
In Proceedings of the IADIS International Conference Intelligent Systems and Agents 2007. Lisbon, Portugal,

2007.

Calculating the Normalized Maximum Likelihood

Distribution for Bayesian Forests

Hannes Wettig Petri Kontkanen
Petri Myllymäki

Complex Systems Computation Group (CoSCo)
Helsinki Institute for Information Technology (HIIT)

University of Helsinki & Helsinki University of Technology
P.O.Box 68 (Department of Computer Science)

FIN-00014 University of Helsinki, Finland
{Firstname}.{Lastname}@hiit.fi

ABSTRACT

When learning Bayesian network structures from sample data, an important issue is how to evaluate
the goodness of alternative network structures. Perhaps the most commonly used model (class)
selection criterion is the marginal likelihood, which is obtained by integrating over a prior distribution
for the model parameters. However, the problem of determining a reasonable prior for the parameters
is a highly controversial issue, and no completely satisfying Bayesian solution has yet been presented
in the non-informative setting. The normalized maximum likelihood (NML), based on Rissanen’s
information-theoretic MDL methodology, offers an alternative, theoretically solid criterion that is
objective and non-informative, while no parameter prior is required. It has been previously shown
that for discrete data, this criterion can be computed in linear time for Bayesian networks with no
arcs, and in quadratic time for the so called Naive Bayes network structure. Here we extend the
previous results by showing how to compute the NML criterion in polynomial time for tree-structured
Bayesian networks. The order of the polynomial depends on the number of values of the variables,
but neither on the number of variables itself, nor on the sample size.

KEYWORDS

Machine Learning, Bayesian Networks, Minimum Description Length, Normalized Maximum Likeli-
hood.

1 INTRODUCTION

We consider the problem of learning a Bayesian network structure, based on a sample of data collected
from the domain to be studied. We focus on the score-based approach, where first a model selection
score is defined, yielding a goodness criterion that can be used for comparing different model structures,
and any search method of choice can then be used for finding the structure with the highest score.

In this paper we study the problem of choosing and computing an appropriate model selection
criterion. Naturally, any reasonable criterion must possess some desirable optimality properties. For
a Bayesian, the most obvious choice is to use the model structure posterior, given the data and some
model structure prior that has to be fixed in advance. Assuming a uniform prior over the possible
structures, this leaves us with the marginal likelihood, which is the most commonly used criterion
for learning Bayesian networks. Calculation of the marginal likelihood requires us to define a prior
distribution over the parameters defined by the model structure under consideration. Under certain

assumptions, computing the marginal likelihood is then straightforward, see e.g. [1, 2]. Perhaps
somewhat surprisingly, determining an adequate prior for the model parameters of a given class, in
an objective manner has turned out to be a most difficult problem.

The uniform parameter prior sounds like the obvious candidate for a non-informative prior distri-
bution, but it is not transformation-invariant, and produces different marginal likelihood scores for
dependence-equivalent model structures [2]. This is due to the fact that there is no objective way of
defining uniformity, but any prior can be uniform at most with respect to a chosen representation. The
problem of transformation-invariance can be remedied by using the prior distribution suggested in [3],
but this still leaves us with a single parameter, the equivalent sample size, the value of which is highly
critical with respect to the result of the model structure search. Alternatively, one might resort to
using the transformation-invariant Jeffreys prior, but although it can in the Bayesian network setting
be formulated explicitly [4], computing it appears to be quite difficult in practice.

For the above reasons, in this paper we take the alternative approach of using the information-
theoretic normalized maximum likelihood (NML) criterion [5, 6] as the model selection criterion. The
NML score is – under certain conditions – asymptotically equivalent to the marginal likelihood with
the Jeffreys prior [6], but it does not require us to define a prior distribution on the model parameters.
Based on the data at hand only, it is fully objective, non-informative and transformation-invariant.
What is more, the NML distribution can be shown to be the optimal distribution in a certain intuitively
appealing sense. It may be used for selection of a model class among very different candidates. We
need not assume a model family of nested model classes or the like, but we may compete against each
other any types of model classes for which we can compute the NML distribution. Consequently, the
NML score for Bayesian networks is of great importance both as a theoretically interesting problem
and as a practically useful model selection criterion.

