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A study of electrofishing bias in terms of habitat and
abundance using information-theoretic tools

Kimmo Valtonen, Tommi Mononen, Petri Myllymäki, Henry Tirri, Jaakko Erkinaro, Erkki
Jokikokko, Sakari Kuikka, and Atso Romakkaniemi

Abstract: In electrofishing it is usually assumed that the abundance of fish at a site is strongly dependent on habitat
type. In practice the yearly choices of sites are not perfectly representative of the distribution of habitat types in a river,
so a bias is introduced into density estimates based on the observed densities. However, it is assumed that this bias is
time-invariant, allowing the use of observed densities as relative values. In this work we study whether this is so using a
general information-theoretic methodology in a probabilistic framework. Our methodology allows measuring the similarity
of pre-existing biological knowledge and an empirical model learned from a set of new observations. It also enables a
separate study of habitat sampling bias and habitat–abundance relationship over a time series. Given a set of restrictions
on the eligibility of sites, as is usually the case in electrofishing, bias-minimal selections of sites to electrofish can also
be provided. In our empirical studies we test our methodology on real-world data sets from two Gulf of Bothnia rivers,
consisting of expert-made habitat site classifications coupled with observational electrofishing data on salmon. Our
approach is general in the sense that there are no restrictions on the nature or construction method of the probabilistic
models used. Furthermore, our methodology compares the models directly, instead of comparing artificial data sets
generated using them.

1. Introduction

It is a basic assumption in the planning of electrofishing that
there will always be a bias in the data, for various reasons: for
example, electrofishing in some habitats is technically difficult,
it is thought that some habitats are too hostile to support any
fish, or there are too many sites to allow electrofishing with
full representativeness. It is however assumed that this allowed
bias is time-invariant, enabling the use of observed densities as
relative values comparable over a time series.

Let us state briefly the premises adopted in this work. Our
basic assumption is that the abundance of fish at a particular
site depends on the habitat type of that site. Byabundancewe
mean relative density, i.e. the density of a particular age group
given a particular habitat, relative to the densities of that age
group in other habitats, during a particular year. The actual ab-
solute densities naturally depend on the absolute size of the
population, which we assume to be dependent on other factors
(such as the numbers of ascending adults in previous years)
excluded from this analysis.

We furthermore make some assumptions of more technical
nature. We assume that the habitat classifications are accurate
and sufficient. In reality this is not exactly true: for example,
we know that the electrofishing sites cover only a tiny por-
tion (less than 1%) of the habitat-classified areas they are part
of (see Fig. 1). The habitat classifications of the sites stay the
same over time in our data. This enforces upon us an assump-
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tion of time-invariance, which might also be questioned. These
technical assumptions depend solely on the nature of our data:
given more accurate data, e.g. habitat-classification of elec-
trofishing sites instead of larger areas, our models would reflect
nature more accurately.

Given these assumptions, we study in this paper the inter-
play of habitat and abundance. We demonstrate a methodol-
ogy which allows us to compare existing biological knowl-
edge to empirical models built from new observations. What
is more, our methodology enables us to study habitat sampling
bias and the relationship of habitat and abundance both sepa-
rately and together. We provide examples of application to var-
ious types of fisheries problems: both as a tool for data analysis
and as a planning aid in the selection of sites to electrofish. In
our empirical studies, we apply our methodology to real-world
data from two Gulf of Bothnia salmon rivers, Simo and Tornio
(Finnish side).

We start by describing in Chapter 2 our modeling approach.
In Chapter 3 we define our methodology formally, proceeding
to show examples of its application in Chapter 4 using artifi-
cial data. We describe our real-world data sets in Chapter 5,
expounding our empirical work on them in Chapter 6. Finally,
we discuss the results and outline future work in Chapter 7.

2. Modeling approach

Given biological knowledge (or a set of hypotheses) and a
set of new data, a natural objective is to study how well the
pre-existing knowledge describes the new observations. One
way of tackling this problem is to build a model describing the
new data, proceeding to compare the resulting empirical model
to the knowledge. To enable comparison, a common language
and structure for expressing both models is needed.

In this work we have picked probability theory as such a lan-
guage, i.e. we assume that both the knowledge and the empiri-
cal model are probability distributions. Given the assumptions

: 1–20 ()



Fig. 1. The ratio of electrofishing areas and the habitat-classified areas covering them, average and range across the available time
series. (a) River Tornio. (b) River Simo.
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of Chapter 1, we are thus interested in modelingP (H, A), the
joint distribution of habitat and abundance, whereH denotes
habitat type andA abundance of salmon. From basic laws of
probability it follows that this joint distribution can be written
down using two different structures:

P (H, A) = P (H)P (A | H)(1)

= P (A)P (H | A).(2)

When learning an empirical non-causal model from a data set,
both structures are viable. Biological knowledge, however, is
much easier to express using (1), due to causal intuition. Hence,
we choose it as our structure.

We choose this simple model in favour of more complex
ones, both to simplify exposition and because we assume that
habitat is the dominating factor affecting abundance. More-
over, the main aim of this paper is to study the interplay of
habitat and abundance, expounding the merits of an information-
theoretic methodology while focusing on habitat selection bias.
Other factors that abundance might depend on are beyond the
scope of this work.

As an illustrative example of the simplifying assumptions
made, the abundance of each age group is modeled separately,
resulting in a set of models

M = {P1(H,A1), . . . , Pk(H, Ak)},
one for each of thek age groups. Thus, we assume thatAi,
the abundance of age groupi, does not affect the abundances
of other age groups. (We will drop the age group index from
now on to simplify notation.) We also ignore any dependencies
between abundances of age groups at different points in time.
This means that, for example, the abundance of age 1+ fish
is assumed to be independent of the abundance of 0+ fish in
the previous year. It must be stressed that whether such depen-
dencies are taken into account or not is irrelevant with respect
to the essence of our methodology. The tools exhibited in this
paper deal with probabilistic models in general, regardless of

their structural complexity. They would work just as well on
more intricate models.

Our goal is to find a set of measures on probabilistic models,
enabling the study of the following objectives:

(1) The amount of habitat sampling bias over a time series.
Have the yearly site choices been representative of the
river with respect to habitat type?

(2) Variance of habitat sampling bias over time. Has the bias
stayed constant?

(3) Bias-minimality of the yearly choices of sites in the avail-
able time series. How far have they been from an opti-
mally representative set of the same size (given a set of
restrictions on our choices)?

(4) Variance over time in the conditional distribution of abun-
dance given a habitat. Has the relationship of habitat and
abundance stayed the same?

(5) An analysis of possible changes in the joint distribution
of habitat and abundance over a time series, and recogni-
tion of whether the changes are due to a change in habi-
tat sampling or to a change in the relation of habitat and
abundance.

Objectives (1) - (3) deal with habitat sampling bias. Objectives
(4) - (5) study whether habitat sampling is the only factor af-
fecting the joint distribution of habitat and abundance.

An important aspect of our approach is that it leaves com-
pletely open the way the probabilistic models are constructed.
They can be based on biological knowledge, and/or learned
from data, using any preferred methodology. Therefore we can
e.g. evaluate how much general biological knowledge, obtained
from other studies, may help in estimation.

