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Helsinki Institute for Information Technology HIIT

Tammasaarenkatu 3, Helsinki, Finland

PO BOX 9800

FIN-02015 HUT, Finland

http://www.hiit.fi

HIIT Technical Reports 2002–7

ISSN 1458-9451

Copyright c© 2002 held by the authors

NB. The HIIT Technical Reports series is intended for rapid dissemination of results

produced by the HIIT researchers. Therefore, some of the results may also be later

published as scientific articles elsewhere.



Predicting the wild salmon production using Bayesian
networks

Kimmo Valtonen, Tommi Mononen, Petri Myllymäki, Henry Tirri, Jaakko Erkinaro, Erkki
Jokikokko, Sakari Kuikka, Atso Romakkaniemi, Lars Karlsson, and Ingemar Perä

Abstract: From the management point of view, the production of wild smolts is the most important indicator of the status
of a river’s salmon population. We present a methodology allowing the prediction of the number of wild smolts in a
river in a consistent and well-defined fashion. Our framework is probabilistic and our approach Bayesian. Our models are
Bayesian networks, which have a simple graphical representation allowing visualization of the obtained knowledge. Being
the state-of-the-art classifier in many domains, they also possess predictive power. We emphasize empirical modeling,
studying what can be learned from the existing real-world data for two Gulf of Bothnia rivers, Simo and Tornio (the
Finnish side). To ensure that our models generalize well, we employ strict validation procedures, where care is taken
to inhibit leakage of information from the validation set to the training set. Furthermore, with the needs of fisheries
management in mind, we highlight the role of the loss function in modeling, evaluating our models also in a setting where
it is a greater error to over- than underestimate the size of a population.

1. Introduction

The main goal of salmon fisheries management is to maxi-
mize the level of fishing, while maintaining a stock of sufficient
size and genetic diversity. A method for assessing and predict-
ing the status of a river’s salmon population is needed to tackle
this task. The aim of this paper is to exhibit such a methodol-
ogy.

We limit ourselves to the nursery river phase in the life cycle
of salmon. We divide this phase into three stages:

1. The reproduction stage. The output of this stage, eggs,
depends on the abundance of ascending adults and their
success in spawning, affected by environmental factors
such as the M74 syndrome.

2. The parr stage. This is the period lasting from one up
to as many as six years, during which the egg-emerged
juvenile salmon stay in the river.

3. The smolt stage. Having undergone physiological changes,
young salmon migrate downstream to the sea.

From the managerial point of view, the smolt stage is the
most important one: the number of wild smolts is the yardstick
of choice for determining the status of a river’s wild salmon
population. Hence, in this work we focus on it, and develop
models for the prediction of wild smolt production, using real-
world data from two Gulf of Bothnia rivers, Simo and Tornio.
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This report is structured as follows. We first outline our ap-
proach to modeling in Chapter 2, proceeding to describe our
real-world data sets in detail in Chapter 3. In Chapter 4 we
define our methodology formally, giving examples of its appli-
cation in fisheries. The results of our empirical work are de-
scribed in Chapter 5. Finally, we summarize our conclusions
in Chapter 6.

2. Modeling approach

To be able to handle uncertainty in a consistent and well-
defined fashion, we adopt the probabilistic framework, and
choose the Bayesian approach within it, with Bayesian net-
works [9] as our model family. Our goal is to learn a predictive
model for wild smolt production based on the available data,
using different criteria for model selection. Our emphasis is on
empirical modeling: although our methodology allows the ex-
pression of biological knowledge, in this paper we obtain our
models from the existing data alone. The results should thus be
seen as a baseline to compare biological knowledge to, as well
as an assessment of the amount of information in the available
data from the point of view of smolt production prediction.

Our point of view is managerial: the resulting models should
generalize well, and be capable of taking into account the needs
of fisheries management. By this we mean that our goal is to
find models that predict well in the future. The main problem
in learning predictive models is to avoid overfitting, i.e. the sit-
uation where we fit our model too accurately to the available
data, compromising our predictive performance for future data.

To test whether we have succeeded in generalizing, we vali-
date our models using strict procedures, where pains are taken
to ensure that the model learner is never allowed to gain infor-
mation from the validation set. This goal of avoiding the fit of
an unnecessarily complex model to the data is especially called
upon in our empirical work because of the relatively short time
series available. We also highlight the role of the loss func-
tion in the prediction scheme. That is, not only do we look
for a model with a small amount of error in its predictions,
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but keeping in mind the aims of fisheries management we also
study the difference between a situation where it does not mat-
ter whether we over- or underestimate, and the more realistic
situation where we prefer a pessimistic model, i.e. one whose
errors tend to be underestimates rather than overestimates.

3. Real-world data sets

Our empirical studies use data from two Gulf of Bothnia
rivers, Simo and Tornio. The data sets are limited to the river
phase in the life cycle of salmon. The reproduction stage is
covered by data on ascending adults and the M74 syndrome.
The parr stage is described by electrofishing data, and the smolt
stage by data on smoltification age and the number of seabound
wild smolts. In this study we have studied wild salmon only.
Table 1 provides an overview of our set of variables and their
availability per river.

We will now elaborate on our variables in some detail, going
through the various life stages in order.

3.1. Reproduction stage data
The earliest stage in the life cycle of salmon, the egg stage,

depends both on the abundance of ascending adults and on
spawning success. Neither of the two rivers contains a fish lad-
der, so the only available means of measuring the abundance
of ascending adults is via catches of adults in the river. Both
the sum of weights and the number of fish are available for
each year. We will denote catches in numbers at yeari by Cn

i

and catches in kilos byCk
i . Unfortunately we lack data on the

fishing effort, which makes this data a somewhat uncertain in-
dicator of abundance.

To take spawning success and environmental factors into ac-
count to some degree, we also use data on M74 mortality (in
percentages) at yeari, denoted byMi.

As an attempt at a synthetic variable characterizing repro-
duction as a whole, we created “M74-affected” versions of the
adult abundance variables, describing the estimated effect of
M74 on reproduction. The values of these new variablesRn

i

andRk
i (reproduction in numbers and kilos, respectively) are

catches multiplied by(1−Mi/100).

3.2. Parr stage data
For each year in our time series we have electrofishing data

from a subset of the total set of electrofishing sites in the river.
The yearly choices of sites and their number vary over time,
especially in the beginning of our time series. See Fig. 1 for
the variance in the yearly locations of electrofishing sites.

Our data set comprises electrofishing data at three levels:

1. The low level, where each record describes a single in-
dividual fish caught by electrofishing.

2. The intermediate level, where each record describes a
single fishing run. That is, as electrofishing is carried out
in 1 - 3 separate runs, we have a record for each of the
individual runs at a specific site.

3. The high level, where each record summarizes the elec-
trofishing data for an entire river for a single year.

The lowest level is not directly useful for the main problem
here, since we are not interested in modeling a single fish. On
the other hand, this type of data contains exact measurements
such as length and weight instead of estimates. It also con-
tains a relatively large number of samples (many thousands).
An important observation is that this data is highly valuable
in the sense that it can be used to classify fish based on their
length.

In fact, the data at the intermediate level are just a summing
up of the lowest-level data, augmented by data on fishing runs
that caught no fish. Therefore we created our own version of
intermediate (fishing run) level data directly from the low-level
data, adding to the result the unsuccessful fishing runs to avoid
positive bias.

Because our aim is to have a model transferable from Simo
to Tornio and vice versa, we take all this site-specific data and
summarize it for each year in terms of densities per age class.
A model containing the sites themselves as random variables
could naturally not be applied to a river with a different set
of sites. We have adopted and compared two ways of obtain-
ing age-class density estimates. The first one is based on esti-
mation by domain experts using an electorfishing model, the
second one on average observed densities per length class.