Although the NML criterion yields a theoretically very appealing model selection criterion, its
usefulness in practice depends on the computational complexity of the method. In this paper we
consider Bayesian network models for discrete data, where all the conditional distributions between
the variables are assumed to be multinomial. For a single multinomial variable (or, an empty Bayesian
network with no arcs), the value of the NML criterion can be computed in linear time [7], and for
the Naive Bayes structure in quadratic time [8]. In this paper we consider more general forest-
shaped network structures, and introduce an algorithm for computing the NML score in polynomial
time – where the order of the polynomial depends on the number of possible values of the network
variables. Although the problem of computing the NML for general Bayesian network structures
remains unsolved, this work represents another step towards that goal.

The paper is structured as follows. In Section 2 we briefly review some basic properties of the NML
distribution. Section 3 introduces the Bayesian Forest model family and some inevitable notation.
The algorithm that calculates the NML distribution for Bayesian forests is developed in Section 4 and
summarized in Section 5. We close with the concluding remarks of Section 6.

2 PROPERTIES OF THE NML DISTRIBUTION

The NML distribution, founding on the Minimum Description Length (MDL) principle, has several
desirable properties. Firstly, it automatically protects against overfitting in the model class selection
process. Secondly, there is no need to assume that there exists some underlying “true” model, while
most other statistical methods do: in NML the model class is only used as a technical device to
describe the data, not as a hypothesis. Consequently, the model classes amongst which to choose are
allowed to be of utterly different types; any collection of model classes may be considered as long as
the corresponding NML distributions can be computed. For this reason we find it important to push
the boundaries of NML computability and develop algorithms that extend to more and more complex
model families.

NML is closely related to Bayesian inference. There are, however, some fundamental differences
dividing the two, the most important being that NML is not dependent on any prior distribution, it
only uses the data at hand. For more discussion on the theoretical motivations behind NML and the
MDL principle see, e.g., [6, 9, 10, 11, 12, 13].

In the following, we give the definition of the NML distribution and discuss some of its theoretical
properties.

2.1 Definition of a Model Class and Family

Let xn = (x1, . . . , xn) be a data sample of n outcomes, where each outcome xj is an element of some
space of observations X . The n-fold Cartesian product X ×· · ·×X is denoted by Xn, so that xn ∈ Xn.
Consider a set Θ ⊆ R

d, where d is a positive integer. A class of parametric distributions indexed by
the elements of Θ is called a model class. That is, a model class M is defined as

M = {P (· | θ) : θ ∈ Θ}, (1)

and the set Θ is called a parameter space.
Consider a set Φ ⊆ R

e, where e is a positive integer. Define a set F by

F = {M(φ) : φ ∈ Φ}. (2)

The set F is called a model family, and each of the elements M(φ) is a model class. The associated
parameter space is denoted by Θφ. The model class selection problem can now be defined as a process
of finding the parameter vector φ, which is optimal according to some pre-determined criteria.

2.2 The NML Distribution

One of the most theoretically and intuitively appealing model class selection criteria is the Normalized
Maximum Likelihood. Denote the parameter vector that maximizes the likelihood of data xn for a
given model class M(φ) by θ̂(xn,M(φ)):

θ̂(xn,M(φ)) = arg max
θ∈Θφ

{P (xn | θ)}. (3)

The normalized maximum likelihood (NML) distribution [5] is now defined as

PNML(xn | M(φ)) =
P (xn | θ̂(xn,M(φ)))

C(M(φ), n)
, (4)

where the normalizing term C(M(φ), n) in the case of discrete data is given by

C(M(φ), n) =
∑

yn∈Xn

P (yn | θ̂(yn,M(φ))), (5)

and the sum goes over the space of data samples of size n. If the data is continuous, the sum is
replaced by the corresponding integral. From this definition, it is immediately evident that NML is
invariant with respect to any kind of parameter transformation, since such transformation does not
affect the maximum likelihood P (xn | θ̂(xn,M(φ))).

