M},and [ € {1,...,n;}. Here
a® = P(X, | ©%) is the default distribution over the class, and each &%, = P(X; |
Xo = k,0° ) is a distribution over the values of X; given the class. We restrict

our parameters to lie in the set @5 defined as:

no
o :={(of,...,a}) | Y _af =1; all a; > 0}
k=1

— {@ | vke{l """" "O} Z q)k‘ll — 1 all (bk’bl > O}

ie{l,..., M} =1

©% := {(a®, ®°) | o® € a¥; d° c ®5}.

Note that ©S, the closure of ©S, is the set of all parameter vectors that cor-
respond to some Naive Bayes distribution. ©9 itself is the set of all parameter
vectors corresponding to a Naive Bayes distribution with only strictly positive
probabilities. As we shall see in section 8, without essential loss of generality we
may restrict ourselves to parameters in 5.

The (unsupervised) log-likelihood of D given ©° is defined as

log P(D | ©%) =) "log P(d; | ©),
= (1)

M
with P(d; | ©°) _O‘doH

=1

djoidj;>

where the first equality refers to the i.i.d. (independent, identically distributed)
assumption inherent to the Naive Bayes model. Eq. (1) can be rewritten as

no M n;
log P(D|©%) = Z (hk log off + Z Z frirlog q)fﬂ> ) (2)

k=1 i=1 [=1



where hy, and fy; are data frequency counters: hy is the number of vectors d; of
class djo = k, and fi; is the number of class k vectors with dj; = [.

In the standard NB classifier, for given data D, one infers the maximum
likelihood (ML) parameters ©° maximizing (2). The inferred parameters ©°

can then be — and usually are — used for supervised prediction tasks: given
(X1 = z1,..., X, = xp), one wants to make predictions about the value of
Xo. This is done using the conditional distribution of X given x1,...,x,. For

©% € ©8, this distribution looks as follows:

Hz 1 k’wcZ
Zk’ 1 ak’ Hz 1 (I)g’wc
It has often been argued that because the prediction task is supervised, the
score function used to determine the parameters of a model should also be su-
pervised, i.e. conditional (Friedman et al. , 1997; Greiner et al. , 1997; Greiner
& Zhou, 2001; Kontkanen et al. , 2001; Ng & Jordan, 2001). This leads us to the
supervised log-likelihood S°(d; ©°) defined as follows. Let d = (k,zy,...,za) be

a single data vector. Then

P(X =kl X, =x1,..., Xy = 1,0%) = (3)

SHZ 1 kle

S%(d; ©°) :=log P(k | 21,..., 21, 0%) = log — .
W1 Ot Hi:l (I)f'm

(4)

For a sample D = (dy, . ..,dy), this becomes

M &S

> a0 L1 30
S . Sy . S i0 =1 dioidj;
S°(D;©7) = E (d;; ©%) E log no” SHM]Q)SJ
j=1 k=1 %% 1li=1 ®rrid;,;

= Z (hk log aff + Z Z Jrirlog (I)kzl> - Z log (Z X H q)k/ldaz> :
j=1

i=1 [=1 k'=1 i=1

In this paper, we are interested in the parameter vectors &° and ®° maximiz-
ing the supervised log-likelihood (5). These are generally very different from
the more commonly used ML parameters &° and oS , arrived at by maximizing
Eq. (2) analytically: while &5 and &5 are exactly proportional to their corre-
sponding training data frequency vectors, the characterization of &@° and ®° is
more complicated (see Section 6).

Since we are only interested in the conditional (supervised) likelihood, we will
restrict our attention to the set of conditional distributions. Formally, we define
the Supervised Naive Bayes model to be the set of conditional distributions of
Xp given Xq,..., Xy, defined in Eq. (3):

S ={P(Xy| X1,...,Xx,0%) | ©° € @5}

The conditional distributions are extended to N outcomes by independence. For a
sample D and parameters ©°, this results in the supervised likelihood S°(D; ©%)
given by (5).



Example 1 (©5-parameterization is not 1-to-1). Consider a domain with only
two binary variables, X, € {1,2} and X; € {1,2}. Let ®y,, = ®5,, = b € (0,1).
For all values of b, the supervised score! of any vector (xg, 1) is given by
5 &S
a> @
Plag | a1, (0, 8%)) = - 2bn o8
>k alf’q)g’lxl ’

which is constant wrt. b. This shows that there exist O, 0 ¢ O3 with
0w £ 0@ such that P(-|0@M) = P(-|6?). While all ©° € ©S index a different

unconditional distribution, some of them index the same conditional distribution.

The problem with maximizing the supervised likelihood is that the conven-
tional NB parameterization it is not concave. The following simple example
shows that the supervised score S°(D;©%) may peak more than once along some
line, contradicting concavity.

