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Abstract

We regard histogram density estimation as
a model selection problem. Our approach is
based on the information-theoretic minimum
description length (MDL) principle. MDL-
based model selection is formalized via the
normalized maximum likelihood (NML) dis-
tribution, which has several desirable opti-
mality properties. We show how this ap-
proach can be applied for learning generic, ir-
regular (variable-width bin) histograms, and
how to compute the model selection crite-
rion efficiently. We also derive a dynamic
programming algorithm for finding both the
NML-optimal bin count and the cut point
locations in polynomial time. Finally, we
demonstrate our approach via simulation
tests.

1 INTRODUCTION

Density estimation is one of the central problems in
statistical inference and machine learning. Given a
random sample of observations from an unknown den-
sity, the goal of histogram density estimation is to find
a piecewise constant density that describes the data
best according to some pre-determined criterion. Al-
though histograms are very simple densities, they are
very flexible and can model complex properties like
multi-modality with a relatively small number of pa-
rameters. Furthermore, one does not need to assume
any specific form for the underlying density function:
given enough bins, a histogram estimator adapts to
any kind of density.

Most existing methods for learning histogram densities
assume that the bin widths are equal and concentrate
only on finding the optimal bin count. These regu-
lar histograms are, however, often problematic. It has
been argued [15] that regular histograms are only good

for describing roughly uniform data. If the data dis-
tribution is strongly non-uniform, the bin count must
necessarily be high if one wants to capture the details
of the high density portion of the data. This in turn
means that an unnecessary large amount of bins is
wasted in the low density region.

To avoid the problems of regular histograms one must
allow the bins to be of variable width. For these irreg-
ular histograms, it is necessary to find the optimal set
of cut points in addition to the number of bins, which
naturally makes the learning problem essentially more
difficult. For solving this problem, we regard the his-
togram density estimation as a model selection task,
where the cut point sets are considered as models. In
this framework, one must first choose a set of candidate
cut points, from which the optimal model is searched
for. The quality of the cut point sets is then measured
by some model selection criteria.

Our approach is based on information theory, more
specifically on the minimum encoding or minimum
complexity methods. These methods perform induc-
tion by seeking a theory that allows the most compact
encoding of both the theory and available data. Intu-
itively speaking, this approach can be argued to pro-
duce the best possible model of the problem domain,
since in order to be able to produce the most efficient
coding, one must capture all the regularities present in
the domain. Consequently, the minimum encoding ap-
proach can be used for constructing a solid theoretical
framework for statistical modeling.

The most well-founded formalization of the minimum
encoding approach is the minimum description length
(MDL) principle developed by Rissanen [10, 11, 12].
The main idea of this principle is to represent a set of
models (model class) by a single model imitating the
behaviour of any model in the class. Such representa-
tive models are called universal. The universal model
itself does not have to belong to the model class as
often is the case.



The way MDL does model selection is by minimizing
a quantity called the stochastic complexity, which is
the shortest description length of a given data relative
to a given model class. The definition of the stochas-
tic complexity is based on the normalized maximum
likelihood (NML) distribution introduced in [17, 12].
The NML distribution has several theoretical optimal-
ity properties, which make it a very attractive can-
didate for performing model selection. It was origi-
nally [12, 2] formulated as a unique solution to the
minimax problem presented in [17], which implied
that NML is the minimax optimal universal model.
Later [13], it was shown that NML is also the solution
to a related problem involving expected regret. See
Section 2 and [2, 13, 5, 14] for more discussion on the
theoretical properties of the NML.

On the practical side, NML has been successfully ap-
plied to several problems. We mention here two ex-
amples. In [9], NML was used for data clustering,
and its performance was compared to alternative ap-
proaches like Bayesian statistics. The results showed
that NML was especially impressive with small sample
sizes. In [16], NML was applied to wavelet denoising
of computer images. Since the MDL principle in gen-
eral can be interpreted as separating information from
noise, this approach is very natural.

Unfortunately, in most cases one must face severe com-
putational problems with NML. The definition of the
NML involves a normalizing integral or sum, called
the parametric complexity, which usually is difficult to
compute. One of the contributions of this paper is
to show how the parametric complexity can be com-
puted efficiently in the histogram case, which makes
it possible to use NML as a model selection criteria in
practice.

