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Abstract

Stochastic complexity of a data set is defined as the
shortest possible code length for the data obtainable
by using some fixed set of models. This measure is
of great theoretical and practical importance as a
tool for tasks such as model selection or data clus-
tering. In the case of multinomial data, comput-
ing the modern version of stochastic complexity,
defined as the Normalized Maximum Likelihood
(NML) criterion, requires computing a sum with
an exponential number of terms. Furthermore, in
order to apply NML in practice, one often needs to
compute a whole table of these exponential sums.
In our previous work, we were able to compute this
table by a recursive algorithm. The purpose of this
paper is to significantly improve the time complex-
ity of this algorithm. The techniques used here are
based on the discrete Fourier transform and the con-
volution theorem.

Introduction

The Minimum Description Length (MDLprinciple devel-
oped by RissanelRissanen, 1978; 1987; 190éffers a well-
founded theoretical formalization of statistical modglifThe ] :
main idea of this principle is to represent a set of modeld?€€n quite rare, In our previous wdtkontkaneret al, 2003;
(model class) by a single model imitating the behaviour 0f2009, we presented a polynomial time (quadratic) method to
any model in the class. Such representative models arelcall€ompute the regret. In this paper we improve our previous re-
universal The universal model itself does not have to belongsults and show how mathematical techniques such as discrete

to the model class as often is the case.

of the MDL principle iscompression of dataThat is, given
some sample data, the task is to find a descriptiononle 3 )
of the data such that this description uses less symbols thdA apply NML to practical tasks such as clustering, a whole
it takes to describe the data literally. Intuitively speaki ot )
this approach can in principle be argued to produce the be&f [Koivisto, 2004 for this task.

possible model of the problem domain, since in order to be In Section 2 we shortly review how the stochastic complex-
able to produce the most efficient coding of data, one musity is defined and our previous work on the computational
capture all the regularities present in the domain.

rectly believe that MDL and BIC are equivalent. The latest
instantiation of the MDL isot directly related to BIC, but

to the formalization described ifRissanen, 1996 Unlike
Bayesian and many other approaches, the modern MDL prin-
ciple does not assume that the chosen model class is correct.
It even says that there is no such thing as a true model or
model class, as acknowledged by many practitioners. The
model class is only used as a technical device for constigicti
an efficient code. For discussions on the theoretical motiva
tions behind the modern definition of the MDL see, Bis-
sanen, 1996; Merhav and Feder, 1998; Bamb@al, 1998;
Grunwald, 1998; Rissanen, 1999; Xie and Barron, 2000;
Rissanen, 2041

The most important notion of the MDL principle is the
Stochastic Complexity (SCWhich is defined as the short-
est description length of a given data relative to a model
classM. However, the applications of the modern, so called
Normalized Maximum Likelihood (NML) version of SC,
at least with multinomial data, have been quite rare. The
modern definition of SC is based on the Normalized Max-
imum Likelihood (NML) code[Shtarkov, 198 Unfortu-
nately, with multinomial data this code involves a sum over
all the possible data matrices of certain length. Comput-
ing this sum, usually called theegret is obviously expo-
nential. Therefore, practical applications of the NML have

Fourier transform and fast convolution can be used in regret

From a computer science viewpoint, the fundamental ide§omputation. The idea of applying these techniques to the

regret computation problem was first suggestelKinivisto,
2004, but as discussed iiKontkanenet al, 2009, in order

table of regret terms is needed. We will modify the method

methods. We also introduce the concept of the regret table.

The MDL principle has gone through several evolutionarySection 3 previews some mathematical results about convolu
steps during the last two decades. For example, the early réion and discrete Fourier transform and presents the new fas
alization of the MDL principle, the two-part code MORis-  convolution-based NML algorithm. Finally, Section 4 gives
sanen, 1971 takes the same form as the Bayesian BIC cri-the concluding remarks and presents some ideas for future
terion[Schwarz, 1978 which has led some people to incor- work.