In the MDL literature – which views the model class selection problem as a task of minimizing the
resulting code length – the minus logarithm of (4) is referred to as the stochastic complexity of the
data xn given model class M(φ) and the logarithm of the normalizing sum log C(M(φ), n) is referred
to as the parametric complexity or (minimax) regret of M(φ).

The NML distribution (4) has several important theoretical optimality properties. The first one
is that NML provides a unique solution to the minimax problem posed in [5],

min
P̂

max
xn

log
P (xn | θ̂(xn,M(φ)))

P̂ (xn | M(φ))
(6)

i.e., the minimizing P̂ is the NML distribution, and it assigns a probability to any data that differs
from the highest achievable probability within the model class – the maximum likelihood

P (xn | θ̂(xn,M(φ))) – by the constant factor C(M(φ), n). In this sense, the NML distribution can
be seen as a truly uniform prior, with respect to the data itself, not its representation by a model
class M(φ). In other words, the NML distribution is the minimax optimal universal model. The term
universal model in this context means that the NML distribution represents (or mimics) the behaviour
of all the distributions in the model class M(φ). Note that the NML distribution itself does not have
to belong to the model class, and typically it does not.

A related property of NML was proven in [11]. It states that NML also minimizes

min
P̂

max
g

Eg log
P (xn | θ̂(xn,M(φ)))

P̂ (xn | M(φ))
(7)

where the expectation is taken over xn and g is the worst-case data generating distribution.

3 THE BAYESIAN FOREST MODEL FAMILY

We assume m variables X1, . . . , Xm with given value cardinalities K1, . . . , Km. We further assume a
data matrix xn = (xji) ∈ Xn, 1 ≤ j ≤ n and 1 ≤ i ≤ m, given.

A Bayesian network structure G encodes independence assumptions so that if each variable Xi is
represented as a node in the network, then the joint probability distribution factorizes into a product of
local probability distributions, one for each node, conditioned on its parent set. We define a Bayesian
forest (BF) to be a Bayesian network structure G on the node set X1, . . . , Xm which assigns at most
one parent Xpa(i) to any node Xi. Consequently, a Bayesian tree is a connected Bayesian forest and
a Bayesian forest breaks down into component trees, i.e. connected subgraphs. The root of each such
component tree lacks a parent, in which case we write pa(i) = ∅.

The parent set of a node Xi thus reduces to a single value pa(i) ∈ {1, . . . , i − 1, i + 1, . . . , m, ∅}.
Let further ch(i) denote the set of children of node Xi in G and ch(∅) denote the “children of none”,
i.e. the roots of the component trees of G.

The corresponding model family FBF can be indexed by the network structure G ∈ ΦBF ⊂ N ⊂ R

according to some enumeration of all Bayesian forests on (X1, . . . , Xm):

FBF = {M(G) : G is a forest}. (8)

Given a forest model class M(G), we index each model by a parameter vector θ in the corresponding
parameter space ΘG .