Let us briefly describe the traditional approach to this prob-
lem for comparison purposes. In several cases, a simulator is
constructed representing “truth” (ourP (H,A) above), and then
artificial data is generated from it, i.e. a data set of imaginary



observed densities at sites of different habitat types. The real-
world data is then compared to this artificial data set using the
tools of classical statistics. We will discuss in detail in Chap-
ter 7 the ways our approach differs from the traditional one.

3. Methodology

Since our models are probability distributions, we need a
means of measuring their similarity. With this in mind, we first
describe some basic information-theoretic concepts, and then
discuss the particular type of empirical modeling adopted in
this work.

In the following we assume that our domain is discrete, i.e.
our variables have either nominal or ordinal values. The habi-
tat variable can be seen as an example of a nominal variable:
there need not exist any order on the set of habitat types. Abun-
dance on the other hand can be viewed as either continuous or
discrete (but ordered). From the management point of view, an
ordered but discrete value set for abundance suffices, since it
allows qualitative judgements about the system.

3.1. Measuring the divergence of probabilistic models
For a general introduction to information theory, see [1]. Let

X be a random variable with alphabetX and probability mass
functionP (x), x ∈ X . Therelative entropybetween two dis-
tributionsP (X) andQ(X) is defined as

(3) D(P (X) ‖ Q(X)) =
∑

x∈X
P (x) log

P (x)
Q(x)

,

where Q(X) is another probability mass function. Relative
entropy is also calledKullback-Leibler distance[3]. Properly
speaking, relative entropy is neither a distance or a measure,
since it is asymmetric (D(P ‖ Q) 6= D(Q ‖ P ) in general)
and does not satisfy the triangle inequality. Hence, we will use
the termdivergencein this presentation.

D(P ‖ Q) ≥ 0 for all distributionsP andQ, andD(P ‖
Q) = 0 if and only if P (X) ≡ Q(X), that is, if the two distri-
butions are the same. We will use the convention0 log 0

Q(X) =
0 for the cases whenP (X) = 0, on the grounds that
limx→0 x log x = 0.

In intuitive terms,D(P ‖ Q) is a measure of the distance
between two distributionsP andQ, i.e. it measures the ineffi-
ciency of assuming that the distribution isQ when the “true”
distribution isP (hence the asymmetric nature.) You can also
see relative entropy as the expected logarithm of the likelihood
ratio, i.e. the exponent of the expected error in assuming the
distribution isQ, when it in fact isP . Example 3.1 illustrates
the suitability of relative entropy as a tool for the study of ob-
jectives (1) - (3).

Example 3.1.Let H describe the habitat type of a site. Let
us for simpleness of exposition assume that it has only two
values:poor andgood. Let P (H) be our “true” model for the
distribution of habitat types in a river. Instead of usingP (H)
we employ distributionQ(H), however.D(P (H) ‖ Q(H)),
the relative entropy (divergence) ofP (H) andQ(H), is shown
in Fig. 2(a).

The definition ofconditional relative entropyis

(4)

D(P (Y | X) ‖ Q(Y | X))

=
∑

x∈X
P (x)

∑

y∈Y
P (y | x) log

P (y | x)
Q(y | x)

,

defining the divergence of two conditional distributions
P (Y | X) andQ(Y | X), whereY is a random variable with
alphabetY, andQ is a probability mass function. Example 3.2
shows how conditional relative entropy enables us to study ob-
jective (4).

Example 3.2.As in Example 3.1, letH describe the habitat
type of a site. In addition to having a distributionP (H) over
the habitat types of sites in a river, we also have two conditional
distributionsP (A | H) andQ(A | H) describing abundance at
a site given its habitat type. To keep things simple, we assume
thatA has only two values,scarceandabundant. An example
of P (A | H) andQ(A | H) is shown in Table 1. E.g. according
to distributionP (A | H) the probability of there being a lot of
fish when the habitat is ofpoor type is 0.1. Intuitively put,
Q(A | H) differs from P (A | H) in being more optimistic
about abundance inpoor habitats.

In order to study the general case, let us first assume that
P (A | H) andQ(A | H) always agree with respect toP (· |
H = good) as in Table 1. What they do disagree about is the
abundance of fish inpoor habitats. Let us study the graph of
divergence for different degrees of disagreement.

If P (H = poor) = 0.5, i.e. both habitat types are equally
probable,D(P (A | H) ‖ Q(A | H)) is as shown in Fig. 2(b).

Let us compare this to a case wherepoor habitats are preva-
lent (P (H = poor) = 0.9), and to a case where they are rare
(P (H = poor) = 0.1). The resulting conditional distribution
divergences are shown in Fig. 3.

It can be seen that the “true” distribution of habitat types
affects in a natural way the divergence of the conditional dis-
tributions. If a habitat type is in truth a rare one, any differ-
ences in the modeling of abundance at sites of that type add
relatively little error. If, on the other hand, a type dominates
a river, model divergence can potentially produce a significant
amount of error. Thus, our measure behaves as desired.

Finally, putting together all of the above, therelative entropy
of a joint distributionof two random variablesX andY has the



Fig. 2. (a) Example 3.1. The divergence ofP (H) andQ(H). (b) Example 3.2. Divergence ofP (A | H) andQ(A | H) when all habitat
types are equally probable.
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Table 1. Two example distributionsP (A | H) andQ(A | H).

P (A | H) Q(A | H)

H = poor H = good H = poor H = good
A = scarce 0.9 0.3 0.6 0.3
A = abundant 0.1 0.7 0.4 0.7

following decomposition property

(5)

D(P (X,Y ) ‖ Q(X, Y ))

=
∑
x,y

P (x, y) log
P (x, y)
Q(x, y)

=
∑
x,y

P (x, y) log
P (x)P (y | x)
Q(x)Q(y | x)

=
∑
x,y

P (x, y) log
P (x)
Q(x)

+
∑
x,y

P (x, y) log
P (y | x)
Q(y | x)

=
∑

x

P (x) log
P (x)
Q(x)

+
∑

x

P (x)
∑

y

P (y | x) log
P (y | x)
Q(y | x)

= D(P (X) ‖ Q(X)) + D(P (Y | X) ‖ Q(Y | X)).

In intuitive terms, this means that if the true joint distribu-
tion of X andY is P , but we useQ instead, we can study the
divergence by studying the two constituent parts of the joint
distribution separately, allowing us to tackle objective (5).

3.2. Empirical modeling
Since we have chosen to model our variables as discrete,

the multinomial distribution is a natural choice for a model
class. In a multinomial distribution a random variableX has
a set ofrX discrete valuesX = {x1, . . . , xrX

}. With the
structure we have chosen this entailsH = {h1, . . . , hrH} and
A = {a1, . . . , arA

}, whereH is our set of distinct habitat types
andA is our set of abundance categories.

Our empirical models are thus defined by a set of parameters

Θ = (θh1 , . . . , θhrH
,

θa1|h1 , . . . , θarA
|h1 ,

...