There is obviously an exponential number of different
cut point sets. Therefore, a brute-force search is not
feasible. Another contribution of this paper is to show
how the NML-optimal cut point locations can be found
via dynamic programming in a polynomial (quadratic)
time with respect to the size of the set containing the
cut points considered in the optimization process.

The histogram density estimation is naturally a well-
studied problem, but unfortunately almost all of the
previous studies, e.g. [3, 6, 18], consider regular his-
tograms only. Most similar to our work is [15], in which
irregular histograms are learned with the Bayesian
mixture criterion using a uniform prior. The same
criterion is also used in [6], but the histograms are
equal-width only. Another similarity between our
work and [15] is the dynamic programming optimiza-
tion process, but since the optimality criterion is not
the same, the process itself is quite different. It should

be noted that these differences are significant as the
Bayesian mixture criterion does not possess the opti-
mality properties of NML mentioned above.

This paper is structured as follows. In Section 2 we
discuss the basic properties of the MDL framework in
general, and also shortly review the optimality proper-
ties of the NML distribution. Section 3 introduces the
NML histogram density and also provides a solution
to the related computational problem. The cut point
optimization process based on dynamic programming
is the topic of Section 4. Finally, in Section 5 our
approach is demonstrated via simulation tests.

2 MDL AND NML

The MDL principle is one of the minimum encoding
approaches to statistical modeling. The fundamental
goal of the minimum encoding approaches is compres-
sion of data. That is, given some sample data, the
task is to find a description or code of it such that
this description uses the least number of symbols, less
than other codes and less than it takes to describe the
data literally. Intuitively speaking, in principle this
approach can be argued to produce the best possible
model of the problem domain, since in order to be able
to produce the most efficient coding of data, one must
capture all the regularities present in the domain.

The MDL principle has several desirable properties.
Firstly, it automatically protects against overfitting
when learning both the parameters and the structure
of the model. Secondly, there is no need to assume
that there exists some underlying “true” model, which
is not the case with other statistical methods. MDL is
also closely related to the Bayesian inference but there
are some fundamental differences, the most important
being that MDL is not dependent on any prior distri-
bution, it only uses the data at hand.

The most important notion of MDL is the stochastic
complexity (SC). Intuitively, stochastic complexity is
defined as the shortest description length of a given
data relative to a model class. MDL model selection
is based on minimizing the stochastic complexity. In
the following, we give the definition of stochastic com-
plexity and then proceed by discussing its theoretical
justifications.

Let xn = (x1, . . . ,xn) be a data sample of n outcomes,
where each outcome xj is an element of some space of
observations X . The n-fold cartesian product X ×
· · · × X is denoted by Xn, so that xn ∈ Xn. Consider
a set Θ ⊆ R

d, where d is a positive integer. A class of
parametric distributions indexed by the elements of Θ
is called a model class. That is, a model class M is



defined as
M = {f(· | θ) : θ ∈ Θ}. (1)

Denote the maximum likelihood estimate of data xn

by θ̂(xn), i.e.,

θ̂(xn) = arg max
θ∈Θ

{f(xn | θ)}. (2)

The normalized maximum likelihood (NML) den-
sity [17] is now defined as

fNML(xn | M) =
f(xn | θ̂(xn),M)

Rn
M

, (3)

where the normalizing constant Rn
M is given by

Rn
M =

∫

x
n∈Xn

f(xn | θ̂(xn),M)dxn, (4)

and the range of integration goes over the space of data
samples of size n. If the data is discrete, the integral
is replaced by the corresponding sum.

The stochastic complexity of the data xn given a model
class M is defined via the NML density as

SC(xn | M) = − log fNML(xn | M) (5)

= − log f(xn | θ̂(xn),M) + logRn
M,

(6)

and the term logRn
M is called the parametric com-

plexity or minimax regret. The parametric complexity
can be interpreted as measuring the logarithm of the
number of essentially different (distinguishable) distri-
butions in the model class. Intuitively, if two distribu-
tions assign high likelihood to the same data samples,
they do not contribute much to the overall complexity
of the model class, and the distributions should not
be counted as different for the purposes of statistical
inference. See [1] for more discussion on this topic.