ΘG = {θ = (θikl) : θikl ≥ 0,
∑

l

θikl = 1, i = 1, . . . , m, k = 1, . . . , Kpa(i), l = 1, . . . , Ki}, (9)

where we define K∅ := 1 in order to unify notation for root and non-root nodes. Each such θikl defines
a probabilty

θikl = P (Xi = l | Xpa(i) = k, M(G), θ) (10)

where we interpret X∅ = 1 as a null condition.
The joint probability distribution that such a model M = (G, θ) assigns to a data vector x =

(x1, . . . , xm) becomes

P (x | M(G), θ) =

m
∏

i=1

P (Xi = xi | Xpa(i) = xpa(i),M(G), θ) =

m
∏

i=1

θi,xpa(i),xi
. (11)

For a sample xn = (xji) of n vectors xj we define the corresponding frequencies

fikl := |{j : xji = l ∧ xj,pa(i) = k}| and fil := |{j : xji = l}| =

Kpa(i)
∑

k=1

fikl. (12)

By definition, for any component tree root Xi we have fil = fi1l. The probability assigned to an i.i.d.
sample xn can then be written as

P (xn | M(G), θ) =

m
∏

i=1

Kpa(i)
∏

k=1

Ki
∏

l=1

θfikl

ikl , (13)

which is maximized at

θ̂ikl(x
n,M(G)) =

fikl

fpa(i),k
, (14)

where we define f∅,1 := n. The maximum data likelihood thereby is

P (xn | θ̂(xn,M(G))) =

m
∏

i=1

Kpa(i)
∏

k=1

Ki
∏

l=1

(

fikl

fpa(i),k

)fikl

. (15)

4 CALCULATING THE NML DISTRIBUTION

The goal is to calculate the NML distribution PNML(xn | M(G)) defined in (4). This consists of
calculating the maximum data likelihood (15) and the normalizing term C(M(G), n) given in (5). The
former involves frequency counting – one sweep through the data – and multiplication of the appro-
priate values. This can be done in time O(n +

∑

i KiKpa(i)). The latter involves a sum exponential
in n, which clearly makes it the computational bottleneck of the algorithm.

Our approach is to break up the normalizing sum in (5) into terms corresponding to subtrees with
given frequencies in either their root or its parent. We then calculate the complete sum by sweeping
through the graph once, bottom-up. The exact ordering will be irrelevant, as long as we deal with
each node before its parent. Let us now introduce the needed notation.

Let G be a given Bayesian forest. In order to somewhat shorten our notation, from now on we do not
write out the model class M(G) anymore, as it may be assumed fixed. We thus write e.g. P (xn | θ),
meaning P (xn | θ,M(G)). When in the following we restrict to subsets of the attribute space, we
implicitly restrict the model class accordingly, e.g. in (16) below, we write P (xn

sub(i) | θ̂(xn
sub(i))) as a

short notation for P (xn
sub(i) | θ̂(xn

sub(i)),M(Gsub(i))).
For any node Xi denote the subtree rooting in Xi by Gsub(i) and the forest built up by all descen-

dants of Xi by Gdsc(i). The corresponding data domains are Xsub(i) and Xdsc(i), respectively. Denote
the partial normalizing sum over all n-instantiations of a subtree by

Ci(n) :=
∑

xn
sub(i)

∈Xn
sub(i)

P (xn
sub(i) | θ̂(xn

sub(i))) (16)

and for any vector xn
i ∈ Xn

i with frequencies fi = (fi1, . . . , fiKi
) we define

Ci(n | fi) :=
∑

xn
dsc(i)

∈Xn
dsc(i)

P (xn
dsc(i),x

n
i | θ̂(xn

dsc(i),x
n
i)) (17)

to be the corresponding sum with fixed root instantiation, summing only over the attribute space
spanned by the descendants on Xi. Note, that we condition on fi on the left-hand side, and on xn

i on
the right-hand side of the definition. This needs to be justified. Interestingly, while the terms in the
sum depend on the ordering of xn

i , the sum itself depends on xn
i only through its frequencies fi. To

see this pick any two representatives xn
i and x̄n

i of fi and find, e.g. after lexicographical ordering of
the elements, that

{(xn
i ,xn

dsc(i)) : xn
dsc(i) ∈ Xn

dsc(i)} = {(x̄n
i ,xn

dsc(i)) : xn
dsc(i) ∈ Xn

dsc(i)} (18)