Example 2 (Non-Concavity of the supervised score). Consider the domain of
the previous example. Let each of the four possible data vectors appear exactly
once in the data set D. Set o := (0.1,0.9) and @}, := ®7, := 0.5. Figure 1
shows the plot of the supervised log-likelihood over ®35,, = 1 — ®3,.
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Figure 1: the supervised log-likelihood peaks twice as @3, varies.

Because of this non-concavity, we have to use complicated optimization methods
to maximize the supervised score (in contrast to the unsupervised Naive Bayes

"'We use the word ‘score’ whenever we want to stress that the log-likelihood is the objective
we want to optimize.



case, we cannot solve the problem analytically). Such algorithms may converge
slowly due to the non-concavity of the score. One may suspect that they could
even get stuck in local maxima, but the tools we develop in the next section allow
us to show later on (Proposition 2) that this cannot be so.

3 The Supervised L-Model

We now introduce the model M¥. This is a set of conditional distributions,
which, as we shall see, is just supervised NB in disguise, i.e., M¥* = M*.

Each distribution in M is defined in terms of a parameter vector OF =
(al, ®L), with o = (af), and ¥ = (®£,)r:, indexed as before. The set of all
parameter vectors is denoted by @Y. We formally define this set by

aL = Rk, (bL — Rk-(n1+...+nM)
and OV := {(a, &) | o € oF; ®" € d1).
Each (aF, ®F) € O indexes a conditional distribution P(Xy | X1, ..., X, (af, 1))
as follows. For a data vector d = (k,x1,...,2y), let us define

P(Xo=Fk| X, =a1,..., Xy = 211, (o, ®F))

_ eXp(“l%) sz\il eXp(q)ﬁixi) (6)
w1 exp(ag)) Hf\il eXp((I)ﬁ’ixi)
The distributions P(Xy | X1, ..., X, (o, ®F)) are extended to several outcomes

by independence (i.e. taking product distributions). One immediately verifies

term in the sum is positive. This confirms that for all (af, &) € @, and all
Ty, .o, P(Xo | @1, ..o 2o, (o, 1)) given by (6) indeed defines a conditional
distribution over Xj.

The supervised log-likelihood corresponding to this conditional distribution
is denoted by SL(d; ©L). It is of course just the log of (6) and hence given by

M no M
SH(d; (", @) = af + ) Pl —log D explaf + Y Ppy,). (7)
=1

i=1 k=1
This is extended to sample D = (dy, ...,dy) by independence:

SH(D; (oF, @")) =Y SH(dj; (oF, @1)). (8)

j=1

We now define the supervised L-model M, as the set of conditional distributions
that are indexed by ©:

ME={P(Xy| X1,...,Xy,0") | L c ) (9)



As for the model M?® with parameters ©°, the mapping from parameters ©F to
models in M¥* is not one-to-one:

Proposition 1 Let (a®, ®%) € OF. Let (v1,...,Vn,) be any vector in R* and set
Ui = =M~y for all k,i,l. Then (af +~, L + ¥) € O, and both (o, ®F)
and (o + v, ®L + W) index the same conditional distribution in ML,

Proof: Plug (o + v, % + ¥) into (7).
O

We now have two supervised (conditional) models: M?* indexed by @5, corre-
sponding to the conditional NB distributions; and M’ indexed by ©Y, corre-
sponding to the conditional ‘L-distributions’. In the next section we show that
these two seemingly different conditional models are in fact equal.

4 The sets M° and M’ are equivalent

To see that M® and MF are related, define the log-transformation L : ©% —
O as follows. For a given parameter vector (a®, %) € @5, the corresponding
transformed parameters L((a”, ®°)) are defined as L((a®, %)) := (o, ®L) with
(o, ®L) defined as:

af =logay ; Py = log Oy (10)
By plugging in (10) into (8) and further into (7), we see that for all ©° € @S5,
P(Xo | X1,..., X0, 0%) = P(Xo | X1,..., X, L(©%)). This shows that M* C
ME: each parameter ©F indexing a distribution in M? is transformed into a
parameter ©F indexing the same conditional distribution in M¥%. By this result,
one may be tempted to view O simply as a parameterization of M® in terms
of the logarithms of the original parameters. But it is more complicated than
that: in O all parameters ol and ¢, are allowed, not just those that, when
exponentiated, can be interpreted as probabilities (i.e. sum to 1 over k and [
respectively). Nevertheless we have:

Theorem 1 M5 = ML,

Proof: We have already shown that M* C M’. To show that also M* C M?,

let (af,®F) € OL. Let ¢ € RMM® be a vector with components
(co, (C11y -+ sCinr)y -y (Cngly - -+ Cgar)). Define, for k € {1,...,ne},
M
@,(fzg = dL 4 ¢, oz,(:) =k 4 ¢y — chi. (11)

i=1
From (7) we infer that, for all ¢ € R and all d,

SH(d; (a9, @) = S*(d; (a”, &%) (12)