The NML density (3) has several important theoretical
optimality properties. The first one is that NML pro-
vides a unique solution to the minimax problem posed
in [17],

min
f̂

max
x

n
log

f(xn | θ̂(xn))

f̂(xn)
= logRn

M, (7)

This means that the NML density is the minimax op-
timal universal model. A related property of NML in-
volving expected regret was proven in [13]. This prop-
erty states that NML also minimizes

min
f̂

max
g

Eg log
f(xn | θ̂(xn))

f̂(xn)
= logRn

M, (8)

where the expectation is taken over xn and g is the
worst-case data generating density.

Having now discussed the MDL principle and the NML
density in general, we return to the main topic of the
paper. In the next section, we instantiate the NML
density for the histograms and show how the para-
metric complexity can be computed efficiently in this
case.

3 NML HISTOGRAM DENSITY

Consider a sample of n outcomes xn = (x1, . . . ,xn)
from an unknown density f on the inter-
val [xmin,xmax]. Without any loss of generality,
we assume that the data is sorted into increasing
order. Typically, xmin and xmax are defined as the
minimum and maximum value in xn, respectively. We
assume that the data is recorded at a finite accuracy ε,
which means that each xj ∈ xn belongs to the set X
defined by

X = {xmin + tε : t = 0, . . . ,
xmax − xmin

ε
}. (9)

Let C = (c1, . . . , cK−1) be an increasing sequence of
points partitioning the range [xmin − ε/2,xmax + ε/2]
into the following K intervals (bins):

([xmin − ε/2, c1], ]c1, c2], . . . , ]cK−1,xmax + ε/2]). (10)

The points ck are called the cut points of the his-
togram. Note that in order to simplify the formula-
tions, the original data range [xmin,xmax] is extended
by ε/2 from both ends. It is natural to assume that
there is only one cut point between two consecutive
elements of X , since placing two or more cut points
would always produce unnecessary empty bins. For
simplicity, we assume that the cut points belong to
the set C defined by

C = {xmin + ε/2 + tε : t = 0, . . . ,
xmax − xmin

ε
− 1},

(11)
i.e., each ck ∈ C is a midpoint of two consecutive values
of X .

Define c0 = xmin − ε/2, cK = xmax + ε/2 and let Lk =
ck − ck−1, k = 1, . . . ,K be the bin lengths. Given a
parameter vector θ ∈ Θ,

Θ = {(θ1, . . . , θK) : θk ≥ 0, θ1 + · · · + θK = 1}, (12)

and a set (sequence) of cut points C, we now define
the histogram density fh by

fh(x | θ, C) =
ε · θk

Lk

, (13)

where x ∈ ]ck−1, ck]. Note that (13) does not de-
fine a density in the pure sense, since fh(x | θ, C)



is actually the probability that x falls into the inter-
val ]x−ε/2, x+ε/2]. The density version of (13) would
be straightforward to derive by letting ε → 0, but we
prefer the pre-discretized version, since real data has
a finite accuracy anyway.

Given (13), the likelihood of the whole data sample xn

is easy to write. We have

fh(xn | θ, C) =

K
∏

k=1

(

ε · θk

Lk

)hk

, (14)

where hk is the number of data points falling into bin k.

To instantiate the NML distribution (3) for the his-
togram density fh, we need to find the maximum likeli-
hood parameters θ̂(xn) = (θ̂1, . . . , θ̂K) and an efficient
way to compute the parametric complexity (4). It is
well-known that the ML parameters are given by the
relative frequencies

θ̂k =
hk

n
, (15)

so that we have

fh(xn | θ̂(xn), C) =

K
∏

k=1

(

ε · hk

Lk · n

)hk

. (16)

Denote now the parametric complexity of a K-bin his-
togram by logRn

hK
. First thing to notice is that since

the data is pre-discretized, the integral (4) is replaced
by a sum over the space Xn. We have

Rn
hK

=
∑

x
n∈Xn

K
∏

k=1

(

ε · hk

Lk · n

)hk

(17)

=
∑

h1+···+hK=n

n!

h1! · · ·hK !

K
∏

k=1

(

Lk

ε

)hk

·
K
∏

k=1

(

ε · hk

Lk · n

)hk

(18)

=
∑

h1+···+hK=n

n!

h1! · · ·hK !

K
∏

k=1

(

hk

n

)hk

, (19)

where the term (Lk/ε)hk in (18) follows from the fact
that an interval of length Lk contains exactly (Lk/ε)
members of the set X , and the multinomial coeffi-
cient n!/(h1! · · ·hK !) counts the number of arrange-
ments of n objects into K boxes each containing
h1, . . . , hK objects, respectively.