Next, we need to define corresponding sums over Xsub(i) with the frequencies at the subtree root
parent Xpa(i) given. For any fpa(i) ∼ xn

pa(i) ∈ Xn
pa(i) define

Li(n | fpa(i)) :=
∑

xn
sub(i)

∈Xn
sub(i)

P (xn
sub(i) | x

n
pa(i), θ̂(xn

sub(i),x
n
pa(i))) (19)

Again, this is well-defined since any other representative x̄n
pa(i) of fpa(i) yields summing the same terms

in different order.
After having introduced this notation, we now briefly outline the algorithm and – in the following

subsections – give a more detailed description of the steps involved. As stated before, we go through
G bottom-up. At each inner node Xi, we receive Lj(n | fi) from each child Xj , j ∈ ch(i). Correspond-
ingly, we are required to send Li(n | fpa(i)) up to the parent Xpa(i). At each component tree root Xi

we then calculate the sum Ci(n) for the whole connectivity component and then combine these sums
to get the normalizing sum C(n) for the complete forest G.

4.1 Leaves

It turns out, that for a leave node Xi we can calculate the terms Li(n | fpa(i)) without listing the
frequencies fi at Xi itself. The parent frequencies fpa(i) split the n data vectors into Kpa(i) subsets of
sizes fpa(i),1, . . . , fpa(i),Kpa(i)

and each of them can be modelled independently as a multinomial. We
have

Li(n | fpa(i)) =

Kpa(i)
∏

k=1

CMN(Ki, fpa(i),k). (20)

where

CMN(Ki, n
′) =

∑

xi∈Xi

P (xn′

i | θ̂(xn′

i),MMN(Ki)) =
∑

xi∈Xi

Ki
∏

l=1

(

fil

n′

)fil

(21)

is the normalizing sum (5) for the multinomial model class MMN(Ki) for a single discrete variable
with Ki values, see e.g. [8, 14, 7] for details. [7] derives a simple recurrence for these terms, namely

CMN(K + 2, n′) = CMN(K + 1, n′) +
n′

K
CMN(K, n′), (22)

which we can use to precalculate all CMN(Ki, n
′) (for n′ = 0, . . . , n) in linear time each, i.e. in quadratic

time altogether, for details see [7].

4.2 Inner Nodes

For inner nodes Xi we divide the task into two steps. First collect the messages Lj(n | fi) sent by
each child Xj ∈ ch(i) into partial sums Ci(n | fi) over Xdsc(i), then “lift” these to sums Li(n | fpa(i))
over Xsub(i) which are the messages to the parent.

The first step is simple. Given an instantiation xn
i at Xi or, equivalently, the corresponding

frequencies fi, the subtrees rooting in the children ch(i) of Xi become independent of each other.

Thus we have

Ci(n | fi) =
∑

xn
dsc(i)

∈Xn
dsc(i)

P (xn
dsc(i),x

n
i | θ̂(xn

dsc(i),x
n
i)) (23)

=P (xn
i | θ̂(xn

dsc(i),x
n
i))

∑

xn
dsc(i)

∈Xn
dsc(i)

∏

j∈ch(i)

P (xn
dsc(i)|sub(j) | x

n
i , θ̂(xn

dsc(i),x
n
i))

 (24)

=P (xn
i | θ̂(xn

dsc(i),x
n
i))

∏

j∈ch(i)

∑

xn
sub(j)

∈Xn
sub(j)

P (xn
sub(j) | x

n
i , θ̂(xn

dsc(i),x
n
i))

 (25)

=

Ki
∏

l=1

(

fil

n

)fil
∏

j∈ch(i)