θa1|hrH
, . . . , θarA

|hrH
),

whereθhj is the probability of a site being of typehj and
θak|hj

is the probability of observing abundance categoryak

at sites of habitat typehj .
Given a data set, we choose the set of parameter values giv-

ing the highest probability to the observations. Thesemaxi-
mum likelihoodparameterŝΘ are in the case of our model
class of multinomial distributions normalized frequencies, i.e.
θ̂i = ni/

∑
j nj , whereni is the number of times eventi oc-

curs in the data.

Example 3.3.Let H = {h1, h2} andA = {a1, a2}, and our
set of observations be[[h1, a1], [h1, a2], [h1, a1], [h2, a2]]. Now
our maximum likelihood parameters arêθh1 = 3/4, θ̂h2 =
1/4, θ̂a1|h1 = 2/3, θ̂a2|h1 = 1/3, θ̂a1|h2 = 0/1, θ̂a2|h2 = 1/1.

Concerning empirical modeling in general, it should be kept
in mind that the maximum likelihood parametersΘ̂ can fail
to generalize. If the models in the chosen model class are too
complex, there is a danger of overfitting the model to the par-
ticular set of observations studied. Although we have fixed our
structure as (1), excessive complexity can still enter through
the choice of possible habitat types and the categorization of
abundance. In the case where we compare the empirical model
to biological knowledge, we can assume that the knowledge
is already encoded in an optimal, generalizing way (assuming



Fig. 3. Example 3.2. Divergence ofP (A | H) andQ(A | H). (a) Sites ofpoor type are prevalent. (b) Sites ofpoor type are rare.
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(b)

that the new observations have not been used in the construc-
tion of biological knowledge). Choosing the same categoriza-
tions for our empirical model should thus avoid overfitting to
the observations. If both models are empirical ones, however,
an overfit-avoiding criterion is needed. The MDL principle [4]
is a possible information-theoretic choice in that case. We will
not go further in that direction in this work, however, because
our focus is on comparing knowledge and empirical models,
not on the important and complicated issue of empirical mod-
eling per se.

Remark3.4. A technical problem inherent in the calculation
of D(P (X) ‖ Q(X)) is the possibility ofQ(X) being zero
for somex ∈ X , causing the divergence to explode to infinity
whenP (x) > 0 ( If P (X) = 0, we use the convention given in
Chapter 3.1). To avoid this, the models should be constructed
so that they offer nonzero support for all possible events. In
our empirical models in this work, we pretend having observed
prior to our actual measurements a small (¿ 1) and equal num-
ber of all possible kinds of events[hj , ak].

4. Application of methodology

Armed with the necessary tools, we will now demonstrate
how to use them to study our objectives. Let our data consist of
a time series of electrofishing data collected at a set of sitesS.
Data for yearyi consists of density measurements at a subset
of sitesSyi (Syi ⊆ S). We assume each site has been assigned
a habitat typehj ∈ H, whereH is the set of possible habitat
types. We also assume we have observations of abundances
aij ∈ A, whereA is the set of abundance categories, andaij

is the observed abundance category at sites of habitat typehj

in yearyi.

4.1. Studying habitat sampling bias
We will now demonstrate a set of procedures for meeting

objectives (1) - (3), which deal with habitat sampling bias.
Let P (H) denote the distribution of habitat types across all

of the electrofishing sites of a river, regardless of whether they
have ever been electrofished from or not, and letPyi(H) stand
for the observed habitat type distribution of a particular year
yi, that is, the distribution of habitat types in the set of sites
that were electrofished during yearyi, and yearyi only. P (H)
represents our biological knowledge about the habitat distribu-
tion of a river, andPyi(H) is an empirical model built from the

data for a particular year.P (H) can, for example, be based on
previous studies, be a hypothesis, or be obtained from existing
data via the river-global distribution of habitat types assigned
to the sites.

We can now study the bias incorporated in the choice of sites
for each particular yearyi in the data by means ofD(· ‖ ·). By
looking atD(Pyi

(H) ‖ P (H)) we can measure the amount
of error we make by assuming that the sites picked for each
year are representative of the entire river, i.e. that the distribu-
tion of habitats in the set of sites chosen for electrofishing in a
particular year reflects their distribution in the entire river.

Example 4.1.Let H be as in Example 3.1. All of a river’s 10
electrofishing sites have been habitat-classified as shown in Ta-
ble 2(a). Let our biological knowledge beP (H = poor) = 0.7
andP (H = good) = 0.3, and our data on observed densities
as shown in Table 2(b). We can see that each year more sites
are electrofished from, until at yeary5 electrofishing occurs at
all sites. The resulting yearly empirical habitat distributions are
shown in Table 2(c).

We can now calculate our bias in the choice of sites for each
year usingD(Pyi(H) ‖ P (H)). Fig. 4(a) shows that even
though the number of sites electrofished increases each year,
the bias increases as well up to yeary4 according to our mea-
sure. This fits with our intuition, since in yeary2 goodsites are
slightly under-represented compared topoor sites, and going
towardsy4 this under-representativeness increases. At yeary5

the bias is zero, and the empirical model agrees exactly with
our knowledge.

We can also study theoptimalityof yearly selections given
a set of restrictions on our choice of sites. As noted earlier,
electrofishing usually has a built-in bias, because some sites
and habitat types are always left unfished. In addition, there is
also a limit on the number of electrofished sites. In our real-
world data the limit lies at 11%.

Our measure allows us to study for each possible number of
electrofished sites the best possibleD(Pyi(H) ‖ P (H)) for a
given restriction on our choice of sites. This means that we can
find an optimal subset ofSe ⊆ S, the eligible sites, to elec-
trofish. This is made computationally easy by the convexity of
D(· ‖ ·), enabling us to use a hill-climbing search algorithm.
Note that there areN ,

(6) N =
( |Se|
|Syi |

)
,



Table 2. Example 4.1. (a) The types of the sites. (b) The time series of observed densities. (c) Yearly empirical habitat type
distributions.

S H

s1 poor
s2 good
s3 poor
s4 good
s5 poor
s6 poor
s7 poor
s8 poor
s9 good
s10 poor

(a)

Year s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Age class 0 6.2 1.0 1.6
y1 Age class 1 3.2 0.3 0.9

Age class 2 1.5 0 0.2
Age class 0 1.1 3.5 0.4 3.0 0.9

y2 Age class 1 0.3 1.8 0.1 2.1 0.4
Age class 2 0.1 0.7 0 1.1 0.1
Age class 0 1.3 4.2 0.4 0.9 0.6 0.9 1.1

y3 Age class 1 0.2 1.6 0.1 0.4 0.3 0.4 0.9
Age class 2 0 0.5 0 0.1 0 0.1 0.2
Age class 0 1.7 0.5 0.8 0.9 0.7 1.4 3.3 1.6

y4 Age class 1 0.4 0 0.6 0.8 0.2 0.6 2.3 1.2
Age class 2 0.1 0 0.2 0.1 0.3 0.2 0.2 0.3
Age class 0 1.6 4.0 0.3 3.7 1.0 0.5 0.5 0.9 3.0 1.5

y5 Age class 1 0.4 1.2 0 1.4 0.7 0.4 0.3 0.6 2.5 1.2
Age class 2 0.1 0.6 0 0.2 0.2 0.1 0.1 0.2 0.5 0.2

(b)

H = poor H = good

Py1 0.67 0.33
Py2 0.6 0.4
Py3 0.86 0.14
Py4 0.88 0.12
Py5 0.7 0.3

(c)

possible ways of picking site samples of the same size as that
of yearyi, so a brute-force search is impracticable for quite
small sample sizes already. For example, let us assume a river
has 50 habitat-classified areas. Let us say we wish to pick 20%
of the sites for electrofishing. If we assume that 10 of the sites
will never be chosen (|Se| = 40 and|Syi | = 10), from (6) we
see that there are 847,660,528 ways of choosing 10 sites, even
though 50 is quite a small number of sites. By comparison,
river Tornio has 565 sites.