Although the final form (19) of the parametric com-
plexity is still an exponential sum, we can compute it
efficiently. It turns out that (19) is exactly the same
as the parametric complexity of a K-valued multino-
mial, which we studied in [8]. In this work, we showed

that the generating function of the infinite sequence
(R0

hK
,R1

hK
,R2

hK
, . . .) is similar to the generating func-

tion of the so-called tree polynomials tn(y) [7] defined
by

1

(1 − T (z))y
=

∑

n≥0

tn(y)
zn

n!
, (20)

where T (z) is the Cayley’s tree function [4, 7]. From a
tree polynomial recursion presented in [7], we derived

Rn
hK

= Rn
hK−1

+
n

K − 2
Rn

hK−2
, (21)

which holds for K > 2.

It is now straightforward to write a linear-time algo-
rithm based on (21). The computation starts with the
trivial case Rn

h1
≡ 1. The case K = 2 is a simple sum

Rn
h2

=
∑

h1+h2=n

n!

h1!h2!

(

h1

n

)h1
(

h2

n

)h2

, (22)

which clearly can be computed in time O (n). Fi-
nally, recursion (21) is applied K − 2 times to end
up with Rn

hK
. The time complexity of the whole com-

putation is O (n + K).

Having now derived both the maximum likelihood pa-
rameters and the parametric complexity, we are now
ready to write down the stochastic complexity (6) for
the histogram model. We have

SC(xn | C)

= − log
fh(xn | θ̂(xn), C)

Rn
hK

(23)

= − log

∏K

k=1

(

ε·hk

Lk·n

)hk

Rn
hK

(24)

=

K
∑

k=1

−hk(log(ε · hk) − log(Lk · n))

+ logRn
hK

. (25)

Equation (25) is the basis for measuring the quality
of NML histograms, i.e., comparing different cut point
sets. In the next section we will discuss how NML-
optimal histograms can be found in practice.

4 LEARNING OPTIMAL

HISTOGRAMS

In this section we will describe a dynamic program-
ming algorithm, which can be used to efficiently find
both the optimal bin count and the cut point loca-
tions. We start by giving the exact definition of the
problem. Let C̃ ⊆ C denote the candidate cut point



set, which is the set of cut points we consider in the
optimization process. How C̃ is chosen in practice, de-
pends on the problem at hand. The simplest choice is
naturally C̃ = C, which means that all the possible cut
points are candidates. However, if the value of the ac-
curacy parameter ε is small or the data range contains
large gaps, this choice might not be practical. Another
idea would be to define C̃ to be the set of midpoints
of all the consecutive value pairs in the data xn. This
choice, however, does not allow empty bins, and thus
the potential large gaps are still problematic.

A much more sensible choice is to place two candidate
cut points between each consecutive values in the data.
It is straightforward to prove and also intuitively clear
that these two candidate points should be placed as
close as possible to the respective data points. In this
way, the resulting bin lengths are as small as possible,
which will produce the greatest likelihood for the data.
These considerations suggest that C̃ should be chosen
as

C̃ =({xj − ε/2 : xj ∈ xn} ∪ {xj + ε/2 : xj ∈ xn})

\ {xmin − ε/2,xmax + ε/2}. (26)

Note that the end points xmin − ε/2 and xmax + ε/2
are excluded from C̃, since they are always implicitly
included in all the cut point sets.

After choosing the candidate cut point set, the his-
togram density estimation problem is straightforward
to define: find the cut point set C ⊆ C̃ which optimizes
the given goodness criterion. In our case the criterion
is based on the stochastic complexity (25), and the cut
point sets are considered as models. In practical model
selection tasks, however, the stochastic complexity cri-
terion itself may not be sufficient. The reason is that
it is also necessary to encode the model index in some
way, as argued in [5].

In some tasks, an encoding based on the uniform dis-
tribution is appropriate. Typically, if the set of models
is finite and the models are of same complexity, this
choice is suitable. In the histogram case, however, the
cut point sets of different size produce densities which
are dramatically different complexity-wise. Therefore,
it is natural to assume that the model index is encoded
with a uniform distribution over all the cut point sets
of the same size. For a K-bin histogram with the size
of the candidate cut point set fixed to E, there are
clearly

(

E
K−1

)

ways to choose the cut points. Thus,

the codelength for encoding them is log
(

E
K−1

)

.