2 Stochastic Complexity for Multinomial We denote this model class byfx. Now consider a data

Data sample of sizeN from the distribution ofX, i.e., xV =
_ _ (x1,...,zn) and eache; € {1,...,K}. The likelihood is
2.1 NML And Stochastic Complexity clearly given by
The most important notion of the MDL is tl&tochastic Com- N N K
plexity (SC) Intuitively, stochastic complexity is defined as ~ P(x" | §) = H P(z; | 0) = H 0., =[] 00, (9
the shortest description length of a given data relative to a =1 j=1 -1

(r;os%géislsélggsfogﬂ'szigérg%;tleetﬂgf ?,f,?]retr\ggr:sa;eggl_“ where h, is the frequency of valué: in x. Numbers
: ’ P (h1,...,hg) are called thesufficient statisticof datax” .

itive integer. A class of parametric distributions index®d -y, g tficient refers to the fact that the likelihood deyis
the elements 0© is called amodel class That is, a model on the data only through them.

classM is defined as To instantiate the NML distribution (3) for th&1 x model

M={P(-10):0 €0} (1) class, we need to find the maximum likelihood estimates for
the parameterg,. As one might intuitively guess, the ML pa-
Consider now a discrete data set (or matrix)) =  rameters are given by the relative frequencies of the vaiues
(x1,...,xn) of N outcomes, where each outcome is  in the data (see, e.g[Johnsoret al,, 1997):
an element of the set’ consisting of all the vectors of the AN — (6 0 10
form (ay,...,a.), where each variable (or attribute)takes (x™) = (01, 0K) (10)
on valuesv € {1,...,n;}. Furthermore, lef(x") denote - (ﬁ }LK). (11)
themaximum likelihoodstimate of datx”, i.e., NN
R Thus, the likelihood evaluated at the maximum likelihood
0(x") = argmax{P(x" | 0)}. (2)  pointis
0O K hu
. . - o N | j/oN he\ ™"
The Normalized Maximum Likelihood (NMLYistribu- P™[0(x7)) = H (W) ; (12)
tion [Shtarkov, 198Fis now defined as k=1

) and the NML distribution becomes
P | 0(x"), M)

K R\ Pk
P N _ 3 (2
v (x| M) Ry, ’ ®) Pyarr(xN | Mi) = H’“éj\(,N) ; (13)
Mk
whereRY, is given by where
j RV = D PN [0(xY), M) (14)
RN =Y PEN oY), M), () M ;
X N! X hi i
and the sum goes over all the possible data matrices of&ize = Z T bl H (ﬁ) . (15)
The termR Y, is called theregret The definition (3) is intu- hitothg=N 1K

itively very appealing: every data matrix is modeled usingand the sum goes over all themposition®f N into K parts,
its own maximum likelihood (i.e., best flt) model, and then dj.e., over all the possib|e ways to choose a vector of non-
penalty for the complexity of the model clasd is added to  negative integersh(, ..., hx) such that they sum up .
normalize the distribution. The N!/(hy!--- hg!) factor in (15) is called thenultinomial

The stochastic complexity of a data g€t with respecttoa  coefficientand it is one of the basic combinatorial quantities.
model classM can now be defined as the negative logarithmit counts the number of arrangements/éfobjects into X
of (3), i.e., boxes each containing,, . . ., hx objects, respectively.

N1 AN An efficient method for computing (15) was derived
SC(x" _ o DT 10T, M) 5) in [Kontkanenet al, 200d. It is based on the following re-
(x" | M) g N 5) ,

Roaq cursive formula:

= —log P(x" | 6(xN), M) +log RY,. (6) Ry, = Y N! ﬁ (%ym 6
. . . K il hg! N
2.2 NML for Single Multinomial Model Class hatothe=N "1 2
In this section we instantiate the NML distribution (3) (and _ Z N (E)” (E)” CRTL LR
. . . . . qu Mkz
thus the stochastic complexity) for the single-dimensiona iy rilrg! \N N
multinomial case. Let us assume that a discrete random vari- e (17)
able X with K values is multinomially distributed. That is,
the parameter s@ is a simplex B i N! ( r )T (N = r)N_’"
O ={(01. 0k) 0k 20,0, -+ 0k =1}, (7) S NSNS N
r N-—r
where "Ry - Rrtys (18)

Op=P(X=k), k=1,...,K. (8) wherek; +ky; = K. SeeKontkaneret al, 2009 for details.