Example 4.2.Let the observed data be as in Example 4.1. We
wish to see whether we could have made a more representa-
tive choice of sites in yearsy1, y2, y3 andy4. (Note that in this
case all sites are eligible, i.e.Se = S.) Going over all possi-
ble sample sizes, we can calculate a way of picking sites that
minimizes our bias for each size. See Table 3 for one partic-
ular series of optimal choices and Fig. 4(b) for a comparison
against the choices made in Example 4.1. We can see now that
even though our bias was non-zero at yearsy1 andy2, we could
not have done any better with samples of those sizes.

Our measure can thus be used as a planning aid: given a
subset of sites/habitat types to choose from and a selection
percentage, our methodology can offer a set of bias-minimal
selections of sites. A person planning to electrofish in a river
can also pick a set of sites freely, and see how far from the
optimum her selection lies.

Naturally, the concept of bias-minimality is conditional on
the particular habitat assignment, biological knowledge and
empirical model adopted, but note how we only require that
the type assignment defines a probabilistic sample space and
the models are probability mass functions.

Our tool can also be used to study different habitat hypothe-
ses about a river: it allows one to see whether site sampling
has been representative of the hypothesis under consideration.
Finally, dropping the time-invariance of the types assigned to
sites would require no modification to the measure; all it would

entail is that the knowledgeP (H) would differ from one year
to another.

4.2. Studying the interplay of habitat and abundance
In Chapter 2 we defined our model for the joint distribution

of abundance and habitat asP (H, A) = P (H)P (A | H). To
inspect the interplay of habitat and abundance in a new set of
observations, we studyD(Py1,...,yi(H,A) ‖ P (H, A)), where
P (H, A) is our biological knowledge, expressed as the joint
distribution of habitat and abundance, andPy1,...,yi(H, A) is
our cumulative empirical model, i.e. the empirical joint distri-
bution at yearyi, based on the data up to and including yearyi,
describing a new data set.

Using (5), the joint distribution divergence can be decom-
posed as follows:

(7)

D(Py1,...,yi(H, A) ‖ P (H, A)) =
D(Py1,...,yi(H) ‖ P (H))
+ D(Py1,...,yi(A | H) ‖ P (A | H)).

That is, the cost of assuming that our pre-existing knowledge
P (H, A) describes well the new observations up to yearyi can
be seen as the sum of two costs: the cost of assuming our habi-
tat sampling has been representative and the cost of assuming
our knowledge and the data agree on the relationship of habi-
tat and abundance. If the divergence of our joint distributions
changes at some point in time, we can see whether this is due to
a change in the choice of habitat types chosen for electrofish-
ing, to a change in the relationship of habitat and abundance in
the data, or to a change in both.

Example 4.3.Let H be the habitat type variable of Exam-
ple 3.1. We have electrofishing data for a time series of 5 years
from the electrofishing sites of Example 4.1. Our biological
knowledge about the sites’ habitats,P (H), is as in Example 4.1,
and the habitat assignments of sites are also the same (see



Fig. 4. (a) Example 4.1. Time-variance of habitat sampling bias compared to percentage of sites sampled. (b) Example 4.2. Best-case
bias vs. actual choices
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Table 3. A set of possible bias-minimal ways of choosing a given number of sites with the habitat types of Example 4.2. “*” signifies
inclusion.

% of total number of sites s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

10 *
20 * *
30 * * *
40 * * * *
50 * * * * *
60 * * * * * *
70 * * * * * * *
80 * * * * * * * *
90 * * * * * * * * *
100 * * * * * * * * * *

Table 2(a)). We have a different series of observations, how-
ever. Table 4(a) shows the yearly statistics of habitat observa-
tions. From the table we can calculate e.g. thatPy1,...,y4(H =
good) = 0.6875.

The observations of abundances given a habitat are shown
in Table 4(b), from which we can calculate e.g. that for age
class 0,Py1,...,y4(A = scarce | H = good) = 0.25. P (A |
H), our pre-existing knowledge about the distribution of abun-
dance given a habitat, is shown in Table 4(c).

We can now calculateD(Py1,...,yi(H,A) ‖ P (H, A)) as de-
scribed above, shown in Fig. 5(a) for all age classes . The de-
composition toD(Py1,...,yi(H) ‖ P (H)) andD(Py1,...,yi(A |
H) ‖ P (A | H)) is shown in figures Fig. 5(b) and Fig. 5(c).

Studying Fig. 5 we see that age 2+ data seem to diverge
from our pre-existing biological knowledge the most, and none
of the data converge to our knowledge. Turning now to con-
stituent parts, the figure indicates that habitat sampling bias
has increased from yeary2 onwards. Going back to the data,
we see that this is because sites of good type have been over-
represented from then on. Looking at the habitat–abundance
relationship divergence we see that age 0+ data actually come
close to our knowledge from yeary4 onwards, whereas the

data for age 1+ fish exhibit a steady habitat–abundance rela-
tionship, which however disagrees with our pre-existing bio-
logical knowledge. And finally, the abundance of 2+ fish in the
data (given a habitat type) seems to diverge clearly from our
knowledge beginning with yeary4, regardless of the increased
habitat sampling bias.

When interpreting the results, an important thing to keep
in mind is that the conditional distributionPy1,...,yi(A | H)
has |A| · |H| parameters, compared to|H| for Py1,...,yi(H),
i.e. there are more parameters to be estimated from the same
amount of data. Accordingly, if habitat sampling seems to sta-
bilize, but the relationship of habitat and abundance still fluc-
tuates, this might be due to several reasons, if we only have a
short time series of data. It might provide evidence of some fac-
tor besides our habitat system affecting abundance, or our habi-
tat type system might classify sites non-optimally with respect
to abundance (i.e. some habitat types in our system might dif-
ferentiate levels of abundance poorly). These two cases can be
studied by changing either the model structure or the type sys-
tem. However, in the case of a short time series, it could also be
thatPy1,...,yi(A | H) is complex enough to require more data



Table 4. Example 4.3. (a) Numbers of observed habitats per type for each year. (b) Observed abundances given habitat for each year. (c)
Pre-existing biological knowledge about the relationship of habitat and abundance, assumed to be equal for all age classes.