3.2.1. Estimation by an electrofishing model
The electrofishing data provides us with ready-made den-

sity estimates for age groups “0+” and “> 0+”. Actually, for
river Tornio we possess a finer-grained division to “0+”, “ 1+”
and“> 1+”. Since we want to compare the results of using
the data of either Simo or Tornio, or of both, we are forced to
employ the coarser division. We will useE0+

i andE>0+
i to de-

note the expert-estimated density at yeari of age0+ and older
than0+ parr respectively.

These estimates are derived by domain experts using an elec-
trofishing model where the actual amount of fish at a site is es-
timated using measurements from a series of fishing runs. The
main assumption is that the catchability of the fish stays con-
stant across the series. It is also assumed that the age of the
fish can be determined reliably (but actually this information
is often missing).

3.2.2. Average length-class densities
To have a point of comparison, we decided to provide an al-

ternative, more data-oriented way of estimating yearly density
for each disjoint class of fish. An important point to note is
that our assumptions are somewhat weaker than those adopted
in the estimates of the domain experts’ electrofishing model.

During electrofishing, usually more than one fishing run is
performed. However, the overall number of such runs, per-
formed consecutively at the same site on the same day, varies.
The most common number of runs is three, but sometimes
there are fewer runs. Thus, we chose to always use the first
run only, to have comparable data for all of the rivers. By tak-
ing the first fishing runs only, we weaken the assumption of
constant catchability made in the domain expert estimates. We
only assume the catchability of fish during the first fishing run
to be the same as that of any first fishing run.

As observed above, we have ready-made ages for the fish
in the data, but for part of the data the age is missing. As an



Table 1. An overview of the variables. “*” signifies availability.

Stage Variable group Variable Symbol Simo Tornio

Catch Catch in kilos Ck
i * *

Reproduction Catch in numbers Cn
i * *

M74 M74 mortality Mi * *
Reproduction in kilos Rk

i * *
M74-affected catch Reproduction in numbers Rn

i * *

Average density 0+ (det. by length) L0+
i * *

Average length-class densities Average density 1+ (det. by length) * *
Average density 2+ (det. by length) * *

Parr Average density>0+ (det. by length) L>0+
i * *

Estimated density 0+ E0+
i * *

Estimated densities Estimated density>0+ E>0+
i * *

Estimated density 1+ *
Estimated density>1+ *

% wild salmon smoltifying at age 1 A1
i * *

% wild salmon smoltifying at age 2 A2
i * *

Smoltification age % wild salmon smoltifying at age 3 A3
i * *

Smolt % wild salmon smoltifying at age 4 A4
i * *

% wild salmon smoltifying at age 5 A5
i * *

Estimated number of seabound wild smolts,
Smolt production based on mark-recapture data Si * *

alternative approach, we drop this assumption, and classify the
fish in another disjoint and exhaustive way: by their length.

We use 7 and 11 cm as the split points, i.e. all fish smaller
than 7 cm were considered to be0+, all fish longer than 11cm
2+, and all others1+. These split points were determined by
experts. To see how they correspond to the empirical length
distributions of age-classified fish in our data sets, see Fig. 2.
Note that the plot for river Tornio also shows how under-represented
0+ fish are in the aged subset of data for river Tornio, due to
missing age labels for small fish.

Given these observed densities from first fishing runs for fish
of certainlengthclass, we assume that the first fishing runs are
comparable across the sites sampled during a year, and take the
average of the observed densities as our estimate of the density
for that length class during that year. We assume here that the
bias in the selection of sites to electrofish stays constant across
our time series. The veracity of this assumption in this data set
was studied by us in [11], where it was seen to hold quite well.

We will useL0+
i andL>0+

i to denote the average density at
yeari of length-class0+ and longer parr respectively.

3.2.3. Comparison of estimation methods
The biological knowledge -incorporating electrofishing model

used by domain experts is more sophisticated than the length-
class approach put forth here. The length-class method should
be viewed as a data-based baseline: any system with stronger
assumptions should at the least be able to beat it in the predic-
tive sense.

Fig. 3 and Fig. 4 compare expert estimates with length-class
estimates. It can be seen that for river Simo there is a plausible
linear correlation between the two estimates, whereas for river
Tornio only the plot for> 0+ parr exhibits such tendencies.
It has to be kept in mind that we have no or very little data

for much of the range — only the low end of the range is well
covered.

3.3. Smolt stage data
The smolt stage is characterized in two ways in our data. The

age distribution of smolts has been estimated by experts, based
on samples from trapped seabound fish. Unfortunately, we only
have this data in an age-classified form. It would have been
interesting to compare age-classified data to length-classified
ones, as we did in the case of parr density estimation. We de-
note byAj

i the percentage at yeari of wild salmon smoltifying
at agej.

The values ofSi, the number of seabound smolts at year
i, consist of domain expert estimates based on mark-recapture
data.

4. Methodology

Adopting the probabilistic framework, we assume our mod-
els to be probability distributions. Since we are in this work
interested in finding a model that predicts well for a particular
variable, our task is somewhat different from the general goal
of modeling the joint distribution of all variables describing a
river’s salmon population.

4.1. The focused prediction problem
Classificationmeans the task of predicting the value of a dis-

crete class variable, given the values of other variables, called
predictors. In classifier learning the goal is to build accurate
classifiers given a sample of classified instances, i.e. vectors
consisting of the values of the predictors together with the cor-
responding value for the class variable.



Fig. 1. The yearly locations of electrofished sites. (a) River Tornio (the Finnish side). (b) River Simo.
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Fig. 2. The empirical length distributions of fish aged in the data. (a) River Tornio (the Finnish side). (b) River Simo.
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In this work, our predicted variable is in fact not discrete,
but continuous, and, properly speaking, we are doingregres-
sion. We transform the regression problem to a classification
problem by discretizing the predicted variable and interpret-
ing our posterior to be a continuous histogram distribution.
Our point estimate will then be the expected value of this his-
togram. Hence, we can usefocused predictionas a general term
covering both cases.

In learning a focused predictor, the goal is to build accu-
rate predictors from a giventraining data setD = (xN , yN ),
a matrix ofN vectors each consisting of values ofm predic-
tor variablesX1, . . . , Xm, together with a value for the pre-
dicted variableY . Together, our variables form thedomain
V = {X1, . . . , Xm, Y }. We will use notationVi to refer to any
variable in our domain, whether it is the focus of prediction or
not. In the interest of simplicity, from now on we assume the
predictor variablesXi to be discrete as well. We discretize the
continuous variables in our data sets, so this assumption does

not constrain us in any way. In general formal terms, our aim
is to produce the predictive distributionP (Y | X1, . . . , Xm).

Since our particular task in this work is to predict the wild
salmon production in a river using all available information,
our focus is onSi, the number of smolts at yeari. Further-
more, we aim at building a model that allows us to predict for
a particular yeari given the past, that is, data from years pre-
cedingi, but not from yeari itself. As we are constrained to
the nursery river phase, we cannot look more than five years
back in time, since we assume that after six years all juvenile
salmon have left the river. Putting all this together, the predic-



Fig. 3. Comparison of density estimates made by domain experts to average length-class estimates, river Simo. Each point is a pair of
corresponding estimates for a year. (a)0+ parr. (b) Older parr.
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tive distribution we are aiming at is

(1)

P (Si | Cn
i−1, C

k
i−1,Mi−1, R

n
i−1, R

k
i−1, E

0+
i−1, E

>0+
i−1 ,

L0+
i−1, L
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i−1 , A1
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2
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3
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A4
i−5, A

5
i−5, Si−5).