2.3 NML for Clustering Model Class (n/k[ 1 [ 2 ] | K |
0 RY | RY R%
1 [[RI | R RL
In [Kontkanenet al, 200§ we discussed NML computa-
tion methods for a multi-dimensional model class suitable N | RN [ RY RN
1 2 K

for cluster analysis. The selected model class has also been

successfully applied to mixture modelifiontkanenet al.,

1994, case-based reasonifigontkanenet al., 1994, Naive

Bayes classificatiofGrilnwaldet al,, 1998; Kontkanewt al,,
20004 and data visualizatiofKontkaneret al.,, 20004.

Let us assume that we haxevariables(a, ..., a.). We

also assume the existence of a special variaphdhich can be

chosen to be one of the variables in our data or it can be Jatent
apy,) are

and that given the value @f the variablega, ...,
independent. The resulting model class is denotedvby.
Our assumptions can now be written as

P(e,aq,...,am | Mp) = P(c| Mr) HP a; | ¢, Mr).

- (19)
Suppose the special variablehas K values and each;
hasn; values. The NML distribution for the model clagg
is now

Py (x| Mr) = ﬁ (@)hk ﬁ X 1"—[ (&)fm
= N i =1lv=1 hk

k=1 =1k
1
e (20)
Rtk
whereh,, is the number of times has value: in xV fm, is

the number of timea; has valuey whenc = k, andRM K
is the regret

K hi
River e , Z hy! hK H( >
11+ +hg =N k=1
HH Z fir1!+ fikn,!

1=1k=1 fir1+ -+ fikn;, =hx

- fikv Fikw
T(5)

v=1

3 I

N! <hk>hk
l... |
oy iyl bl LN

m K
h
JTIT R,
1=1k=1

(21)

(22)

It turns out[Kontkanenet al., 2009 that the recursive for-
mula (18) can be generalized also to this multi-dimensional

_

Table 1: The regret table.

case:

>

hi+-- +hK_N

N —
RMT,K -

| K hg
hlhg! 1 (N)

1111 R, (23)
i=1 k=1
N! r1\"1 /To\ "2
- Z 7“1!7‘2! (N) (N)
ri+re=N
‘Rt e Rt ks (24)
N N! T (N —r\N"
:TZ::O?“!(N—T)! (N) ( N )
M RVt ks (25)

wherek; + ko =

2.4 The Regret Table

As discussed inKontkanenet al, 2009, in order to apply
NML to the clustering problem, two tables of regret terms
are needed. The first one consists of the one-dimensional
termsR7%,, forn =0,...,N andk = 1,...,n., wheren,

is defined byn,, = max{ns,...,n,,}. The second one holds
the multi-dimensional regret terms needed in computing the
stochastic complexity’y sz (x™ | Mz). More precisely,

this table consists of the termi&},  , forn =0,..., N and
k=1,...,K,whereK is the maximum number of clusters.

The |dea of the regret table can also be generalized. The
natural candidate for the first dimension of the table is the
size of the data. In addition to number of values or clusters,
the other dimension can be, e.g., number of classes inftlassi
cation tasks, or number of components in mixture modeling.
The regret table is figured in Table 1.

For the single-dimensional multinomial case, the proce-
dure of computing the regret table starts by filling the first
column, i.e., the cask = 1. This is trivial, since clearly
Ry, = 1foralln =0,...,N. To compute the columa,
for k = 2,..., K, the recursive formula (18) can be used by
choosing, e.gk; = k — 1, ko = 1. The time complexity of
filling the whole table i) (K - N?).