H = poor H = good

y1 2 3
y2 1 2
y3 1 3
y4 1 3
y5 1 3

(a)

Year H = poor H = good
Age class 0 scarce abundant

y1 Age class 1 scarce abundant
Age class 2 scarce abundant
Age class 0 scarce abundant

y2 Age class 1 scarce abundant
Age class 2 scarce abundant
Age class 0 scarce abundant

y3 Age class 1 scarce abundant
Age class 2 abundant scarce
Age class 0 abundant scarce

y4 Age class 1 scarce abundant
Age class 2 abundant scarce
Age class 0 scarce abundant

y5 Age class 1 scarce abundant
Age class 2 abundant scarce

(b)

P (A | H)

H = poor H = good
A = scarce 0.9 0.25
A = abundant 0.1 0.75

(c)

to capture the shape of the distribution well enough. Nonethe-
less, this is a problem common to all methods of comparing
models constructed from real-world data to a given model, so
we lose nothing by adopting our methodology.

4.3. Studying the interplay of habitat and abundance
without pre-existing biological knowledge

In practical modeling, the pre-existing biological knowledge
might well be lacking, or we might intentionally want to in-
corporate biological knowledge only in the habitat classifica-
tion phase, preferring to let the data decide on the habitat–
abundance relationship. In this case, we have noP (H, A) to
compare the empirical model to.

To overcome this, we adopt the following technique. At each
time stepyi we take the empirical model based on data col-
lected so far to be the accumulated biological knowledge at
that moment in time. We then measure the distance to the cor-
responding empirical model at the previous moment in time.

Formally put, we study

D(Py1,...,yi(H, A) ‖ Py1,...,yi−1(H,A)).

This procedure measures the convergence of our empirical model:
as time unwinds, successive models should come close to each
other, if our joint distribution is time-invariant. Naturally, in the
case of convergence it does not follow that ourPy1,...,yi(H,A)
would now be a “true” distribution. It only indicates that our
habitat sampling bias has stayed constant and the relationship
of habitat and abundance has stabilized. Note that this way of
measuring reflects reality in several fisheries problems: we as
observers are always located at a pointyj in time, having at
our disposal the data collected up to that point, wanting to
predict for yearyj+1. The divergenceD(Py1,...,yi(H, A) ‖
Py1,...,yi−1(H,A)) measures in a sense the amount of infor-
mation about the joint distribution that we would have gained
at yearyj+1, had we added the measurement of that year to

our data set. Our measure thus shows the momentary changes
in the empirical distribution over a time series. (In other words,
the series of divergences describe the learning process in a field
study.)

Example 4.4.Let H be the habitat type variable of Exam-
ple 3.1 once more. We have the same set of observations as in
Example 4.3, shown in tables Table 4(a) and Table 4(b). This
time we lack the biological knowledgeP (H,A), however.

We can now calculateD(Py1,...,yi(H,A) ‖ Py1,...,yi−1(H, A))
shown in Fig. 6(a) for all age classes.

The decomposition toD(Py1,...,yi(H) ‖ Py1,...,yi−1(H))
andD(Py1,...,yi(A | H) ‖ Py1,...,yi−1(A | H)) is shown in
figures Fig. 6(b) and Fig. 6(c).

The graphs show that our habitat sampling process fluctuates
slightly at first, converging after yeary4. Overall, habitat sam-
pling has a negligible effect on joint distribution divergence.
Looking at the habitat–abundance relationship, we see how 0+
data have a quirk at yeary4, apparently returning to conver-
gence aty5. By comparison, 2+ data, which have a consistent
change fromy3 on, have converged the least byy5, whereas
1+ data, which stay the same across the time series, converge
rapidly.

The technique we exhibited above is only one possible way
of tackling the problem of having no pre-existing biological
knowledge. When interpreting the results, it is helpful to keep
in mind thatPy1,...,yi always has the same data asPy1,...,yi−1 ,
added with the data of one year. Hence, as time goes on, the
potential for difference gets smaller, depending somewhat on
the method of learning the empirical models from the data. The
absolute divergences at different points in time can thus not be
used as absolute, directly comparable measures of change in
the distribution. As time goes on, successive divergences come
increasingly comparable, however.

One way of avoiding this characteristic would be to use
D(Pyi−2T+1,...,yi−T

(H, A) ‖ Pyi−T+1,...,yi(H, A)). In this case



Fig. 5. Example 4.3. (a) Variance ofD(Py1,...,yi(H, A) ‖ P (H, A)) over time for each age class. (b) Variance of habitat sampling bias
over time. (c) Variance of abundance–habitat relationship for each age class.
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we assume that a time series ofT years suffices to capture the
empirical distribution. We then compare the empirical distri-
bution of the lastT years to theT years in time that preceded
it. These two subsets of data are non-overlapping and of the
same size. Most importantly, any measurements made using
this measure at different time pointsyi andyj are comparable
as absolute values. Naturally, this type of a measure can only
capture completely changes occurring within a time frame of
2T years. This can be remedied by pickingT = b i

2c at each
instant of timeyi. If this is done, different points in time are not
exactly comparable, but the subsets of data compared at each
point in time are. In this work we will not study these tech-
niques any further, however, because they require a time series
of such length thatT can reasonably be expected to suffice for
learning the empirical joint distribution model. Our real-world
data only has time series of lengths 15 and 17, making these
techniques inapplicable.

5. Real-world data sets

Let us now exhibit the nature of our data sets in some detail.
We use habitat and electrofishing data from two Gulf of Both-
nia salmon rivers, Simo and Tornio (the Finnish side). In this
work only data on wild salmon are included.

5.1. Habitat data
Table 5 shows our set of habitat variables. The variables are

naturally grouped in the sense that e.g. all variables in theBot-
tom column are percentages which sum up to 100% for each
particular site. To demonstrate the two-layered structure more
clearly, Table 6 shows a hypothetical set of habitat data for
variable groupsCurrentandDepth.

In the following analysis, a variable set name such asDepth
should be understood as the variable set{Depth: < 20 cm,
Depth: 20 - 50 cm, Depth: 50 - 100 cm, Depth: > 100 cm}.
Fig. 7 shows how the classification accuracy of electrofishing



Fig. 6. Example 4.4. (a) Momentary changes in the empirical joint distribution for each age class. (b) Momentary changes in habitat
sampling bias. (c) Momentary changes in abundance–habitat relationship for each age class.
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sites differs significantly for the rivers: the data for Simo have
a much coarser resolution.

5.2. Electrofishing data

In our data the electrofishing sites are subareas of the areas
described by the habitat data. For each year in our time series
we have electrofishing data from a subset of the total set of
sites. The sampled sites and their number vary over time, es-
pecially in the beginning of our time series. See Fig. 8 for the
yearly locations of electrofishing sites (to the accuracy of the
location of the covering habitat area).

Each sampling site has been habitat-classified by domain ex-
perts as described in Chapter 5.1. This classification is “time-
less”, since these classifications are assumed to stay the same
during all of our available time series.

The data sets contain electrofishing data on three levels:

1. The low level, where each record describes a single in-
dividual fish caught by electrofishing.

2. The intermediate level, where each record describes a
single fishing run. That is, as electrofishing is carried out
in 1 - 3 separate runs, we have a record for each of the
individual runs at a specific site.

3. The high level, where each record summarizes the elec-
trofishing data for an entire river for a single year. This
data is irrelevant to this work, since individual sites (and
thus their types) cannot be told apart.