After these considerations, we define the final criterion
(or score) used for comparing different cut point sets

as

BSC(xn | E,K,C)

= SC(xn | C) + log

(

E

K − 1

)

(27)

=

K
∑

k=1

−hk (log(ε · hk) − log(Lk · n))

+ logRn
hK

+ log

(

E

K − 1

)

. (28)

It is clear that there are an exponential number of
possible cut point sets, and thus an exhaustive search
to minimize (28) is not feasible. However, the opti-
mal cut point set can be found via dynamic program-
ming, which works by tabulating partial solutions to
the problem. The final solution is then found recur-
sively.

Let us first assume that the elements of C̃ are indexed
in such a way that

C̃ = {c̃1, . . . , c̃E}, c̃1 < c̃2 < · · · < c̃E . (29)

We also define c̃E+1 = xmax + ε/2. Denote

B̂K,e = min
C⊆C̃

BSC(xne | E,K,C), (30)

where xne = (x1, . . . ,xne
) is the portion of the data

falling into interval [xmin, c̃e] for e = 1, . . . , E+1. This
means that B̂K,e is the optimizing value of (28) when

the data is restricted to xne . For a fixed K, B̂K,E+1 is
clearly the final solution we are looking for, since the
interval [xmin, c̃E+1] contains all the data.

Consider now a K-bin histogram with cut points C =
(c̃e1

, . . . , c̃eK−1
). Assuming that the data range is re-

stricted to [xmin, c̃eK
] for some c̃eK

> c̃eK−1
, we can

straightforwardly write the score function BSC(xneK |
E,K,C) by using the score function of a (K − 1)-bin
histogram with cut points C ′ = (c̃e1

, . . . , c̃eK−2
) as

BSC(xneK | E,K,C)

= BSC(xneK−1 | E,K − 1, C ′)

− (neK
− neK−1

)(log(ε · (neK
− neK−1

))

− log((c̃eK
− c̃eK−1

) · n))

+ log
R

neK

hK

R
neK−1

hK−1

+ log
E − K + 2

K − 1
, (31)

since (neK
−neK−1

) is the number of data points falling
into the Kth bin, (c̃eK

− c̃eK−1
) is the length of that

bin, and

log

(

E
K−1

)

(

E
K−2

) = log
E − K + 2

K − 1
. (32)



Similarly as in [15], we can now write the dynamic
programming recursion as

B̂K,e = min
e′

{

B̂K−1,e′ −(ne−ne′) ·(log(ε ·(ne−ne′))

− log((c̃e − c̃e′) · n))

+ log
Rne

hK

R
n

e′

hK−1

+ log
E − K + 2

K − 1

}

, (33)

where e′ = K−1, . . . , e−1. The recursion is initialized
with

B̂1,e = −ne · (log(ε · ne)− log((c̃e − (xmin − ε/2)) · n)),
(34)

for e = 1, . . . , E + 1. After that, the bin count
is always increased by one, and (33) is applied for
e = K, . . . , E + 1 until a pre-determined maximum
bin count Kmax is reached. The minimum B̂K,e is
then chosen to be the final solution. By constantly
keeping track which e′ minimizes (33) during the pro-
cess, the optimal cut point sequence can also be re-
covered. The time complexity of the whole algorithm
is O

(

E2 · Kmax

)

.

5 EMPIRICAL RESULTS

The quality of a density estimator is usually measured
by a suitable distance metric between the data gen-
erating density and the estimated one. This is often
problematic, since we typically do not know the data
generating density, which means that some heavy as-
sumptions must be made. MDL principle, however,
states that the stochastic complexity (plus the code-
length for encoding the model index) itself can be used
as a goodness measure. Therefore, it is not necessary
to use any additional way of assessing the quality of
an MDL density estimator. The optimality properties
of the NML criterion and the fact that we are able
to find the global optimum in the histogram case will
make sure that the final result is theoretically valid.