4.2. Bayesian networks
Taking the Bayesian approach within the probabilistic frame-

work, we choose Bayesian networks1 as our model family.
Bayesian networks [9] define joint probability distributions via
a set of independence assumptionsBS that can be conveniently
expressed as a directed acyclic graph (see Fig. 5(a)).

The nodes of the directed acyclic graph correspond to vari-
ables, while the arcs represent the independence assumptions.
That is, whenever an arc is missing, we assume the two vari-
ables in question to be pairwise conditionally independent.

The model familiesB we consider thus consist of a finite
number of probabilistic Bayesian network structures

B = {BS1 , . . . , BSK
}.

One of the key properties of Bayesian networks is that the joint
probability distribution can be factorized as follows:

(2) P (X1, . . . , Xm, Y ) =
m+1∏

i=1

P (Vi | Πi),

whereΠi denotes theparents(immediate predecessors in the
graph) of variableVi. The parametersBΘ of a Bayesian net-
work model determine the local conditional probability distri-
butionsP (Vi | Πi). This means that a Bayesian network struc-
tureBS , together withBΘ, defines a joint probability distribu-
tion P (X1, . . . , Xm, Y | BS , BΘ) via (2).

1For an interactive tutorial on Bayesian networks and links to reference mate-
rial, see sitehttp://b-course.hiit.fi.

Example 4.1. Let our domain be

V = {Si, C
n
i−3,Mi−2, E

0+
i−2, E

>0+
i−1 }

i.e. each data vector consists of an estimate of the number of
smolts at yeari, catches in numbers three years earlier, M74
percentages two years earlier, domain expert estimates of the
densities of0+ parr two years back and domain expert esti-
mates of the densities of older parr in the previous year.

Let Fig. 5(b) present graphically a structureBSi ∈ B de-
scribing the domain. Given Fig. 5(b), our joint distribution can
be written down as

P (Si,C
n
i−3,Mi−2, E

0+
i−2, E

>0+
i−1 ) =

P (Cn
i−3)P (Mi−2)

· P (E0+
i−2 | Cn

i−3,Mi−2)P (E>0+
i−1 | E0+

i−2)

· P (Si | E0+
i−2, E

>0+
i−1 ).

4.3. Model selection criteria
Given a data setD and a set of possible Bayesian network

structuresB, we are faced with the task of selecting a model
structure from our set of candidates. Our aim is to find the
model (structure) that describes the domain the best, having
seen a set of observationsD from it. In this work we use two
different selection criteria, one a purely Bayesian one, the other
an empirical one with advantages which will become clearer in
Chapter 4.6.

4.3.1. The marginal likelihood criterion
Given a training setD it is possible, with certain technical

assumptions (see [5]), to compute the predictive distribution
for a single Bayesian network structureBS via

(3)

P (X1, . . . , Xm, Y | BS ,D) =∫
P (X1, . . . , Xm, Y | BS , BΘ,D)

· P (BΘ | BS ,D)dBΘ.



Fig. 4. Comparison of density estimates made by domain experts to average length-class estimates, river Tornio (Finnish side). Each
point is a pair of corresponding estimates for a year. (a)0+ parr. (b) Older parr.
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Fig. 5. (a) An example of a Bayesian network representing the joint distributionP (V1, V2, V3) asP (V1)P (V2|V1)P (V3|V1, V2). (b) The
structureBSi of Example 4.1.
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If we now, instead of using only a single model structure, aver-
age over all Bayesian network structuresBS ∈ B in our model
family, we get

(4) P (X1, . . . , Xm, Y | D,B) =∑

BS∈B
P (X1, . . . , Xm, Y | BS ,D)P (BS | D,B),

where the first term was given in (3). The second term is the
posterior probability ofBS after seeing the dataD. Intuitively,
if one wants to choose a single model fromB, it makes sense to
select the model maximizing this posterior since that particular
model has the highest overall weight in sum (4). Assuming the
prior P (BS | B) to be uniform, this is equivalent to choosing
the model with the highestmarginal likelihoodP (D | BS ,B),
since

(5) P (BS | D,B) ∝ P (D | BS ,B)P (BS | B).

With certain technical assumptions [5], the marginal likeli-

hood can be calculated in closed form:

(6) P (D | BS ,B) =
m+1∏

i=1

qi∏

j=1

Γ(N ′
ij)

Γ(N ′
ij + Nij)

ri∏

k=1

Γ(N ′
ijk + Nijk)
Γ(N ′

ijk)
,

whereΓ denotes the gamma function,qi is the number of value
combinations for parents of variableVi, ri is the number of
values variableVi has,Nijk are the sufficient statistics (the
number of cases in the data where variablei’s parents’ values
are in configuration (value combination)j when the variable
itself has valuek), Nij =

∑ri

k=1 Nijk andN ′
ij =

∑ri

k=1 N ′
ijk.

The constantsN ′
ijk are thehyperparametersdetermining the

parameter prior distributionP (BΘ | BS ,B). Following the
suggestion in [1], in our empirical work we have picked the
prior

(7) N ′
ijk =

N ′

ri · qi

as our parameter prior, with the settingN ′ = 1. Intuitively
put this means that we deem that all states of the conditional



distribution of a variable given its parents are a priori equally
likely. This prior is also overridden by data relatively fast (N ′
is relatively small). Our reasons are twofold. Firstly, since our
domain comprises 65 predictors, and we seek among different
discretizations, it would be a formidable task for experts to as-
sess and specify the parameter priors for all possible structures
and discretizations. Secondly, the amount of data is relatively
small from the viewpoint of empirical modeling: data sets of
15 and 17 vectors per river. Any strong prior is prone to over-
ride the data, whereas our aim in this paper is to see what can
be learned from the existing data alone.

Example 4.2. Let our domain beV = {Si, R
n
i−5}, i.e. each

data vector consists of the estimated number of smolts at year
i and an index of reproduction in numbers five years earlier.

Let us consider all possible Bayesian network structures in
this domain, i.e.B = {BS1 , BS2 , BS3}, whereBS1 corre-
sponds to the assumption thatSi is independent ofRn

i−5 and
v.v., andBS2 andBS3 are models where they are dependent.
Fig. 6 shows the set of structuresB.

For simplicity of exposition, let us further assume that both
the number of smolts and the reproduction index have been
discretized to only two categories:few andmany.

LetD1 consist of 20 years of data. The sufficient statistics of
D1 are shown in Table 2(a). You can see that regardless of the
value ofRn

i−5, the relationship of events “Si= few” and “ Si=
many” stays more or less the same.

We can now calculate the marginal likelihood of all struc-
turesBS ∈ B using (6) and the prior (7). For example,

P (D1 |BS2 ,B) =

Γ( 1
2 )

Γ( 1
2 + 12)

(
Γ( 1

4 + 10)
Γ( 1

4 )
· Γ( 1

4 + 2)
Γ( 1

4 )

)

· Γ( 1
2 )

Γ( 1
2 + 8)

(
Γ( 1

4 + 8)
Γ( 1

4 )
· Γ( 1

4 + 0)
Γ( 1

4 )

)
.

The marginal likelihood of each structure is shown in Table 2(b).
It can be seen that the structure with no arc (dependency) is

slightly preferred, being 1.25 times more likely than the struc-
tures with an arc, and that the direction of the arc doesn’t mat-
ter in this case:BS2 and BS3 are equivalent with respect to
our criterion, given our prior and the data setD1 (to see why
this is so, see [5]).