The lowest level is not directly useful for the main problem
here, since we are not interested in modeling a single fish. On
the other hand, this type of data contains exact measurements
such as length and weight instead of estimates. It also con-
tains a relatively large number of samples (many thousands).
An important observation is that this data is highly valuable



Table 5. An overview of the habitat variables in the data set. Each column consists of an interconnected group of variables.

Variable groups

Bottom Current Depth
Bottom: Sand/mud/clay Current: Stillwater pool Depth:< 20 cm
Bottom: Gravel,< 2 cm Current: Pool, visible current Depth: 20 - 50 cm
Bottom: Stones, 2 - 10 cm Current: Riffle Depth: 50 - 100 cm
Bottom: Stones, 10 - 30 cm Current: Rapid Depth:> 100 cm
Bottom: Boulders,> 30 cm Current: Strong rapid
Bottom: Bedrock

Table 6. An example of habitat data, groupsCurrent and Depth only. Each row is a record of data describing a site, with the values
within a variable group summing up to 100.

Current Depth

Stillwater pool Pool, visible current Riffle Rapid Strong rapid< 20 cm 20 - 50 cm 50 - 100 cm > 100 cm
0 20 30 50 0 0 0 100 0

25 50 25 0 0 0 0 40 60
65 30 5 0 0 0 60 30 10

100 0 0 0 0 90 10 0 0

in the sense that it can be used to classify fish based on their
length.

At the intermediate level, a slight complication enters. Dur-
ing electrofishing, usually more than one fishing run is per-
formed. However, the overall number of such runs, performed
consecutively at the same site on the same day, varies. The
most common number of runs is three, but sometimes there
are fewer runs. Thus, we chose to always use the first run only,
to have comparable data for all sites, rivers and years.

In fact, the data at the intermediate level are just a summing
up of the lowest-level data, augmented by data on fishing runs
that caught no fish. Therefore we created our own version of
intermediate (fishing run) level data directly from the low-level
data, adding to the result the unsuccessful fishing runs to avoid
positive bias.

As the aim is to model the abundance of each age group
separately, we need an age-classification system for our empir-
ical models. Ready-made ages are provided in the data, but for
part of the data the information is missing. Hence, we chose
to classify the fish according to their length, using 7 and 11
cm as the split points. This provided us with a significantly
higher amount of data, so we deemed it worthwhile. It also re-
moved any bias that the ready-made age-classification might
introduce to the system. These particular split points were de-
termined by domain experts. To see how they correspond to the
empirical length distributions of age-classified fish in our data
sets, see Fig. 9. Note that the plot for river Tornio also shows
how under-represented 0+ fish are in the aged subset of data
for river Tornio, due to missing age labels for small fish.

Naturally, this length-class system does not correspond ex-
actly to an age-class system: fish of the same length might have
different ages, as Fig. 9 shows. Also, it is known that salmon
grow faster and smoltify earlier in warmer environments, so a
more southern river can have younger fish at a given length.
But this is actually one of the advantages of our system: if we
assume that maturity depends on size (which depends on age),
it is reasonable to classify fish based on size, making fish of dif-

ferent ages but similar sizes (and thus presumably at the same
stage of maturity) more comparable. Weight could in princi-
ple used as an alternative indicator of size as well, but the data
was often missing, whereas length never was, so we chose to
employ length only.

5.3. Categorization of the data
We will now describe the way we chose to categorize the

available real-world data in our empirical modeling.

5.3.1. Habitat type systems
Recall from Chapter 5.1 that in our real-world data the elec-

trofishing sites are described by a set of habitat variablesV .
Our methodology requires a type system. i.e. a disjoint and ex-
haustive partitioning of the space of all possible data vectors
induced byV . In other words, we need a discrete classification
of our set of sites.

A biologist or a fishery scientist might well want to define
the type system on the basis of biological knowledge. In our
empirical work here, we had no such given system available,
and thus devised as unbiased a system as possible. This is not
a feature of our methodology, however: any disjoint and ex-
haustive partitioning of the habitat data space will do. Our aim
here was to find one which did not add any unwelcome bias to
the system from the beginning. It should serve as a crude point
of comparison. Remember also that from the modeling accu-
racy point of view, the essential thing here would be to habitat-
classify the electrofishing sites themselves, due to their being
such a tiny portion of the currently habitat-classified areas (see
Fig. 1). Our current classification is probably quite inaccurate
to start with.

Recall from Chapter 5.1 that our habitat data actually con-
sists of two layers. Our set of variables is a set ofn variable
sets,V = {V1, . . . , Vn}, where eachVi is a set ofni variables
{vi1, . . . , vini}. The values of the members ofVi sum up to
100 in each record (see Table 6).



Fig. 7. Habitat data accuracy. Each point denotes at least one occurrence of that particular value in the data. (a) River Tornio. (b) River
Simo.
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As an example of an uninformed type system, we chose to
employ equal-width discretization of our continuous habitat
variables toKh bins, independently of each other and the data.
That is, if Kh is 3, values in the range[0..33] get assigned to
value0, values in the range(33..67] to value1, and values in
the range(67..100] to value2 for each variablevij .

Let us callHi the random variable devised in this manner,
consisting of a group of variables summing up to 100 and
denoting a particular aspect of the habitat type of a site, e.g.
depth.Hi is a vector-valued random variable taking as its val-
ues our discretized classifications, i.e. the value set ofHi is
{0, 1, . . . ,Kh−1}|Vi|. Because of the requirement of summing
up to a constant, the possible values ofHi lie within a |Vi|−1-
dimensional simplex in the|Vi|-dimensional space induced by
Vi. Our discretization divides the simplex intoKh

|Vi|−1 re-
gions of equal size. The following example illustrates this.

Example 5.1.Let us assumeV = {V1, V2}. V1 = {Depth:<
50 cm, Depth: 50 - 100 cm, Depth:> 100 cm}, V2 = {Current:
pool, Current: riffle, Current: rapid}. Eachvij ∈ Vi is a contin-
uous variable with range[0..100], and

∑
j vij = 100 in each

record. Table 7(a) shows the classifications of three sites by ex-
perts usingV . We chooseKh = 2. Our type system produces
the classifications shown in Table 7(b).

Now, asH is vector-valued (H = [H1,H2]), we see that
H2 does not differentiate any of the three sites. Due to differ-
ences in the values ofH1, however,si andsj get mapped to
a different habitat type (since their discretized versions differ),
whereassi and sk are considered to be of the same habitat
type, since they both have discretized value[0, 0, 0] for H1,
even though their original classifications differ somewhat.

Fig. 10 shows the situation in visual terms.

Our goal, a single habitat type variable, is thus a vector-
valued variableH with value set

[H1, . . . , Hn] ∈ {0, 1, . . . , Kh − 1}m,

wherem =
∑

i |Vi|.

Even though we have not used any biological knowledge in
the determination of the subregions of the simplex, the ones
defined by our type system clearly ought to catch some of the
characteristics of habitat, keeping in mind the semantics of our
habitat variables: the variables within each group are more or
less ordered (going from shallow to deep water in the case of
Depthfor example).