Nevertheless, to demonstrate the behaviour of the
NML histogram method in practice we implemented
the dynamic programming algorithm of the previous
section and ran some simulation tests. We generated
data samples of various size from a fixed irregular 5-
bin histogram (see below), and then used the dynamic
programming method to find the MDL-optimal his-
tograms. The accuracy parameter ε was fixed to 0.5.
The sample sizes we used were 20, 50 and 200. The
results can be found in Figures 1, 2 and 3, respec-
tively. The top picture of each pair shows the opti-
mized (minimum) value of the BSC criterion (28) as
a function of the bin count K, and the bottom one
visually compares the generating density (Hgen) with
the MDL-optimal one (Hnml).
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Figure 1: Simulation results with sample size 20.
Above the optimal value of the BSC-criterion is plot-
ted as a function of the bin count, below the generating
density (solid line) is compared to the NML density
(dashed line).

From the figures we can see that the NML histogram
method clearly works well even with a small sample
size. Although the bin count in Figure 1 is incorrectly
estimated to be 4, the shape of the NML histogram is
quite similar to the generating one, which is remark-
able considering that the sample size is only 20. It is
clear that any equal-width histogram estimator would
be catastrophically bad in this situation. Note that
the third bin of the NML histogram is empty. This
is explained by the fact that the data sampling pro-
cess did not produce any values in that interval, but
that was not a problem for the NML method. An-
other interesting observation from Figure 1 is that the
case K = 1 gets a better score than K = 2. The reason
is that the parametric complexity and the codelength
for encoding the cut points is higher in the latter case,
and the increase in likelihood is not high enough to
compensate that.

When the sample size is increased to 50 (Figure 2),
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Figure 2: Simulation results with sample size 50.
Above the optimal value of the BSC-criterion is plot-
ted as a function of the bin count, below the generating
density (solid line) is compared to the NML density
(dashed line).

the bin count is correctly estimated to be 5. Further-
more, the cut points are exactly the same as with the
generating density. The differences in bin heights are
explained by the random nature of the data gener-
ating process. With sample size 200 (Figure 3), the
NML-estimated histogram is practically the same as
the generating one. The shape of the BSC-curve is
also smoother than it was with smaller sample sizes.

6 CONCLUSION

In this paper we have presented an information-
theoretic framework for histogram density estimation.
The selected approach based on the MDL principle
has several advantages. Firstly, the MDL criteria for
model selection (stochastic complexity) has nice the-
oretical optimality properties. Secondly, by regarding
histogram estimation as a model selection problem,
it is possible to learn generic, variable-width bin his-
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Figure 3: Simulation results with sample size 200.
Above the optimal value of the BSC-criterion is plot-
ted as a function of the bin count, below the generating
density (solid line) is compared to the NML density
(dashed line).

tograms and also estimate the optimal bin count au-
tomatically. Furthermore, the MDL criteria itself can
be used as a measure of quality of a density estima-
tor, which means that there is no need to assume any-
thing about the underlying generating density. Since
the model selection criteria is based on the NML dis-
tribution, there is also no need to specify any prior
distribution for the parameters.

To make our approach practical, we presented an effi-
cient way to compute the value of the stochastic com-
plexity in the histogram case. We also derived a dy-
namic programming algorithm for efficiently optimiz-
ing the NML-based criterion. Consequently, we were
able to find the globally optimal bin count and cut
point locations in quadratic time with respect to the
size of the candidate cut point set.

In addition to the theoretical part, we demonstrated
the validity of our approach by simulation tests. In
these tests, data was generated from a two-modal, ir-



regular histogram with 5 bins. From the tests it was
clearly seen that the NML histogram method works
well even when the sample size was only 20. When
the sample size was increased, the quality of the esti-
mated histogram got better, as expected.

In the future, our plan is to perform an extensive set
of empirical tests using both simulated and real data.
In these tests, we will compare our approach to other
histogram estimators. It is anticipated that the vari-
ous equal-width estimators will not be performing well
in the tests due to the severe limitations of regular
histograms. More interesting will be the comparative
performance of the density estimator in [15], which is
similar to ours but based on the Bayesian mixture cri-
terion. Theoretically, our version has an advantage at
least with small sample sizes.

Another interesting application of NML histograms
would be to use them for modeling the class-specific
distributions of classifiers, such as Naive Bayes. These
distributions are usually modeled with a normal distri-
bution or a multinomial with equal-width discretiza-
tion, which typically cannot capture all the relevant
properties of the distributions. Although the NML
histogram is not specifically tailored for classification
tasks, it seems evident that if the class-specific distri-
butions are modeled with high accuracy, the resulting
classifier also performs well.
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