LetD2 now be a similar data set of 20 years with the same
variables, but with different sufficient statistics as shown in Ta-
ble 3(a). In other words, the sufficient statistics of the event
“ Rn

i−5 = many” have been exchanged, making the sufficient
statistics of “Si= few” and “ Si= many” radically different
depending on the value ofRn

i−5. Calculating the marginal like-
lihoods, we arrive at the results of Table 3(b), which show that
D2 provides evidence for a dependency betweenSi andRn

i−5,
indicating a 263 times higher likelihood than the structure with
no dependency.

4.3.2. Empirical criteria
Another, non-Bayesian, way of scoring model structures is

by using an empirical criterion, i.e. by comparing the predic-
tive performance of structure candidates in a test set. The pa-
rametersBΘ for a candidate structureBS are first learned from

a training data set. The predictive performance of the resulting
model is then measured in the test set in terms of the loss func-
tion (see Chapter 4.6) adopted. In Chapter 4.4.1 we discuss the
use of empirical criteria for structure search in more detail.

4.4. Searching for the best structure
Even using the criteria of the previous chapter for compar-

ing structures, searching among all possible Bayesian network
structures is computationally too hard for practical purposes,
especially in our domain where there are 65 predictors: the
problem is NP-hard if a node can have more than one parent.
Therefore, a natural approach is to limitB to a subset of all
possible structures.

As discussed above, a Bayesian network model represents
the joint distributionP (X1, . . . , Xm, Y ). From this joint dis-
tribution we aim to extract the predictive distributionP (Y |
X1, . . . , Xm). We can distinguish two different approaches to
estimating the predictive distribution [2]: in thediagnosticparadigm
one tries to estimate the distribution directly, while in thesam-
plingparadigm one estimates the distributionsP (X1, . . . , Xm |
Y ) andP (Y ), from which the desired predictive distribution
can be computed by using the Bayes rule, which implies

(8) P (Y | X1, . . . , Xm) ∝ P (X1, . . . , Xm | Y )P (Y ).

In visual terms, in the sampling paradigm all of the arcs con-
nected to the focus node are leaving arcs, in the diagnostic
paradigm arriving arcs.

While our approach here is general, biological knowledge
could be taken into consideration when choosing the set of can-
didate structures. We will now describe some means of search-
ing for good structures from within a subset of all possible
structures in both paradigms.

4.4.1. The sampling paradigm
An example of a sampling-type Bayesian network is the

Naive Bayes model, a Bayesian network with one arc from the
predicted node to each of the predictor nodes (see Fig. 7). This
graph structure represents the assumption that the predictors
are independent of each other, given the value of the predicted
variable. This assumption might sound naive, but the Naive
Bayes classifier is in fact in many real-world cases the state-
of-the-art classifier, as, for example, its success in prediction
competitions like the KDD Cup and the CoIL competition il-
lustrate. Naturally, often this independence assumption is more
or less false. We can try to counter this deficiency by several
means.

One strategy isvariable selection. In variable selection only
variables which have a sufficient dependency from the focus of
prediction are modeled as dependent on it. In graphical terms,
we seek for a subset of arcs from the predicted variable to the
predictors. To do this, we use either one of the criteria of Chap-
ter 4.3 to assess whether to draw an arc from the focus of pre-
diction to a predictor.

Example 4.3. Let our domain be

V= {Si,E
0+
i−1,E>0+

i−1 ,E0+
i−2,E>0+

i−2 },
i.e. in addition to the focus of prediction,Si, we have density
estimates from the two previous years. As in earlier examples,



Fig. 6. B of Example 4.2.
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Table 2. Example 4.2. (a)Nijk of D1, i.e. the numbers of cases where the variables have a particular value combination in the data. (b)
The marginal likelihoods of the structures using dataD1.

Rn
i−5= few Rn

i−5= many
Si= few 10 8
Si= many 2 0

(a)

marginal likelihood
BS1 6.55 · 10−11

BS2 5.23 · 10−11

BS3 5.23 · 10−11

(b)

let all data be discretized to two categories,few and many.
The sufficient statistics of a data setD consisting of 20 years
of data are shown in Table 4(a).

Let us pick marginal likelihood as our structure search cri-
terion. As in Example 4.2, let us use Buntine’s prior for our
parameters. Because we have restricted our set of structuresB
to those in the Naive Bayes class, all arcs are of theSi −→ X
type, whereX is any predictor. The marginal likelihood of
each possible focus of prediction–predictor substructure, i.e.
the score of not having vs. adding an arc is shown in Table 4(b).

We can see that it is 330 times more likely that there is a
dependency betweenSi andE0+

i−2, than that there is not,E>0+
i−2

is slightly on the independent side,E0+
i−1 more so, andE>0+

i−1 is
shown to be 1.26 times more likely to be dependent onSi than
not.

An important practical feature of the marginal likelihood cri-
terion is that if any node has at most one parent, the criterion
decomposes to subscores for each arc, i.e. we can evaluate the
gain or loss of adding an arc regardless of the rest of the struc-
ture. This naturally makes searching in this restricted structure
space very efficient.

Example 4.4. Since no node has more than one parent in the
model class of example 4.3, we can express the varying evi-
dences for dependency between variables graphically by let-
ting the thickness of an arc indicate the amount of evidence
(marginal likelihood) for that particular arc. Because the range
of values for the likelihood ratio can vary from 1 to thousands
in practice, we take its logarithm to keep the result visually
pleasing. Furthermore, if there is no arc from the focus of pre-
diction Si to a predictor in the set of structures under con-
sideration, that predictor has no effect on the predicted vari-
able. Thus, we can leave out such unconnected nodes from our
graph, arriving at Fig. 8 in our case.

In the case of an empirical criterion, the criterion is not sim-
ilarly decomposable, so a search algorithm is needed. Since
the number of possible structures can be huge, a randomized
search is a natural choice. In our empirical work we have used
stochastic greedy search: we pick randomly an arc operation to

be performed, and evaluate empirically whether it is likely to
enhance predictive performance in the validation set. Note that
the model must not see any of the validation set prior to the ac-
tual validation. Otherwise the empirical criterion will overfit to
the validation set, providing misleadingly positive results. For
this reason, the predictive value of an arc operation has to be
assessed by splitting randomly the training data to a “second-
order” training set and a test set. The two structures, prior and
after the arc operation, are then both taught on the “second-
order” training set, and their performance assessed by predict-
ing for the test set. To avoid good or bad luck in the choice of
a split, this splitting is done a number of times, and the perfor-
mance measured by a loss function (see Chapter 4.6).

We can also relax the independence assumption by other
means, e.g. by connecting highly relevant predictors via a fully
connected subnetwork. If we connect subsets of predictors fully,
we speak of apartitioning network (see Fig. 9(a)). A problem
with this approach is that the number of parameters grows ex-
ponentially with the sizes of the subsets. In our task, where we
have a small amount of data, this is a major concern. See [7]
for more on partitioning networks.

4.4.2. The diagnostic paradigm
A major problem in the learning of diagnostic structures

from data is the number of parameters: the conditional distri-
bution of the focus variable given the predictors has a number
of parameters growing exponentially with the number of pre-
dictors.

To see this, let us look at the case of using marginal like-
lihood as our search criterion. First of all, in addition to the
previous definition of marginal likelihood, we can also define
thesupervised (conditional) marginal likelihoodas

(9)

P (yN |xN , BS ,B) =∫
P (yN | xN , BS , BΘ,B)

· P (BΘ | xN , BS ,B) dBΘ,

Our motivation for this definition is that the unsupervised marginal
likelihood criterion tends to favor models that model well both



Table 3. Example 4.2. (a)Nijk of D2, i.e. the numbers of cases where the variables have a particular value combination in the data. (b)
The marginal likelihoods of the structures using dataD2.