6



To see that (12) holds, just substitute its left-hand side into (7) and see that all
co and ¢g; cancel. Now define

By = exp(0f]) = exp(Pfy + o),
M
af = exp(al?) = exp(af + co — Z Chi)- (13)

=1

Evidently, for all k£ and ¢ we can choose ¢;; such that >, ®7,, = 1, and subse-
quently ¢ such that >, o = 1. This implies that (o, %) € ©5. Substituting
(13) into (4), we find that, for all d,

S%(d; (o, ®%)) = S*(d; (!, @),

Equation 12 now implies that M* C ME.
(]

Because of the equality proved above, we can think of ®% as a parameteriza-
tion of the supervised Naive Bayes model M*; we call ®F the L-parameterization

of MS.

5 Concavity

We saw that the supervised log-likelihood is not concave for standard super-
vised NB. Our main theorem shows that, remarkably, it becomes concave in the
L-parameterization:

Theorem 2 Let O, 03 0L ¢ OV, Then:
(i) For any A € [0,1], AOW + (1 — X)0® € O (hence O is a conver set).

(ii) For any sample D of any length, S*(D;O%F) is a concave (but not strictly
concave!) function of OF.

Proof: Item (i) is immediate. For item (ii) we first introduce some convenient

notation. Given a data vector d = (g, ..., 7)) and parameters (af, ®) and
ke {1,...,n0}, we write Bio(d) for ajf and fi(d) for ®f;, . Whenever d is

clear from the context, we omit (d) from [;(d) and simply write (y;. With this
notation, the supervised log-likelihood S¥(d; ©1) can be written as

St(d; e = Zﬁw+gd eh),
=0 (14)

where g¢(d; @L —log Z exp Z Bei-



We first show that ST(D; ©F) is concave as a function of ©L. By (8), it suffices
to show for any d that ST(d; ©F) is concave as a function of ©F. Thus, we need
to show for all @), 03 € @ and all A € [0, 1], that

SLa; oW + (1 = 1e®) > Ash(d; W) + (1 - )Sshd;e®).  (15)
The left-hand side of (15) can be rewritten as

St oW + (1 - 1e®)

M
=380+ (1= N2 + g(d; 20 + (1 - 1)e®)  (16)

1=0

with g(d;-) as in (14). The right-hand side in turn becomes

ASE(d; @) + (1 — X)SE(d; ©P@)

M M
- AZ@E%,% + (1 =038+ Mg(d;0M) + (1 - N)g(d; 0@)
A -

M
=3O80+ (1= N8 + Ag(d; 0W) + (1= N)g(d; ©@). (17)
=0

Comparing (16) and (17), we see that their leftmost terms coincide. Substituting
these equations into (15), these terms cancel and we see that S*(d; ©F) is concave
if and only if g(d; ©) is concave.

Hence we need to show that g(d; ©F) is concave over @L. First note that (a)
g(d; ©) is continuous in OF at all ©F € OF; and (b) OF is a convex set (item
(i) of the theorem). Thus it suffices to prove the following claim for all ), ©®):

M 4 o)

! ) — g(d;:00) - g(d; 0®) > 0. (18)

Let bg ) = Zij\io ﬁ,g). The following chain of (in-) equalities shows that (18) indeed
holds:

(1) (2)
29 (4 =39 ) - gta o)~ ott)

IR (2)
= —log Z exp s + log Z exp b Z exp by,
k

b2 + b0 + b
= —log Zexp b(l)—i—bQ) —|—22ex '+ k ;— kT O
k>k!

+log [ D exp (0 +67) + > (exp (0 +b7) + exp (b, + b?))) > 0.
k

k>k'



The final inequality holds because

T +
Veyer exp(z) +exp(y) > 2exp ( 5 y),

which implies what we have used here, namely
r+y
log(exp(z) + exp(y) + C) > log(2exp (T) o)

for C' > 0. This shows that S*(d; ©F) is concave. To see that it is not strictly
concave, let (o, ®L) € O, and let v and ¥ as in Proposition 1. For A € [0, 1]
define O, = A(a*, %) + (1 — N)(a” + v, ®% + ¥). Then clearly S¥(D;0,) is
constant wrt. . 0

Together, items (i) and (ii) demonstrate that finding the Naive Bayes distri-
bution maximizing the supervised likelihood in the L-parameterization is finding
the maximum of a concave function over a convex set. Thus we can use a simple
local optimization method such as hill-climbing. The only remaining difficulty
is that because concavity is not strict, there will be flat areas in the supervised
likelihood surface. In Section 8 we discuss how to handle these.