5.3.2. Obtaining abundances from density observations
At yearyi we have electrofishing data fromSyi , a set of elec-

trofishing sites. Each sites ∈ Syi has been assigned a habitat
type hj . To describe the absolute observed densities at sites
of type hj during a year we use the average of the measured
absolute densities for sites of typehj . We might lose some in-
formation here, but we justify this by our assumptions: we do
assume that density is strongly dependent on habitat type. If
this basic assumption holds, the average should be a good es-
timate. We now havedij , an estimate of the absolute density
at yearyi given habitat type, for each habitat typehj . In order
to translate these into abundances, we equal-width discretize
the range ofdij to Ka bins. We then learn the empirical model
from the data set consisting of these discretized values.

Remark5.2. A more sophisticated abundance model could be
introduced as well, adding componentO, the observed densi-
ties, making our modelP (H)P (O|H)P (A|O, H). This would
rid us of the average-taking process, but introduce the condi-
tional distributionP (A|O, H), the probability of abundance
of a given age class given the observations of densities at a
number of sites of the same habitat type. Without quite strong
extra assumptions, this distribution cannot be learned from the
data, however, (the data only has the observed densities, not
the abundance) so we have not adopted this strategy here.

Example 5.3.Let H be the habitat type variable of Exam-
ple 3.1. We have electrofishing data for a time series of 5 years
from the electrofishing sites of Example 4.1. Our biological
knowledge about the sites’ habitats,P (H), is as in Example 4.1,



Fig. 8. The yearly locations of electrofished sites. (a) River Tornio. (b) River Simo.
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Fig. 9. The empirical length distributions of fish, aged in the data. (a) River Tornio. (b) River Simo.

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140 160 180 200

nu
m

be
r 

of
 w

ild
 p

ar
r

length in millimeters

River Tornio

0+ parr
1+ parr

>1+ parr

(a)

0

50

100

150

200

250

300

0 50 100 150 200 250

nu
m

be
r 

of
 w

ild
 p

ar
r

length in millimeters

River Simo

0+ parr
1+ parr

>1+ parr

(b)

and the habitat assignments of sites are also the same (see Ta-
ble 2(a)). The observed densities are shown in Table 8(a).

We now calculate the average observed densities per habitat
type for each year, proceeding to transform these to discretized
relative densities per year. We chooseKa = 2 to match the
two-valued abundance variableA of previous examples, ob-
taining time series data on abundances given a habitat type,
shown in Table 8(b).

6. Empirical results

We will now describe empirical results obtained using real-
world data from two Gulf of Bothnia salmon rivers: Simo and
Tornio (the Finnish side). The techniques of comparing em-
pirical models to biological knowledge have been described
in Chapter 3 and illustrated in Chapter 4. Since we did not
have available a joint distribution modelP (H, A) describing

biological knowledge, we used the techniques shown in Chap-
ter 4.3 to study the cumulative learning process of the joint
distribution from observations. For the analysis of habitat sam-
pling bias, we chose the global distribution of habitats in the
river as our biological knowledgeP (H).

Our empirical models were built as described in Chapter 3.2.
We categorized the data using the methods of Chapter 5.3,
picking Kh = 3 andKa = 3, i.e. three categories for abun-
dance and each habitat variable. We aimed at as small a number
of categories as possible, to avoid overfitting to our relatively
small amount of data, while still allowing for meaningful qual-
itative analysis.

In addition to measuring the optimality of yearly choices,
we compared against several different restrictions (in the order
of increasing restrictiveness):

1. No restrictions on selection (except the number of sites).



Table 7. Example 5.1. (a) Three sites classified by experts with respect toV . (b) H usingKh = 2, i.e. V discretized using 2 bins.

V
Site V1 V2

Depth:< 50 cm Depth: 50 - 100 cm Depth:> 100cm Current: pool Current: riffle Current: rapid

si 20 35 45 20 80 0
sj 5 65 30 15 75 0
sk 40 45 15 10 85 5

(a)

H
Site H1 H2

Depth:< 50 cm Depth: 50 - 100 cm Depth:> 100cm Current: pool Current: riffle Current: rapid
si 0 0 0 0 1 0
sj 0 1 0 0 1 0
sk 0 0 0 0 1 0

(b)

2. Sites with a non-zero percentage ofCurrent: stillwater
pool are not eligible. This is an example of a real-world
restriction.

3. Sites which have never been electrofished from during
the entire time series are excluded. This is the maximal
constant restriction imposable on the data.

If a constant restriction on the choice of sites actually exists for
a river, we would expect it to lie somewhere between restric-
tions 2 and 3.

6.1. River Tornio, Finnish side
There are 565 habitat-classified sites in river Tornio. Our

electrofishing data contains measurements from a period of 15
years. Fig. 11(a) shows the habitat representativeness of each
yearly selection of electrofished sites on the Finnish side of
river Tornio. You can see that for river Tornio the representa-
tiveness has increased over time, although not essentially since
1994. Up to that year the increase in representativeness also
correlates positively with the number of sampling sites, but af-
ter that the slight increase in the number of sampling sites does
not really affect the representativeness any more. Measuring
the different aspects of habitat separately we see as shown in
Fig. 11(b) thatCurrenthas a trend towards higher representa-
tiveness up to 1991, but after that representativeness actually
seems to have a slightly decreasing tendency.Bottomdisplays
quite smooth and slow convergence to a steady bias.Depth
seems to fluctuate the most in the beginning, never displaying
much of a trend.

Fig. 11(c) shows the best-case representativeness for all pos-
sible yearly site sample sizes, compared to the actual choices
committed in the data. It can be seen that if there were no re-
strictions, something like 25% of sites would have to be elec-
trofished to have very good representativeness, but something
like 10%, which is already a percentage occurring in the data,
suffices for good representativeness. The actual choices made

lie quite far from the non-pool restriction, however, so either
sampling has been quite non-optimal or, what is more likely,
there exists a constant stricter restriction constraining sampling.

Studying the convergence of the empirical distribution of
electrofished habitat types in Fig. 11(d), it seems like habitat
sampling has converged to a constant bias fairly well, except-
ing 1994 and 1997.

The convergence of the empirical joint distribution is shown
in Fig. 12. The difference of 2+ fish from the other age classes
is quite clear. The 0+ fish have a noticeable change in 1994, but
by the end of the time series their distribution has converged
the most. The 1+ fish had a change in 1996 and seem to have
been experiencing some change from 1998 onwards. Finally,
after changing in 1993, 2+ fish seem to have had a temporary
stable period up to 1997, when another change enters.

6.2. River Simo
There are 377 habitat-classified sites in river Simo. Our elec-

trofishing data contains measurements from 17 years (due to
flooding, no measurements were possible in 1992). Fig. 13(a)
shows the habitat representativeness of each yearly selection of
electrofished sites in Simo. You can see that the representative-
ness has not really changed over time, regardless of the fluctu-
ation in the sampling percentage, which in 1994-1997 doubled
from that in 1983. The drop in percentage from the previous
year in 1998 by almost a half affected representativeness only
slightly. This is most likely the outcome of the coarse reso-
lution of the original habitat classifications of river Simo (see
Fig. 7): the type system is too crude, failing to differentiate the
sites sufficiently.