Rn
i−5= few Rn

i−5= many
Si= few 10 0
Si= many 2 8

(a)

marginal likelihood
BS1 0.02 · 10−11

BS2 5.23 · 10−11

BS3 5.23 · 10−11

(b)

Fig. 7. The Naive Bayes structure, i.e. the focus of prediction isV1 andP (V1, V2, V3, V4, V5, V6) = P (V1)P (V2 | V1)P (V3 | V1)P (V4 |
V1)P (V5 | V1)P (V6 | V1)P (V7 | V1).
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the predictors and the focus of prediction, which is clearly
nonoptimal with respect to the focused prediction task. (See [3,
6, 8]).

The supervised marginal likelihood (9) can be computed in
closed form similarly to (6):

(10)

P (yN |xN , BS ,B) =
qy∏

j=1

Γ(N ′
j)

Γ(N ′
j + Nj)

ry∏

k=1

Γ(N ′
jk + Njk)

Γ(N ′
jk)

.

whereqy is the number of value configurations for the predic-
torsX1, . . . , Xm, ry is the number of valuesY (the focus of
prediction) has,Njk are the sufficient statistics (the number of
cases in the data where the predictor values are in configura-
tion j andY has valuek), andNj =

∑ry

k=1 Njk. N ′
jk is our

parameter prior as earlier.
Using (10) we can in principle calculate the supervised marginal

likelihood of any diagnostic structure. The impracticality of the
procedure in a domain like ours (with 65 predictors) is evident,
however:qy grows rapidly with the number of predictors con-
nected to the class variable.

We can bypass this obstacle by constructing mixtures of di-
agnostic networks, where each individual network has only a
small number of arcs from the predictors to the predicted vari-
able. The relevant predictor sets of each network can be over-
lapping or non-overlapping. For more on diagnostic structures,
see [7]. Fig. 9(b) shows an example of two diagnostic struc-
tures of this type. Consequently, the result is a finite mixture of
several diagnostic Bayesian network classifiers, where the in-
dividual predictions made by the modelsBS ∈ B are weighted
by the supervised marginal likelihood (9).

4.5. Discretization
Since most of our variables are continuous, we need to dis-

cretize them in order to be able to compute the marginal likeli-
hood in closed form.

Formally, we define discretization as the process of finding
a mappingd : Ri → Di, whereRi is the range of variableVi,
andDi = {0, 1, 2, . . . ,K − 1} is the set ofK discrete values
we map the original values of variableVi to. The process of
discretization consists of finding a set ofK−1 threshold values
Ti = (ti,1, . . . , ti,K−1), ti,j ≤ ti,j+1.

An original valuevi,j of variableVi is then mapped toDi as
follows:

d(vi,j) =





0 if vi,j ≤ ti,1.
i if ti,k−1 < vi,j ≤ ti,k.
K − 1 if vi,j > ti,K−1.

Whereas in our empirical work we have taken a fully data-
oriented approach, biological knowledge could be employed
in the determination of the threshold values, since the qualita-
tive categories of say0+ parr density should be assessable by
experts. In our empirical studies, we have employed two dis-
tinct types of discretization:context-independentandcontext-
dependentmappings. The difference between these two types
of methods is that in context-dependent methods we take val-
ues of other variables into account when searching for the thresh-
old values.

4.5.1. Context-independent mappings
In context-independent discretization we study in isolation

the values of the continuous variable to be discretized. We have
used two different kinds of context-independent mapping in
the empirical studies reported here:equal-widthandK-means
discretization.

Equal-width discretization is a simple method, making little
or no use of the data itself. We simply split the range of the
attribute intoK parts of identical size.

Example 4.5. Let L>0+
i−1 , the average length-class density of

> 0+ parr in the previous year, have values in the range



Table 4. Example 4.3. (a)Nijk, i.e. the numbers of cases where the variables have a particular value combination in the data. (b) The
marginal likelihoods of not having vs. adding an arc between all focus of prediction - predictor pairs.

Si= few Si= many
E0+

i−2= few 9 1
E0+

i−2= many 1 9
E>0+

i−2 = few 8 4
E>0+

i−2 = many 2 6
E0+

i−1= few 5 5
E0+

i−1= many 5 5
E>0+

i−1 = few 5 1
E>0+

i−1 = many 5 9

(a)

marginal likelihood
Si E0+

i−2 2.82 · 10−14

Si −→ E0+
i−2 933.31 · 10−14

Si E>0+
i−2 4.22 · 10−14

Si −→ E>0+
i−2 3.46 · 10−14

Si E0+
i−1 2.82 · 10−14

Si −→ E0+
i−1 0.37 · 10−14

Si E>0+
i−1 14.62 · 10−14

Si −→ E>0+
i−1 18.47 · 10−14

(b)

Fig. 8. Example 4.4. The structure discovered in Example 4.3 using marginal likelihood as the search criterion. The thickness of the arcs
corresponds logarithmically to the evidence for that particular dependency. Only nodes connected to the focus of prediction (i.e. with
higher evidence for an arc than for its absence) shown.
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Ri = [0..9] in the data. If we use equal-width discretization
andK is 3, Ti = {3, 6}. Let our observed data be as shown
in Table 5(a). Our discretization maps it as shown in the lower
part of Table 5(a).

Equal-width discretization thus depends only on the range
of the variable. The range can be supplied as part of biological
knowledge or determined from the data.

K-means discretization finds the threshold values by an iter-
ative process.K − 1 division points are first placed withinRi,
defining subsets of values. The following procedure is then re-
peatedn times:

1. The means of each subset are calculated.

2. The new division points are put at the exact midpoints
between successive means.

3. The values are dealt out into the new subsets defined by
the new division points, in order.

The initial division points can be set in various ways. The
procedure we used in our empirical studies was the following:
the values ofVi that occurred in the data were first ordered, and
then split, in order, intoK disjoint subsets of equal size (i.e.
each subset hasbri/Kc elements). Ifri is not exactly divisible
by K, we make the firstri − K subsets one member larger.
The end result of this iterative process is our set of threshold
valuesTi. We have usedn = 5 in our empirical studies.

Example 4.6. Let our observed data andK be as in exam-
ple 4.5. Initially our disjoint subsets are{0, 0.1}, {0.3} and
{8}. The means of these subsets are[0.05, 0.3, 8]. Our first di-
vision points are[0.175, 4.15]. The value subsets defined by
these split points equal our initial subsets, so the process has
converged already. Our discretization of the original values is
shown in the lower part of Table 5(a).

To compare these two techniques, note that whereas equal-
width discretization only depends on the range ofVi, K-means
takes into account the distribution of the values ofVi in the
data: regions more densely packed with values get more densely
packed threshold values.

In our empirical studies, we performed both kinds of dis-
cretization based on the training data alone, again in order
to avoid information leakage from the validation data to the
model learner.

4.5.2. Context-dependent mappings
In context-dependent discretizations the values of other vari-

ables co-occurring in data vectors are taken into account. Since
our goal is focused prediction of variableY , we take the val-
ues ofY in each data vector as our context when discretizing
Xi: i.e. we seek for such a set of threshold values that the val-
ues within each discrete category have as similar a context as
possible.

When searching forTi we need a metricM(Ti,D) to tell
us when to insert a threshold valueti,j between two data val-
ues that occurred for variableVi. If our metric satisfies a set of



Fig. 9. Examples of Bayesian network structures. (a) A sampling type Bayesian network structure, with partitioning of predictor space.
(b) Two examples of diagnostic Bayesian networks with overlapping relevant predictor subsets of size 3.
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(b)

Table 5. Examples 4.5, 4.6 and 4.7. (a) The observed data and the resulting discretizations,Ri = [0, 9]. (b) The scores of different
discretizations forK ∈ {2, 3} usingM2pc(Ti,D).