Here is an important consequence of Theorem 2:

Proposition 2 The log-likelihood does not have local maxima over the standard
parameterization O3,

Proof sketch: It is easily shown that the L-transform and the ‘S-transform’
(Egs. 12, 13) are continuous. Also, all parameters in ©5 corresponding to the
same distribution in M® form a connected set; and S*(D;©F) is concave. We
can exploit these facts to drive the assumption of multiple local maxima in S
to contradiction.

We can now make the following two remarks. First, the global maximum will
be achieved for a connected set of points rather than a single point. Second, al-
though the log-likelihood can have no local maxima for the standard Naive Bayes
parameterization, it is not concave either (i.e. it will have ripples and wrinkles).
Greiner and Zhou have used the L-parameterization in (Greiner & Zhou, 2001)
and report that “it worked better” [than the standard parameterization|. Our
results explain this.

Example 3 (The concavified surface). Let us once more look at the domain
consisting of only two binary variables, but this time we choose the L-model.
Again we set ol := (0.1,0.9). Figure 2 gives some clue of how it is possible to
concavify the objective, and why it could peak twice in Example 2.



P(X_0|X_1,...,.X_M;theta)

Figure 2: the supervised log-likelihood has become a concave function of ®%,
and ®L,. The pointed line shows the transform of ®3, from Figure 1.

6 Alternative Views of the /-Model

The L-parameterization allows us to think of the Naive Bayes classifier as
a discriminative (diagnostic) rather than as a generative (sampling) model, see
e.g. (Dawid, 1976; Ng & Jordan, 2001). Even though formally identical to su-
pervised Naive Bayes, the L-model can also be interpreted in terms of logistic
regression, neural networks and ‘recalibrated’” models.

Discrete, Supervised Logistic Regression. We can think of the conditional
model M?% as a predictor that combines the information of the attributes using
softmax. This is usually done for the continuous or binary case (‘linear softmax’;
(Heckerman & Meek, 1997; Ng & Jordan, 2001)). Figure 3 gives an interpretation
of this, depicting both Naive Bayes and the L-model in their Bayesian network
guises. The L-model M’ does not contain any notion of the unsupervised prob-
abilities. Terms such as P(X;|©%) are undefined, and neither are we interested
in them, our task is prediction of X, given the X;. In this sense, the L-model
is not a BRC-model in the sense of Heckerman and Meek (Heckerman & Meek,
1997), and we do not have to concern ourselves with variational dependence.

10



OO @% S
% %]

Figure 3: standard Naive Bayes net (left) and L-model (right). The arcs of
the network have been reversed and the resulting product distribution has been
replaced by softmax (denoted by tildes).

Neural Networks. The conditional distribution (6) is equivalent also to a
single-layer (no hidden units) linear feed-forward neural network with logistic
sigmoid (softmax) activation function, see e.g. (Bishop, 1995). In this type of a
network both inputs and outputs are encoded using the so called 1-of-c encod-
ing with a binary node for each variable—value combination. Thus the logistic
activation function is applied to a linear function of the resulting set of indica-
tor variables and the activation value of the output nodes can be interpreted as
probabilities of the corresponding class values.

The af terms which represent the default classification of the M’ model can
be implemented by adding a so called bias node, i.e. a node with constant input,
to the network. It is sometimes recommended that if a bias node is present
one should use a 1-of-c-1 encoding instead of the 1-of-c encoding because the
1-of-c encoding creates a linear dependency on the bias unit (Sarle, 2001). In
other words the model is overparametrized. Indeed the same phenomenon is
present in our model which is indicated by Proposition 1. In Section 8 we present
a solution to the optimization difficulties caused by overparametrization. Our
solution which is justified by priors defined over the parameter space is in effect
similar to the weight-decay method used in neural networks literature.

The parameters of the neural network are usually optimized to maximize the
conditional likelihood, or equivalently the so called cross-entropy, by local search
heuristics such as the gradient descent algorithm. Because of the equivalence
of our L-parametrization and single-layer feed-forward neural networks it follows
from Theorem 2 that the objective function of the neural network is also concave.
However, it does not follow that concavity would be preserved when hidden layers
are added to the network.

11



Calibration. The L-model has the following interesting property: the deriva-
tive of S*(D;©F) becomes zero if and only if for all k, 4,1, the following holds:

N

ST P = k| ... djar, OF) = I,

=1 (19)
and Y P(Xo=F|dj,....djn, 0%) = fra

Jidji=l

That is, we have found good parameters for the supervised task exactly when we
are ‘well-calibrated” wrt. D and all subsets D;; := {d; | dj; = (} in the sense of
(Dawid, 1982). Thus optimizing ©F according to S means ‘recalibrating’ our-
selves using Zf\il n; + 1 calibration tests simultaneously. Here the independence
assumption of our model saves us from becoming ‘incoherent’ as we recalibrate,
see (Dawid, 1982).