Lj(n | fi) (26)

where xn
dsc(i)|sub(j) is the restriction of xdsc(i) to columns corresponding to nodes in Gsub(j). We have

used (17) for (23), (11) for (24) and (25) and finally (15) and (19) for (26).
Now we calculate the outgoing messages Li(n | fpa(i)) from the incoming messages we have just

combined into Ci(n | fi). This is the most demanding part of the algorithm, as we need to list all
possible conditional frequencies, of which there are O(nKiKpa(i)−1) many, the −1 being due to the
sum-to-n constraint. For fixed i, we arrange the conditional frequencies fikl into a matrix F = (fikl)
and define its marginals

ρ(F) :=

(

∑

k

fik1, . . . ,
∑

k

fikKi

)

and γ(F) :=

(

∑

l

fi1l, . . . ,
∑

l

fiKpa(i)l

)

(27)

to be the vectors obtained by summing the rows of F and the columns of F, respectively. Each such
matrix then corresponds to a term Ci(n | ρ(F)) and a term Li(n | γ(F)). Formally we have

Li(n | fpa(i)) =
∑

F:γ(F)=fpa(i)

Ci(n | ρ(F)). (28)

4.3 Component Tree Roots

For a component tree root Xi ∈ ch(∅) we do not need to pass any message upward. All we need is
the complete sum over the component tree

Ci(n) =
∑

fi

n!

fi1! . . . fiKi
!
Ci(n | fi) (29)

where the Ci(n | fi) are calculated using (26). The summation goes over all non-negative integer
vectors fi summing to n. The above is trivially true since we sum over all instantiations xn

i of Xn
i and

group like terms – corresponding to the same frequency vector fi – keeping track of their respective
count, namely n!/(fi1! . . . fiKi

!).

5 THE ALGORITHM

For the complete forest G we simply multiply the sums over its tree components. Since these are
independent of each other, in analogy to (23)-(26) we have

C(n) =
∏

i∈ch(∅)

Ci(n). (30)

Algorithm 1 collects all the above into pseudo-code.

Algorithm 1

Computing PNML(xn) for a Bayesian Forest G.

1: Count all frequencies fikl and fil from the data xn

2: Compute P (xn | θ̂(xn))=
∏m

i=1

∏Kpa(i)

k=1

∏Ki

l=1

(

fikl

fpa(i),k

)fikl

3: for K ′ = 1, . . . , Kmax := max
i:Xi is a leaf

{Ki} and n′ = 0, . . . , n do

4: Compute CMN(K ′, n′) using recurrence (22)
5: end for

6: for each node Xi in some bottom-up order do

7: if Xi is a leaf then

8: for each frequency vector fpa(i) of Xpa(i) do

9: Compute Li(n | fpa(i)) =
∏Kpa(i)

k=1 CMN(Ki, fpa(i)k)
10: end for

11: else if Xi is an inner node then

12: for each frequency vector fi of Xi do

13: Compute Ci(n | fi) =
∏Ki

l=1

(

fil

n

)fil ∏

j∈ch(i) Lj(n | fi)

14: end for

15: initialize Li ≡ 0
16: for each non-negative Ki × Kpa(i) integer matrix F with entries summing to n do

17: Li(n | γ(F)) += Ci(n | ρ(F))
18: end for

19: else if Xi is a component tree root then

20: Compute Ci(n) =
∑

fi

∏Ki

l=1

(

fil

n

)fil ∏

j∈ch(i) Lj(n | fi)

21: end if

22: end for

23: Compute C(n) =
∏

i∈ch(∅) Ci(n)

24: Output PNML(xn) = P (xn|θ̂(xn))
C(n)

The time complexity of this algorithm is O(nKiKpa(i)−1) for each inner node, O(n(n + Ki)) for
each leaf and O(nKi−1) for a component tree root of G. When all m′ < m inner nodes are binary it
runs in O(m′n3), independent of the number of values of the leaf nodes. This is polynomial wrt. the
sample size n, while applying (5) directly for computing C(n) requires exponential time. The order of
the polynomial depends on the attribute cardinalities: the algorithm is exponential wrt. the number
of values a non-leaf variable can take.