L>0+
i−1 data 0 0.1 0.3 8

The corresponding value ofSi few few many many

Equal-width,K = 3 0 0 0 2
K-means,K = 3 0 0 1 2
M2pc(Ti,D), K = 2 0 0 1 1

(a)

K Ti M2pc(Ti,D)

[0.05] 5.66296
2 [0.2] 4.68213

[4.15] 5.66296
[0.05, 0.2] 4.96981

3 [0.05, 4.15] 5.66296
[0.2, 4.15] 4.96981

(b)

technical requirements, especially the requirement of decom-
posability, we can find the metric-optimalTi by dynamic pro-
gramming. Several metrics that meet these criteria have been
proposed in the literature. (See [10] for an overview).

In our empirical studies we have chosen to use an information-
theoretic metricM2pc(Ti,D) (the DL evaluation function of [10])

(11)

M2pc(Ti,D) =

log |Vi|+ log
(|Vi| − 1

K − 1

)

−
K∑

j=1

log
Πrc

k=1(γ · (γ + 1) · · · · · (γ + n(ck, j)− 1)
(rcγ) · (rcγ + 1) · · · · · (rcγ + nj − 1)

,

where|Vi| is the number of different valuesVi has,rc is the
number of values our discretized focus of prediction has,j
goes over allK categories of our discretization,nj is the num-
ber of original values assigned to categoryj, andn(ck, j) is
the number of times contextck (predicted variable’s value) oc-
curs within that category, i.e. the number of times the original
values assigned to discrete categoryj occur in contextck in
D. The predicted variable needs to be discretized first, if it is
continuous. We did this by K-means discretization in our em-
pirical studies. The parameterγ is a prior on the occurrences
of contexts within each category. We have usedγ = 1 at all
times, i.e. we pretend to having observed one occurrence of
each context prior to looking atD, the actual observations.

In information-theoretic terms, this metric calculates the cost
of using atwo-part codeas an encoding of the discretization
(see e.g. [4] for more on two-part codes). Intuitively speaking,

we first encode the number of different original valuesVi has,
which can be done with costlog |Vi|. Then the positions of
K−1 split points from among the|Vi|−1 possible candidates
are added to the code. Finally, we encode the distributions of
contexts within each category, using sampling with replace-
ment as our model. It should be kept in mind that our aim is to
minimizeM2pc(Ti,D).

Note especially that this discretization method allows au-
tomatic determination of a metric-optimalK. In our empiri-
cal studies, we let the method determine the optimalK within
range[2, 10].

Example 4.7. Let our observed data andK be as in exam-
ple 4.5. We search over all possible discretizations, letting the
number of categoriesK be either 2 or 3. Table 5(b) shows
the scores. You can see that the context makes the metric pre-
fer (i.e. give smaller scores to) discretizations which make the
resulting categories internally as homogeneous with respect to
context (value ofSi) as possible, i.e. discretizations with a split
point between original values 0.1 and 0.3 are preferred. Of
these, the one with only two categories (K = 2) is preferred
over the three-category case, since the splitting of the second
category is superfluous according to the metric, adding unnec-
essary complexity. Our discretization of the original values is
shown in Table 5(a).

4.6. The loss function
Since, from the point of view of decision making, an im-

portant goal in the analysis of wild salmon populations is the
maintaining of biodiversity, we should be conservative in our



predictions: to err on the positive side (predicted value is greater
than the correct value) is more serious than erring on the nega-
tive side (predicted value is smaller than the correct value). In
other words, ourloss functionshould be asymmetric.

We have used loss functions of the following type:

(12) L(yp, yc) = |yp − yc|α,

whereyp is our prediction,yc is the correct value, andα con-
trols the steepness of our penalization for error. For the goal of
biodiversity maintenance, we used an asymmetric loss function

(13) Lasymm(yp, yc) =
{|yp − yc|α1 if yp > yc,

|yp − yc|α2 otherwise.

That is, we employ a different error exponent for the cases
where our model is optimistic (α1) vs. pessimistic (α2). And
since we want to be conservative,α1 ≥ α2 always holds. To
summarize the loss of a series of predictions made in a valida-
tion set, we take the average of the losses of individual predic-
tions, i.e. a loss incurred by an erroneous prediction is treated
equally independently of the moment in time it occurs at.

Example 4.8. Let our focus of prediction beSi, and our loss
function be symmetrical absolute difference, i.e.α1 = 1 and
α2 = 1. We are searching for the best predictive Bayesian
network structure using an empirical criterion. We have a set
of “second-order” training data, and a set of test data to assess
the predictive performance of the models. At the moment we
have two structures to consider,BS1 andBS2 .

If a series of correct values forSi is [3000, 5000, 10000] and
modelBS1 is optimistic and predicts[7000, 6000, 10000], our
loss is on average(4000+1000+0)/3 = 1670. ModelBS2 on
the other hand is pessimistic and predicts[1000, 2500, 8500],
incurring average loss(2000 + 2500 + 1500)/3 = 2000.
Hence, the optimistic model is preferred. Note that whereas
BS2 always errs, its errors seem to be bounded. On the other
handBS1 only makes one serious error, but that error results
in gross overestimation.

Let nowα1 = 2, i.e. we penalize for optimistic predictions.
With the same correct values and predictions our average loss
is now(40002+10002+0)/3 = 5666666.67 for BS1 , whereas
for BS2 the loss is(2000 + 2500 + 1500)/3 = 2000 as ear-
lier, i.e. using the optimistic model incurs nearly3000 times as
much loss as using the pessimistic model now.

We can visualize the different nature of predictive models as
shown in Fig. 10, where thex axis shows the correct values
and they axis the predictions of the models in question.

In the case of the marginal likelihood criterion described ear-
lier, the loss function minimized is

(14) Llog(P, yc) = − log P (yc),

whereP (Y ) is the predictive distribution. Intuitively speaking,
marginal likelihood seeks for the model whose predictive dis-
tribution is the “closest” one to a “correct” one. The advantage
of an empirical search criterion is that an arbitrary loss function
different fromLlog(P, yc) can be used already in the model se-
lection phase, although a consequence is that the model selec-
tion procedure does not lie within the Bayesian framework any
more.

5. Empirical results

In the following we describe the results of predicting the
wild smolt production using the data available for rivers Simo
and Tornio (the Finnish side). Our data consist of time series
of 17 and 15 years of data, respectively. At the highest level we
split our results into three classes:

• The results of learning our model from the data for the
Finnish side of river Tornio, validating the model by pre-
dicting for river Simo.

• The results of learning our model from the data for river
Simo, validating the model by predicting for the Finnish
side of river Tornio.

• The results of learning our model from the data for both
rivers, and validating the models by splitting the data
randomly to 80% of training data and 20% of valida-
tion data. The splitting was done 50 times. The particular
split percentages chosen were based on the smallness of
the data set: a 50-50 split would provide too little train-
ing data, whereas if the choice were skewed, say 95-5,
the one or two vectors left to the test set might differ
from the training set too much.

The first two types of result validate our models by using
one of the rivers as the training set and the other one as the
validation set. This enables us to assess to some extent whether
our models are transferable across rivers, i.e. we check against
overfitting to a particular river. The last type shows the results
of assuming the data for different rivers is compatible.

For each of these lines of study, we let the length of history
available to us extend to 5 years. Given a training data set and
a validation data set as described above, we proceeded in the
following fashion:

1. We split the domain to subdomains as follows:

(a) Only densities as predictors.

(b) Only densities and smoltification age data as pre-
dictors.

(c) Only densities and catch data as predictors.

(d) Only densities and reproduction indices as predic-
tors.

(e) All of the available data as predictors.