As a spin-off from this research, we find that we can solve any calibration
problem of the form

Vier Y P(Xo=k|dp,. .. dp,©") = |{j: f(dj) =1Adj =k},
Jif(dj)=1

where F is any collection of indicator functions computable from X,..., X by
local optimization methods. In the long run—with an unlimited amount of data
available—we should be calibrated with respect to all such calibration tests f,
see (Turdaliev, 1999). With only limited data availability the calibration tests
implicit to the Naive Bayes model (i.e. Fyp = {fu: fu(d)=1<d; =1} n{1})
seem to be a sensible choice in many cases. Other choices can be made that do
not necessarily correspond to a Bayesian model. In order to avoid over-fitting we
may, for instance, prune the NB model by demanding the calibration sets to be
of certain minimal size ¢, arriving at F. = {fi; : |Du| > ¢} N {1}. For small data
sets the resulting model may consist of considerably fewer parameters (depending
on c).

7 More General Bayes Nets

Our main ideas were most easily explained using the Naive Bayes classifier as
a running example. But in fact they apply to all Bayesian Network models as
long as they satisfy an extra condition as given below. We shall now introduce
some more notation needed to describe this generalization thereafter.

Consider a set of random variables Xj, Xi,..., Xy taking values in
{1,...,n0},...,{1,...,na} respectively. Let B be a Bayesian network struc-
ture over Xy, ..., Xy, which factorizes P(X) into

M/
P<X07"‘7XM') :HP(XZ | Pa’i)a

1=0

12



where Pa; is the parent set of variable X; in B.

We are interested in predicting some class variable X,, for some m €
{0,..., M’} conditioned on all X;, i # m. Without loss of generality we may
assume that m = 0 (i.e. X, is the class variable) and that the children of X in
B are {Xi,..., Xy} for some M < M’. For example, if we take M = M’ and B
the Naive Bayes structure (leftmost picture in Figure 3), then we are back at our
original case. The Bayesian Network model corresponding to B is the set of all
distributions satisfying the conditional independencies encoded in B. It is usually

parameterized by vectors ©F with components of the form 8‘3 2)lai defined by

9(7/ $1)|Q1 : P(X'L = xl|PaZ = ql)7

where ¢; is any configuration (set of values) for the parents Pa; of X;. We let M5
be the set of conditional distributions P(Xy| X1, ..., Xy, ©F) corresponding to
a distribution P((Xo, ..., Xar) | ©F) satisfying the conditional independencies
encoded in B.

We now write ¢;(x) to denote the configuration of Pa; in B given by the vector
x = (xo,...,xp), and ¢;(k, ) for the same configuration given by (k,z1,...,xp).
Then MP? contains the conditional distributions
9?0 rolao@ Lt Oaotante

Ml )
k;’ ) 06 B

P(X0|I1,...,JZM/,@B): P
(0,k")lqo(x )Hi:l (4,3) ] (K',)

(20)

extended to N outcomes by independence. In particular, all 0; ;)4 With ¢ > M
(standing for nodes that are neither the class variable nor any of its children)
cancel out of the equation, since for these terms it is ¢;(z) = ¢;(k,z). Thus
the only relevant parameters for determining the conditional likelihood are of
the form 967%”% for all i € {0..M}, z; € {l.n;} and ¢; any configuration of
values of Pa;. We order these parameters lexicographically and define ©®% to be
the set of vectors constructed this way, with, for all ¢ € {0,..., M}, z; and ¢;,
85 el > 0 and Zx 1 (Z el = 1- OB is a generalization of ®S to arbitrary
Bayesian network models.

We now re-define ®% analogously to its previous definition: for each compo-
nent 9 Go)as of each vector ©F € @5, there is a corresponding component 9(1 o)l
of the vectors ©F € @F; but the components 9 (i.2)]q; are in the range (—o0,00)

rather than (0,1). Each ©F € @ defines the following conditional distribution:

L M
eXP(05 ) o)) [1im1 XPOG o)1, )

P(Xo | z1,..., 200, @L) L '
S P00 a)) T XP O )

(21)

This gives supervised likelihood ST(D;0F) = Zjvzl SE(d;; ©F) with S*(d; ©F)
equal to the logarithm of (21).
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We define M to be the set of conditional distributions P(Xo| X1, ..., Xy, ©OF)
for ©F € @Y. These distributions are extended to N outcomes by independence.
We will see below that we can show analogs of Theorems 1 and 2 (and hence opti-

mize the supervised likelihood by hill-climbing) as long as the following condition
holds for B :

Condition 1 For all j = 1..M, there exists X; € Pa;N{Xy,..., Xy} such that
Paj Q PCLZU{XZ}

Remark. Condition 1 demands that any two parents of any child of the class
Xy are either connected via an arc in B, or they must both be parents of Xj.
In particular, any node having a common child together with Xy must also be
connected to X itself. In other words, all parents Pa; of a child X; of X, must
be ‘conditionally fully connected’ in B, i.e. fully connected modulo arcs (between
parents of Xj) that have no effect on the conditional P(X | Pa; \ {Xo}).