The multi-dimensional case is very similar, since the recur
sion formula is essentially the same. The only exceptiomds t
computation of the first column. Wheén= 1, Equation (22)

reduces to
m
= H RnM"f, ’
=1

M1 (26)



forn = 0,...,N. After these easy calculations, the rest of section, we will briefly review basic properties of convadut
the regret table can be filled by applying the recursion (25}that are relevant to the discussion of the rest of the section

similarly as in the single-dimensional case. The time com- Leta = (ag,a1,...,any—1) andb = (bg,b1,...,bn_1)
plexity of calculating the multi-dimensional regret tatide  be two sequences of lengifh. The convolution ok andb is
alsoO (K - N?). defined as a sequence

In practice, the quadratic dependency on the size of data
in both the single- and multi-dimensional cases limits the a c=axb (31)
plicability of NML to small or moderate size data sets. In = (co,C1,---,CN—1), 32)

the next section, we will present a novel, significantly more

efficient method for computing the regret table. where

Cp = apbp_p, n=0,...,N —1. 33
3 Fast Convolution E: e 9
As mentioned ifKoivisto, 2004, the so-calledast convolu- Note that the convolution is mathematically equivalent to
tion algorithm can be used to derive very efficient methods forpolynomial multiplication if the contents of the sequenaes
regret computation. In this section, we will present a \@rsi interpreted as the coefficients of the polynomials.

suitable for computing regret tables. We will start with ®m A direct computation of the convolution (33) clearly takes
mathematical background, and then proceed by deriving théme O (NQ). The convolution theorenshows how to com-

fast NML algorithm. pute convolution via the discrete Fourier transform: et
A i (ao,al,...,a]\z,l) andb = (bo,bl,...,bel) be two se-
3.1 Discrete Fourier Transform guences. The convolution afandb can be computed as
Consider a finite-length sequence of real or complex numbers 1
a = (ag,ay,...,anx_1). The Discrete Fourier Transform c=axb=DFT " (DFT(a) -DFT(b)), (34)
(DFT) of a is defined as a new sequendewith where all the vectors are zero padded to lengif, and
N-1 the multiplication is component-wise. In other words, the
A, = Z ay, - e2mihn/N (27)  Fourier transform of the convolution of two sequences is
heo equal to the product of the transforms of the individual se-
1 quences. Since both the DFT ab#T ' can be computed

N—
— ap, - <COS 2mhn +isin 27Th"> 7 (28)  intime O (N log N) via the FFT algorithm, and the multipli-
‘ N N cation in (34) only takes timé& (IV), it follows that the time

o ] complexity of computing the convolution sequence via DFT
forn = 0,...,N — 1. Avery intuitive explanation of the s (N 1og N).

DFT is presented ifwilf, 2002], where it is shown that if

the original sequence is interpreted as the coefficients of 8.3 The Fast NML Algorithm

polynor_nial, the Fourier transformed sequence is_ obta_ilyed Bin this section we will show how the fast convolution algo-

evaluating the values of this polynomial at certain poims 0 yithm can be used to derive a very efficient method for the

the complex unit circle. SeiaVilf, 2002] for details. regret table computation. The new method replaces the-recur
To recover the orlgln_al séquence given the trans-  gjon formulas (18) and (25) discussed in the previous sectio

formed sequencd, the DiscretanverseFourier Transform Our goal here is to calculate the columnf the regret table

71 . - .y 71 . . .
(DFT™") is used. The definition dDFT™" is very similarto  given the firstk — 1 columns. Let us define two sequenees

DFT, and it is given by andb by
N-1 " _n"
Q= i Z Ah —27T’Lhn/N (29) an = n| k—1» bn - n| Rl' (35)
—0 Evaluate now the convolution afandb,
N-1
1 2rhn . . 2whn LN (n—h)"=h__
=N Z Ay, - (cos N isin— ) ,  (30) (axb), = ﬁRZ—l =] Roh (36)
h=0 h=0
forn=0,...,N — 1. nn nl A\" (n—n\""
A trivial algorithm for computing the discrete Fourier =0 Z m (n) < - )
transform of lengthN takes timeO (N?). However, by " h=0 " :
means of the classi¢tast Fourier Transform (FFT)al- SR RPR (37)
gorithm (see, e.g.[Wilf, 2002]), this can be improved o
to O (Nlog N). As we will soon see, the FFT algorithm is = —Ri, (38)
n:

the basis of the fast regret table computation method.

. where the last equality follows from the recursion formu-
3.2 The Convolution Theorem las (18) and (25). This derivation shows that the coluimn
A mathematical concept aonvolutionturns out to be a key can be computed by first evaluating the convolution (38), and
element in the derivation of the fast NML algorithm. In this then multiplying each term by!/n™.