Furthermore, we compared using domain expert-given
density estimates to using average length-class densities.

This domain splitting was done to study the dependency
of predictive performance on the amount and quality of
knowledge about the domain.

2. We tried each candidate from a set of model classes,
i.e. subsets of possible Bayesian network structures, to-
gether with a set of discretization schemes. The structure
types we tried were:

(a) Sampling-type structures, no variable selection.

(b) Sampling-type structures, with variable selection.

(c) Sampling-type structures, partitioning structure.



Fig. 10. Example 4.8. The points are predictions made by the model for a given correct value. The line depicts a perfect predictor, i.e.
predictions which are equal to the correct value. (a)BS1 , the optimistic model. (b)BS2 , the pessimistic model.
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(d) Mixtures of diagnostic structures with 1 to 3 arcs
per component.

(e) Diagnostic structures of 1 to 3 arcs, with variable
selection.

Our arsenal of discretization methods was:

(a) Equal-width discretization with 2 to 5 categories.
(b) K-means discretization with 2 to 5 categories.
(c) M2pc(Ti,D), letting the method choose the opti-

mal number of categories from within the range
[2, 10].

3. Given a set of structures and a discretization scheme, we
sought for the structure describing the domain the best
via two criteria:

(a) The marginal likelihood criterion.
(b) An empirical criterion, where the search was started

from an empty graph, proceeding as in Chapter 4.4.1.
Repeatedly, a random arc operation was picked,
either an addition or a removal. The training data
was then split randomly to 80% of “second-order”
training data and 20% of test data. The parame-
ters of the model were learned both prior and after
the operation from the second-order training data,
proceeding to measure the predictive performance
of the pre- and post-operation models on the test
data (the 20% part). To ensure the representative-
ness of the test set, the random splitting to a sec-
ond order training set and a test set was performed
50 times. If the performance was better after the
arc operation, the operation was performed, and a
new one picked randomly. The number of arc op-
erations tried for a particular second-order training
data–test data pair was 1000.

4. Given the resulting model, we measured its predictive
performance usingLasymm(yp, yc), with the symmetri-
cal caseα1 = 1, and the optimism-penalizing one (α1 =
2). α2 = 1 always.

5.1. Normalization of data
Our first approach was to use the data as it is, but we soon

realized that the two rivers have quite different magnitudes,
making transfer of knowledge using absolute values impossi-
ble. A model trained on Simo would never have seen numbers
of the magnitude of Tornio, and thus would always shoot low
and v.v.

Hence we decided to normalize our data using

(15) Ni =
vi,j − µi

σi

wherevi,j is an original value of variableVi, µi is the empiri-
cal mean ofVi andσi is the empirical standard deviation ofVi.
Note that to stay absolutely honest,µi andσi have to be calcu-
lated from the training data alone. Otherwise they will provide
quite a lot of information about the validation set, given our
scanty data. Also, if an empirical criterion is used, the nor-
malization parameters have to be determined from the second-
order training data as well.

Normalization produces a model that only speaks of things
in relative terms, but note that we can always translate the pre-
dictions of our model back to absolute values, provided we ob-
tainµi andσi somehow. They need not be determined empiri-
cally: given a river with no data on smolt production a biologist
or fishery scientist can hypothesize about the mean and stan-
dard deviation of smolt production in the river, plug the values
in and see the absolute values. Most importantly, from the man-
agerial point of view, relative values suffice for the qualitative
analysis of changes in the population over time.



5.2. Presentation of results

Since our results indicated that in the sampling paradigm
variable selection usually paid off, and on the other hand the
partitioning networks as well as diagnostic structures of more
than one arc performed poorly (most likely due to the small
size of the data set, leading to drastic overparameterization
when using these model classes), and one-arc diagnostic struc-
tures were too impoverished to possess predictive potential, we
present only the results obtained in the sampling paradigm us-
ing variable selection.

We have reported the results of variable selection in the sam-
pling paradigm by two means: using marginal likelihood as the
criterion andα1 = 1 as the loss function, and using an empiri-
cal criterion with two loss functions, one symmetric (α1 = 1),
the other penalizing for optimistic predictions (α1 = 2). Since
the choice of a set of structure candidates and discretizations
would ideally be done by a biologist or a fishery scientist, we
show as a baseline indicator of performance the model (from
among our fixed set of discretization schemes) with the best
predictive performance measured by a particular loss function.

5.3. Learning a model from river Tornio, validating by
river Simo

Despite the fact that river Tornio is a much larger river com-
pared to river Simo, our normalization allowed our models to
predict for the smaller river reasonably well when taught on
the data for the bigger one.

Figures Fig. 11(a) - Fig. 11(d) show the results of seeking
via marginal likelihood. All variables were eligible. It can be
seen that both types of density estimates for yeari−5 are rele-
vant, albeit feebly so. With respect to domain expert-estimated
densities, the density of> 0+ parr in the previous year is quite
relevant, whereas for average length-class densities their den-
sity three years earlier is weakly relevant. For all of the other
variables the models agree, emphasizing data for yeari − 3.
The reproduction indices of both kinds three years back are
relevant, whereas the raw catch numbers are only weakly so.
Somewhat surprisingly, M74 percentages in the previous year
are considered helpful, as are smoltification age estimates for
smoltification at 3 and 4 years three years earlier.

Figures Fig. 11(e) - Fig. 11(h) show the results of seeking
for a model using our empirical criterion. It can be seen that
the results are poorer than with marginal likelihood. Possibly,
despite our efforts at avoiding overfitting, the empirical models
have learned patterns which are more suited to river Tornio.

Fig. 12 shows an example of restricting the available vari-
ables to a subdomain. In this case we study the use of a repro-
duction index in numbers together with density estimates. The
estimates of both expert-estimated and average length-class
densities are very similar, no doubt due to the low relevance
of the average length-class variables selected. In this case the
best discretization scheme favoured the index of reproduction
in numbers four years back in time. The number of smolts five
years earlier was selected as well: studying the behaviour of
our models we saw that broadly speaking there exists a nega-
tive correlation betweenSi andSi−5, due to the periodic nature
of smolt production in our data.

5.4. Training on Simo, validating by Tornio
We also reversed roles, learning the model from the nor-

malized data for the smaller river, trying to predict for the
larger river. The results were slightly poorer than the other
way around, and a noticeable feature in all subdomains and
with both criteria was that the models tended to be optimistic
if domain experts’ estimates of densities were used, except in
the case of having been learned using an empirical criterion
favouring pessimism.

Figures Fig. 13(a) - Fig. 13(d) show the results of seeking
via marginal likelihood. All variables were eligible. This time
the best discretizations produced quite different models for the
different types of density estimates. It is noticeable how aver-
age length-class densities did not get picked at all. In all sub-
domains, only the average length-class densities of older parr
at yeari − 4 were considered relevant. Reproduction indices
and smolt production in the past got picked again, as well as
data on M74.

Note how the predictions made using length-class estimates
(which actually were irrelevant) are pessimistic compared to
the optimistic estimates made using expert estimates.

Figures Fig. 13(e) - Fig. 13(h) show the results of seeking
for a model using our empirical criterion. While the use of
a loss function penalizing for optimism seems to work using
both types density estimates, it seems like the procedure penal-
ized for optimism too steeply: the models tend to be overwary.

Fig. 14 shows an example of restricting the available vari-
ables to a subdomain. In this case we study the use of a repro-
duction index in kilos together with density estimates. It can
be seen that using a symmetrical loss function when selecting
a model produces an optimistic model, whereas making use
of pessimism-gratifying scoring for models clearly works, al-
though the resulting model might be too cautious. Note the
drastic difference in discovered structures: seeking for pes-
simistic models cuts down the number of predictors from 16 to
3. Also, while the model learned using a symmetric loss func-
tion made use of allRk

i variables bar the one for yeari−4, the
pessimistic model drops the reproduction indices altogether.