Condition 1 is automatically satisfied by the Naive Bayes (NB) and (as can easily
be verified) the TAN (tree-augmented NB) classifiers Friedman et al. (1997). It is
also automatically satisfied if X only has incoming arcs? (‘diagnostic’ classifiers,
see (Kontkanen et al. , 2001). For Bayesian network structures for which the
condition does not hold, we can always add some arrows to arrive at a structure
B’ for which the condition does hold. Therefore, the model M? is always a
submodel of a larger model M? for which the condition holds. For these reasons,
we regard Condition 1 as relatively mild. It allows us to generalize Theorems 1
and 2 as follows:

Theorem 3 M?Z C ML, Moreover, if B satisfies Condition 1, then MB = MF®.

Theorem 4 O (as defined in this section) is conver. S*(D;OL) is concave,
though not strictly concave.

The proof of Theorem 4 is entirely analogous to the proof of Theorem 2 and
therefore omitted.

Proof of Theorem 3 M? C M’ is immediate from doing the log-parameter
transformation, i.e. setting eé,mi)|qi = log 057%”% for all 7, x; and g;.

It remains to show the hard part: under Condition 1, MY C M5, In the
following, we will often speak of the parent configuration gg of Xy. In case X
has no parents (i.e. M = M’), Pay is the empty set and go(z) is independent of

the values of x = (zg,...,zn).

2Tt is easy to see that in that case the maximum supervised likelihood may even be deter-
mined analytically.
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We introduce some more notation. For j = 1..M, let p; be the maximum num-
ber in {0,..., M} such that X, € Paj;, Pa; C Pa, U{X, }. Such a p; exists
by Condition 1. Let ¢ = p;. Condition 1 implies that ¢;(z) is completely deter-
mined by the pair (z;,¢;(z)). We can therefore introduce functions ); mapping
(xi,qi(x)) to the corresponding ¢;(x). We then get that, for every instantiation

x = (xg,...,xp) of all the variables and corresponding parent configurations
Go(@), -, (), for j = 1..M,
q;(z) = Qj(p;, qp, (1)) (22)

Now, for ¢ = 0..M and for each configuration ¢; of Pa;, we introduce a constant
cijg and we define, for any ©F € O,

(c) — pL
Oeria = Oola T Cile = D Cilswian): (23)

Jipj=t

The Qéf)xi)‘qi constructed this way are combined to a vector ©9 which clearly is
a member of OL.

Stage 1 In this stage of the proof, we show that no matter how we choose
the constants ¢, for all ©F and corresponding O we have SY(D;0) =
SE(D;eb).

To see this, consider any data vector d = (xo,...,zyr). d determines config-
urations qo(d), ..., qu(d) of the parents of Xo,..., Xy. We first show that, for
every possible d, no matter how the choose the ¢;q,,

M M
D Ot = 2 iotasta  Colaota) (24)
=0 1=0

To derive (24) we substitute all terms of S 1 Q(fx Jigs(a) DY their definition (23).

Clearly, for j = 1..M, there is exactly one term of the form cjj4, () that appears

in the sum with positive sign. Since for each j € {1,..., M} there exists exactly

one i € {0,..., M} with p; = 4, it must be the case that for j = 1..M, a term
of the form ¢;, (;,¢:(a)) appears exactly once in the sum with negative sign. By
(22) we have CjlQ;(wsai(d) = Cjlg;(d)- Lherefore all terms c;y,,(a) that appear once
with positive sign also appear once with negative sign. It follows that, except for
Cojgo(d)> all terms c;j4 (@) cancel. This establishes (24). By plugging in (24) into
Equation 21, it now easily follows that S¥(D;0)) = S¥(D;6%) for any D of
any length. This concludes the proof of Stage 1.

Stage 2 Define
exp(6 ). (25)

B
e(ivwi)lq (i,4)]qs
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In this stage we show that we can determine the c;,, such that for i = 0..M, all
x; and g;,

n;

B _
D 0 =L (26)

x;=1

We will achieve this by sequentially determining values for ¢;,, in a particular
order. We now need some terminology: we say ‘c; is determined’ if for all config-
urations g; of Pa;, we have already determined ¢;,,. We say ‘c¢; is undetermined’
if we have determined ¢;4, for no configuration ¢; of Pa;. We say ‘c; is ready to
be determined’ if ¢; is undetermined and at the same time all ¢; with p; = ¢ have
been determined.