It is now clear that by computing the convolutions via [Kontkaneret al, 1996 P. Kontkanen, P. Myllyraki, and
the DFT method discussed in the previous section, the H. Tirri. Constructing Bayesian finite mixture models
time complexity of computing the whole regret table drops by the EM algorithm. Technical Report NC-TR-97-003,
to O(NlogN-K). This is a major improvement over ESPRIT Working Group on Neural and Computational
O (N? - K) obtained by the recursion method of Section 2. Learning (NeuroCOLT), 1996.

_ [Kontkaneret al, 1999 P. Kontkanen, P. Myllyraki, T. Si-
4 Conclusion And Future Work lander, and H. Tirri. On Bayesian case matching. In
In this paper we discussed efficient computation algorithms B. Smyth and P. Cunningham, editofgjvances in Case-
for normalized maximum likelihood computation in the case Based Reasoning, Proceedings of the 4th European Work-
of multinomial data. The focus was on the computation of the shop (EWCBR-98)olume 1488 ot ecture Notes in Arti-
regret table needed by many applications. We showed how ficial Intelligence pages 13-24. Springer-Verlag, 1998.

advanced mathematical techniques such as discrete Fourigéontkanenet al, 20004 P. Kontkanen, J. Lahtinen, P. Myl-
transform and convolution can be applied to the problem. lymaki, T. Silander, and H. Tirri. Supervised model-based

The main result of the paper is a derivation of a novel al- gy alization of high-dimensional datantelligent Data
gorithm for regret table computation. The theoretical time Analysis 4:213-227, 2000.

complexity of this algorithm allows practical applicat®nf ) .
NML in domains with very large datasets. With the earlier [Kontkaneret al, 20004 P. Kontkanen, P. Myllyraki, T. Si-
quadratic-time algorithms, this was not possible. lander, H. Tirri, and P. Gmwald. On predictive distribu-

In the future, we plan to conduct an extensive set of em- tions and Bayesian networksStatistics and Computing
pirical tests to see how well the theoretical advantage @f th ~ 10:39-54, 2000.

new algorithm transfers to practice. On the theoreticat sid [Kontkaneret al, 2003 P. Kontkanen, W. Buntine, P. Myl-
our goal is to extend the regret table computation to more |ymaki, J. Rissanen, and H. Tirri. Efficient computation of
complex cases like general graphical models. We will also  gtgchastic complexity. In C. Bishop and B. Frey, editors,

research supervised versions of the stochastic completeity Proceedings of the Ninth International Conference on Ar-
signed for supervised prediction tasks such as classditati tificial Intelligence and Statisticpages 233-238. Society

This work was supported in part by the Academy of Finland[Kontkaneret al, 2009 P. Kontkanen, P. Myllyraki,
under the projects Minos and Civi and by the National Tech- . Buntine, J. Rissanen, and H. Tirri. An MDL frame-
nology Agency under the PMMA project. In addition, this  work for data clustering. In P. @nwald, 1.J. Myung,
work was supported in part by the IST Programme of the Eu- and M. Pitt, editors Advances in Minimum Description

ropean Community, under the PASCAL Network of Excel- | ength: Theory and Applicationhe MIT Press, 2005.

lence, 1IST-2002-506778. This publication only reflects the, .
authors’ views. 'S publicatl y [Merhav and Feder, 1998\. Merhav and M. Feder. Univer-

sal prediction|EEE Transactions on Information Theory
44(6):2124-2147, October 1998.

[Barronet al, 1999 A. Barron, J. Rissanen, and B. Yu. The [Rissanen, 1978J. Rissanen. Modeling by shortest data de-

minimum description principle in coding and modeling. scription. Automatica 14:445-471, 1978.
IEEE Transactions on Information Theorg#4(6):2743— [Rissanen, 1997J. Rissanen. Stochastic complexitjour-
2760, October 1998. nal of the Royal Statistical Societ$#9(3):223-239 and
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gan Kaufmann Publishers, San Francisco, CA. ing by the MDL principle.Computer Journal42(4):260—

269, 1999.
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