5.5. Learning a model from the combined data
Finally, we put the normalized data of both rivers together.
In the scheme where we learn the model from the data for

one river and validate by predicting for another, the fact that
the data sets come from separate biological systems provides
a strict validation procedure. When we use the combined data,
we have to do validation by repeated artificial separations to
80% of training and 20% of validation data. Due to this less
stringent validation scheme, we also show in Fig. 15 the struc-
ture with the highest marginal likelihood over all discretization
schemes, regardless of the predictive performance.

It can be noted that reproduction stage variables dominate in
relevance. Smoltification age variables drop to a marginal role,
and M74 is altogether missing. Smolt production in the past
is considered quite relevant as well. Of the density estimates,
only expert estimates for older parr five years back are picked,
the length-class estimates not at all.

The results of doing repeated 80-20 validation are shown in
Fig. 16 for both criteria. When using marginal likelihood, the
best models for both types of density estimates dropped the
density variables altogether, arriving at the same model, which



we show in Fig. 16(a) and Fig. 16(b). The reproduction stage
data is highly relevant again, while smoltification age data is
slightly more relevant than in the maximum marginal likeli-
hood structure. The predictive performance of the model is
quite good, barring the outlying correct value at the high end
of the range.

Figures Fig. 16(c) to Fig. 16(f) show how using an optimism-
avoiding model selection criterion affects the results drasti-
cally, pushing most of the predictions to the pessimistic side
of the line depicting perfection.

6. Conclusions

We have defined and demonstrated a methodology for the
prediction of smolt production in the probabilistic framework.
Our goals were managerial, aiming at generalizing models ca-
pable of adjusting to the needs of fisheries management, while
maintaining good predictive performance. Our empirical re-
sults illustrated the performance of our methodology on real-
world data. In the interest of unbiased evaluation, our valida-
tion schemes were as strict as possible.

When learning the model from the data for one river and pre-
dicting for the other, it was seen that the results were somewhat
different. When learning models from the data for river Tornio,
a large river, the models performed reasonably well when pre-
dicting for river Simo. The other way around the models tended
to be overoptimistic, however, unless penalized steeply for op-
timism in the model selection phase. Possibly there is more in-
formation (with respect to the prediction of smolt production)
in the data set for river Tornio.

When we combined the data, and then validated by repeated
splitting to 80% of training and 20% of validation data, the
results were quite good, although the combination of density
estimates from the two rivers did not seem to work: in marked
contrast to the river vs. river scheme, no density estimates of
either kind were included in the best models. Possibly the den-
sity estimates of the two rivers differ in some essential way in
addition to magnitude, which we handled by normalization.

Overall, comparing the two kinds of density estimates, do-
main expert-given and average length-class densities, it could
be seen that the expert estimates worked much better, the length-
class estimates being completely irrelevant in some cases. Pos-
sibly the inclusion of biological knowledge in the expert esti-
mates helps. However, there remains the fact that when the data
was combined, the expert estimates for the two rivers, when
combined, did not seem be relevant. There seems to be some-
thing river-specific about the link between expert-made density
estimates and estimates of smolt production.

Comparing different model selection criteria, it was seen
that marginal likelihood produced nicer, nearly linear, corre-
lations between correct and predicted values, but sometimes
tended to produce overoptimistic models. When learning a model
using an empirical criterion penalizing for optimism, the re-
sulting models were seen to avoid optimism in the validation
data as desired, although they tended to exaggerate pessimism
at the cost of the correct value–predicted value correlation.

Looking at the predictive performance of the models in gen-
eral, the results were reasonably good, except for the outlying
correct values at the high end of the range. That our models
failed to predict correctly for these values which are several

orders of magnitude bigger than the rest of the data, is really
an indication of the nature of the data. Even in the river vs.
river scheme, having seen only one example of such values in
the data, a generalizing model should not really be expected to
be able to predict correctly for the one similarly outlying case
in the validation set, keeping in mind that our rivers are sep-
arate biological systems, and the results and the data indicate
that they are somewhat different as well.

In our empirical results we studied how informative the real-
world data sets we used are. If desired, biological knowledge
could also be made use of, e.g. in the choice of possible model
structures, in the determination of parameter priors or in the
choice of threshold values in the discretization. Another di-
rection for future work would be to utilize more complex loss
functions than the relatively simple asymmetrical loss function
used here. For example, the steepness of the penalization for
error could depend on the correct value, e.g. if the population
is actually “large”, errors are less serious than when the popu-
lation is on the verge of extinction.
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Fig. 11. Learning a model from the data for the Finnish side of river Tornio, predicting for river Simo. Sampling-type structure with
variable selection. Densities and all other data as predictors, history of five years. (a) - (d): Structure search by marginal likelihood over
different discretizations. Structure with the best predictive performance usingα1 = 1 shown. (a) and (c) Estimated densities. (b) and (d)
Average length-class densities. (e) - (h): Structure search by an empirical criterion over different discretizations. Models with the best
predictive performance forα1 = 1 andα1 = 2 shown. (e) Estimated densities,α1 = 1. (f) Estimated densities,α1 = 2. (g) Average
length-class densities,α1 = 1. (h) Average length-class densities,α1 = 2.
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Fig. 12. Learning a model from the data for the Finnish side of river Tornio, predicting for river Simo. Sampling-type structure with
variable selection, structure search by marginal likelihood over different discretizations. Structure with the best predictive performance
usingα1 = 1 shown. Densities andRn

i as predictors, history of five years. (a) and (c) Estimated densities. (b) and (d) Average
length-class densities.
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Fig. 13. Learning a model from the data for river Simo, predicting for the Finnish side of river Tornio. Sampling-type structure with
variable selection. Densities and all other data as predictors, history of five years. (a) - (d): Structure search by marginal likelihood over
different discretizations. Structure with the best predictive performance usingα1 = 1 shown. (a) and (c) Estimated densities. (b) and (d)
Average length-class densities. (e) - (h): Structure search by an empirical criterion over different discretizations. Models with the best
predictive performance forα1 = 1 andα1 = 2 shown. (e) Estimated densities,α1 = 1. (f) Estimated densities,α1 = 2. (g) Average
length-class densities,α1 = 1. (h) Average length-class densities,α1 = 2.
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Fig. 14. Learning a model from the data for river Simo, predicting for the Finnish side of river Tornio. Sampling-type structure with
variable selection, structure search by an empirical criterion over different discretizations. Structures with the best predictive performance
for α1 = 1 andα1 = 2 shown. Densities andRk

i , history of five years, predictive performance. (a) and (c) Estimated densities,α1 = 1.
(b) and (d) Estimated densities,α1 = 2.
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Fig. 15. Learning a model from the combined data for the two rivers. Sampling-type structure with variable selection, structure search by
marginal likelihood. All of the available data as predictors, history of five years. Structure with the highest marginal likelihood over all
discretizations.
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Fig. 16. Learning a model from the combined data for both rivers, Validating by 80-20 splits to training and validation data. Sampling-
type structure with variable selection. Densities and all other data as predictors, history of five years. (a) - (b): Structure search by
marginal likelihood over different discretizations. Model with the best predictive performance usingα1 = 1 shown. (a) and (b) All data.
(c) - (f): Structure search by an empirical criterion over different discretizations. Models with the best predictive performance forα1 = 1
andα1 = 2 shown. (c) Estimated densities,α1 = 1. (d) Estimated densities,α1 = 2. (e) Average length-class densities,α1 = 1. (f)
Average length-class densities,α1 = 2.
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