We first note that as long as some ¢; are undetermined for ¢ = 0..M, there
must exist ¢;; that are ready to be determined. To see this, note either ¢; itself is
ready to be determined (in which case we are done), or there exists j € {1,... M}
with p; =4 (and hence X; € Pa;) such that ¢; is undetermined. If ¢; is ready to be
determined, we are done. Otherwise, there must exist some k with X; € Pay, such
that ¢ is undetermined. We can now repeat the argument, and move forward
in the Bayesian network structure B restricted to {Xo,..., X/} until we find a
¢; that is ready to be determined. Because B is acyclic, we must find such a ¢
within M + 1 steps.

We now describe an algorithm that sequentially assigns values to ¢; such that
(26) will be satisfied. We start with all ¢; undetermined.

WHILE there exists i € {0,..., M} such that ¢; is undetermined DO:
{

i. Pick any 7 such that ¢; is ready to be determined (we have just seen that
this is possible).

n; B
:l‘iil 9(1,x1)|q,

ii. Set, for all configurations ¢; of Paj;, ¢;), such that = 1 holds

(clearly this is possible).

}

This algorithm will loop M + 1 times and then halt. Step 2 does not affect the
values of ¢;,, for any j, ¢; such that c;,, has already been determined. Therefore,
after the algorithm halts, (26) holds. This concludes the proof of Stage 2.

Let ©F € ®". For each choice of constants ¢;,, this determines a corresponding
vector O with components given by (23). This in turn determines a correspond-
ing vector ©F with components given by (25). In Stage 2 we showed that we can
take the ¢;4 such that (26) holds. This is the choice of ¢;, which we adopt.
With this particular choice, ©F indexes a distribution in M5. By applying the
log-transformation to the components of ©F we find that for any D of any length,
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SB(D;08) = SY(D;01), where SB(D; ©%) denotes the supervised likelihood of
©F as given by summing the logarithm of (20). The result of Stage 1 now implies
that ©F indexes the same conditional distribution as ©F. Since OF ¢ O was

chosen arbitrarily, this shows that M* C M?5. O

8 The Need for Priors

A Problem In practical applications, sample D will typically have some of its
frequency counters fr; = 0. In that case, the supervised likelihood S°(D;©%F)
in the ordinary parameterization (1) is maximized for a parameter vector with
some of the parameters (conditional or class probabilities) equal to 0. This
poses a problem for supervised likelihood optimization within the model M?%:
if S¥(D;©%) is maximized for some (o, &) with ®7, = 0 for some k,14,[, then
the supervised likelihood S*(D;©F) in O is maximized for some (aF, ®F) with
¢l = —o0o and ST will have no maximum over ®%. This makes our optimization
task hard to perform.

The same problem can arise in more subtle situations, as illustrated by the
following example:

Example 4 (Divergence of S). Consider a domain of three binary variables
Xo, X1, Xo, with D = {(1,1,1),(1,1,2),(1,2,2),(2,1,1),(2,2,2))}. SY(D; (a, D))
is maximized (for example, see Example 1) at a = ®.15 = P45 = (0,0) and
$qy = =Dy = (b,—b) with b — oo. This can be seen as follows. All vectors
with x1 = x5 have a conditional likelihood of 0.5, which cannot be improved,
since there is always a pair of them with contradicting class. Finally observe,
that P(XO =1 | X1 = 1,X2 = 2,@) b—>—o>o 1.

We can avoid such problems by introducing Bayesian parameter priors. We im-
pose a strictly concave prior, which goes to —oo along with any parameter. We
also introduce a set of constraints on the parameters, namely >, af = 0 and for
all 4,1 >, ®F, = 0, thus ensuring the existence of a single maximum of the new
objective

S*(D;©) :=log (P(Xy | X,,. .., X, O)P(O)

=S5(D;0) +log P(0). (27)
over the restricted parameter space.