Measuring the different aspects of habitat separately as in
Fig. 13(b) we see that the representativeness with respect to
granularity of bottom seems to have decreased from 1983 until
1990, after which all factors seem to have reached constant
bias. Different current types also seem to have had varying
representativeness up to 1990, whereasDepthhas had a con-
stant bias all along. An interesting observation is that when the



Fig. 10. H1 of Example 5.1. The original values ofV1 lie on the plane whose outlines are shown in bold. The triangular subregions of
this plane are labeled with the corresponding value ofH1.��� � � � ���
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number of sites sampled dropped sharply in 1998, the repre-
sentativeness of bottom granularity and current type actually
increased slightly.

Fig. 13(c) shows the minimal bias for all possible yearly
site sample sizes compared to the actual selections made in
the data. Something like 5% would already suffice for good
habitat sampling, well in the range of actual choices. As with
river Tornio, the choices made over the time series are quite far
from the non-pool restriction, hinting at a constant restriction
close to the “selected at least once” restriction.

Studying the convergence of the empirical distribution of
electrofished habitat types in Fig. 13(d), we see that habitat
sampling seems to have stabilized fully by 1990.

Empirical joint distribution convergence is shown in Fig. 14.
It seems like the habitat-abundance relationship had temporar-
ily stabilized by 1991, but 1992 has no measurements and when
we come to 1993, something has changed in the relationship.
The 0+ fish seem to stabilize from 1996 on, but it seems like
in 2000 things are changing again. For 1+ fish 1994 and 1998
are notable, and 2000 shows a remarkable change. The 2+ fish
stabilize in 1994, but have an abrupt change in 1995, and again
in 1999.

7. Conclusions and future work

We have studied the problem of measuring electrofishing
bias and the interplay of habitat and abundance by means of
an information-theoretic methodology put forth in Chapter 3.
We have illustrated the benefits of our approach, explaining in
Chapter 4 in detail several techniques pertaining to different
goals and levels of biological knowledge, using examples and
discussing the interpretation of results.

We have also tested our methodology using real-world data.
Chapter 6 provides an analysis of rivers Simo and Tornio. Habi-
tat sampling bias and the relationship of habitat and abundance
were studied both together and separately. Our results indi-
cated a consistent, yet non-optimal electrofishing bias for both
rivers. The fact that electrofishing has not been even nearly
bias-minimal in these rivers can be explained by a set of strict

non-explicit restrictions on the eligibility of sites. The empiri-
cal habitat-abundance relationships in these rivers were seen to
be still in the process of changing periodically. The shortness
of the available time series might be a factor here, however.

As described in Chapter 2, the traditional way of studying
bias is via a simulator mimicking nature. This simulator can
be seen in our approach as a case where the simulator defines
P (H, A). We can then studyD(Py1,...,yi(H, A)) ‖ P (H, A))
as explained in this work. The simulator approach is thus sim-
ply a situation where the “true” joint distribution is known and
encoded in the guise of a simulator.

A most important difference is that in our approach no arti-
ficial data set is needed, because our measure works on models
directly. It studies differences indistributions, not differences
in data sets. After all,P (H, A) is all the information the sim-
ulator approach contains: the artificial data generated from the
simulator reflectP (H, A) in the limit of unrealistic data set
sizes (real-world data have less than 20 years of data).

Our methodology only requires that the variables define a
probabilistic sample space, and the models be probabilistic mass
functions. Even though we chose to categorize our variables
in this work, the methodology can be defined analogously for
continuous variables.

Many of the implementations of our approach in this work
could be refined and/or extended. The basic structural assump-
tion could be made more complex. The empirical models could
be constructed in different ways: criteria such as the MDL prin-
ciple, or a predictive score, could be tried out instead of our
simple approach in this work [5, 2]. Different habitat type sys-
tems and ways of deriving abundances from observational den-
sity data could be studied and tested as well. The study of the
interplay of habitat and abundance would benefit from expert-
given biological knowledgeP (H, A) in stead of our purely
empirical modeling in this study.

In this work our methodology has been used for analysis of
existing data sets. A tool aiding planning in addition to pro-
viding analyses could be built as well. This tool would give a
fishery scientist a chance to try out different models encoding
biological knowledge, seeing how they interact with the data.
Also, the biological knowledge could be fixed, and the diver-



Table 8. Example 5.3. (a) The time series of observed densities. (b) Discretized relative densities per habitat type.

Year s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Age class 0 1.1 3.5 0.4 3.0 0.9
y1 Age class 1 0.3 1.8 0.1 2.1 0.4

Age class 2 0.1 0.7 0 1.1 0.1
Age class 0 1.8 6.2 5.0

y2 Age class 1 0.4 3.2 2.4
Age class 2 0.1 0.3 0.5
Age class 0 0.9 6.1 3.1 4.3

y3 Age class 1 0.8 2.9 3.5 1.5
Age class 2 1.1 0.5 0.1 0.3
Age class 0 4.2 3.2 3.4 3.6

y4 Age class 1 0.4 2.3 2.2 1.2
Age class 2 0.6 0.3 0.1 0.1
Age class 0 1.3 6.0 4.5 3.9

y5 Age class 1 0.5 2.4 2.5 2.5
Age class 2 0.5 0.4 0.3 0.4

(a)

Year H = poor H = good
Age class 0 scarce abundant

y1 Age class 1 scarce abundant
Age class 2 scarce abundant
Age class 0 scarce abundant

y2 Age class 1 scarce abundant
Age class 2 scarce abundant
Age class 0 scarce abundant

y3 Age class 1 scarce abundant
Age class 2 abundant scarce
Age class 0 abundant scarce

y4 Age class 1 scarce abundant
Age class 2 abundant scarce
Age class 0 scarce abundant

y5 Age class 1 scarce abundant
Age class 2 abundant scarce

(b)

gence of different empirical models from it measured. The op-
timality of suggested selections of sites could be measured by
the tool as well, and bias-minimal selections suggested.
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Fig. 11. Habitat sampling, river Tornio (Finnish side). (a) Yearly habitat sampling bias. (b) Yearly habitat sampling bias, different aspects
of habitat studied separately. (c) Actual yearly site choices vs. bias-minimal choices for a site percentage and a given restriction on
choices. (d) Momentary changes in habitat sampling bias, i.e. the convergence of the empirical distribution of electrofished habitat types.
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Fig. 12. Convergence of the empirical joint distribution, river Tornio, Finnish side. (a) Momentary changes in the empirical joint
distribution. (b) Momentary changes in the abundance - habitat relationship.
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Fig. 13. Habitat sampling, river Simo. (a) Yearly habitat sampling bias. (b) Yearly habitat sampling bias, different aspects of habitat
studied separately. (c) Actual yearly site choices vs. bias-minimal choices for a site percentage and a given restriction on choices. (d)
Momentary changes in habitat sampling bias, i.e. the convergence of the empirical distribution of electrofished habitat types.
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Fig. 14. Convergence of the empirical joint distribution, river Simo. (a) Momentary changes in the empirical joint distribution, the whole
time series. (b) Momentary changes in the empirical joint distribution, a closer look at the last ten years. (c) Momentary changes in the
abundance - habitat relationship, the whole time series. (d) Momentary changes in the abundance - habitat relationship, a closer look at
the last ten years.
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