Note that maximizing S*(D; ©) is equivalent to Bayesian Mazimum A Poste-
riori (MAP) estimation based on the conditional model M, and prior P(0). We
have shown in earlier work that for ordinary, unsupervised Naive Bayes, when-
ever we are in danger of over-fitting the training data (ie. for small sample sizes),
future data predictions can be greatly improved by imposing a prior on the param-
eters and using Bayesian MAP or Bayesian Evidence rather than ML prediction
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(Kontkanen et al. , 2000). Supervised NB is inclined to worse over-fitting than
unsupervised NB; since it uses the same amount of parameters to model a much
smaller domain. In the experiments reported in the next section, we decided to
use a strictly technical prior that draws all parameters a little bit closer to zero
(i.e. zero-influence), moderating over-fitting. The prior used here is simply the
normalized product of all parameters:

exp exp Py
P(O) = ) 28
(©) 1;[ (Zk, exp aj H > g €XP CIDkuil) (28)

il

9 Empirical Evaluation

The goal of this empirical study was to illustrate the usefulness of the su-
pervised learning framework presented by using the Naive Bayes classifier as
an example predictive model. The globally optimal supervised parameters were
obtained by maximizing (27) using a simple hill-climbing algorithm with stan-
dard line search. As the test bed, we used 32 real-world data sets from the
UCT repository. Where data was continuous, it was discretized as described at
http://www.cs.Helsinki.FI/u/pkontkan/Data/. The cross-validation method
was leave-one-out (loo), avoiding variance due to random splits.

Table 1 lists the data sets used — ordered by size — and both the log-score
and the percentage of correct predictions obtained by using standard Naive Bayes
(with uniform prior and evidence prediction) and our supervised method. The
‘winner scores’ are boldfaced.

We observe, that in 26 out 32 cases the supervised method has produced a
better log-score. On a few small data sets, it apparently over-fitted the training
data more. On all larger data sets it consistently outperformed standard NB, in
several cases by quite a margin. In contrast, for the few smaller data sets where
standard NB outperformed supervised NB, it did so by much smaller margins.
This is exactly the type of behavior that we had expected. For completeness
we mention, that for the 0/1-loss, the supervised method has won by a score
of 18:13. Again it wins on larger data sets in agreement with results in (Ng &
Jordan, 2001).

10 Conclusion and Future Work

We showed that by using the parameter transformation described in this pa-
per, one can effectively find the parameters maximizing the global supervised
likelihood (or rather, the posterior distribution) of the Naive Bayes model. The
empirical results reported suggest that this technique can be used for improv-
ing the accuracy of the Naive Bayes classifier in many cases by a considerable
amount. Furthermore, we showed that our theoretical result can be extended to
more general classes of Bayesian network models including the tree-augmented
NB model. In the future we intend to extend our experiments to involve also such
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Table 1: Leave-one-out cross-validation results

’ data set \ size \ uns. NB \ sup. NB ‘
Mushrooms | 8124 | 0.131/95.57 | 0.002/100.00
Page Bl. | 5473 | 0.172/94.74 | 0.102/96.29
Abalone | 4177 | 2.920/23.49 | 2.082/25.95
Segment. | 2310 | 0.181/94.20 | 0.118/97.01
Yeast 1484 | 1.155/55.59 | 1.140/57.75
German Cr. | 1000 | 0.535/75.20 | 0.524/74.30
TicTacToe | 958 | 0.544/69.42 | 0.099/98.33
Vehicle S. | 846 | 1.731/63.95 | 0.682/72.22
Annealing | 798 | 0.161/93.11 | 0.053/99.00
Diabetes 768 | 0.488/76.30 | 0.479/75.78
BC (Wisc.) | 699 | 0.260/97.42 | 0.105/96.42
Austr. Cr. | 690 | 0.414/86.52 | 0.334/85.94
Balance Sc. | 625 | 0.508/92.16 | 0.231/93.60
C. Voting | 435 | 0.632/90.11 | 0.102/96.32
Mole Fever | 425 | 0.213/90.35 | 0.241/88.71
Dermat. 366 | 0.042/97.81 | 0.079/97.81
Ionosphere | 351 | 0.361/92.31 | 0.171/92.59
Liver 345 | 0.643/64.06 | 0.629/68.70
Pr. Tumor | 339 | 1.930/48.97 | 1.769/49.26
Ecoli 336 | 0.518/80.36 | 0.562/81.85
Soybean 307 | 0.647/85.02 | 0.314/90.23
HD (Cleve) | 303 | 1.221/58.09 | 1.214/55.78
HD (Hung.) | 294 | 0.562/83.33 | 0.444/82.99
Breast C. | 286 | 0.644/72.38 | 0.606/70.98
HD (Stats) | 270 | 0.422/85.19 | 0.419/83.33
Thyroid 215 | 0.054/98.60 | 0.132/94.88
Glass 1d. 214 | 0.913/70.09 | 0.809/69.63
Wine 178 | 0.056/97.19 | 0.169/96.63
Hepatitis 155 | 0.560/79.35 | 0.392/82.58
Iris Plant | 150 | 0.169/94.00 | 0.265/94.67
Lymphogr. | 148 | 0.436/85.81 | 0.375/86.49
Postop. 90 | 0.840/67.78 | 0.837/66.67

more complicated models. We also plan to investigate how to prevent over-fitting
with small data samples by using theoretically more elaborate parameter priors
than the simple technical prior used in this paper.
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