Finally, note that we can speed up the algorithm when G contains multiple copies of some subtree.
Also we have Ci/Li(n | fi) = Ci/Li(n | π(fi)) for any permutation π of the entries of fi. However,
this does not lead to considerable gain, at least in O-notation. Also, we can see that in line 16 of the
algorithm we enumerate all frequency matrices F, while in line 17 we sum the same terms whenever the
marginals of F are the same. Unfortunately, computing the number of non-negative integer matrices
with given marginals is a #P-hard problem already when one of the matrix dimensions is fixed to 2,
as proven in [15]. This suggests that for this task there may not exist an algorithm that is polynomial
in all input quantities. The algorithm presented here is polynomial in both the sample size n and the
graph size m. For attributes with relatively few values, the polynomial is of tolerable degree.

6 CONCLUSION

The information-theoretic normalized maximum likelihood (NML) criterion offers an interesting, non-
informative approach to Bayesian network structure learning. It has some links to the Bayesian
marginal likelihood approach — NML converges asymptotically to the marginal likelihood with the

Jeffreys prior — but it avoids the technical problems related to parameter priors as no explicitly
defined prior distributions are required. Unfortunately a straightforward implementation of the cri-
terion requires exponential time. In this paper we presented a computationally feasible algorithm
for computing the NML criterion for tree-structured Bayesian networks: Bayesian trees and forests
(collections of trees).

The time complexity of the algorithm presented here is polynomial with respect to the sample
size and the number of domain variables, but the order of the polynomial depends on the number of
values of the inner nodes in the tree to be evaluated, which makes the algorithm impractical for some
domains. However, we consider this result as an important extension of the earlier results which were
able to handle only Naive Bayes structures, i.e., Bayesian trees of depth one with no inner nodes. In
the future we plan to test the validity of the suggested NML approach in practical problem domains,
and we also wish to extend this approach to more complex Bayesian network structures.

7 ACKNOWLEDGEMENTS

This work was supported in part by the Finnish Funding Agency for Technology and Innovation under
projects PMMA, KUKOT and SIB, by the Academy of Finland under project CIVI, and by the IST
Programme of the European Community, under the PASCAL Network of Excellence, IST-2002-506778.
This publication only reflects the authors’ views.

References

[1] G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks
from data. Machine Learning, 9:309–347, 1992.

[2] D. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20(3):197–243, September 1995.

[3] W. Buntine. Theory refinement on Bayesian networks. In B. D’Ambrosio, P. Smets, and P. Bonis-
sone, editors, Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence,
pages 52–60. Morgan Kaufmann Publishers, 1991.

[4] P. Kontkanen, P. Myllymäki, T. Silander, H. Tirri, and P. Grünwald. On predictive distributions
and Bayesian networks. Statistics and Computing, 10:39–54, 2000.

[5] Yu M. Shtarkov. Universal sequential coding of single messages. Problems of Information Trans-
mission, 23:3–17, 1987.

[6] J. Rissanen. Fisher information and stochastic complexity. IEEE Transactions on Information
Theory, 42(1):40–47, January 1996.

[7] P. Kontkanen and P. Myllymäki. A linear-time algorithm for computing the multinomial stochas-
tic complexity. Submitted to Information Processing Letters, 2007.

[8] P. Kontkanen, P. Myllymäki, W. Buntine, J. Rissanen, and H. Tirri. An MDL framework for data
clustering. In P. Grünwald, I.J. Myung, and M. Pitt, editors, Advances in Minimum Description
Length: Theory and Applications. The MIT Press, 2006.

[9] A. Barron, J. Rissanen, and B. Yu. The minimum description principle in coding and modeling.
IEEE Transactions on Information Theory, 44(6):2743–2760, October 1998.

[10] Q. Xie and A.R. Barron. Asymptotic minimax regret for data compression, gambling, and pre-
diction. IEEE Transactions on Information Theory, 46(2):431–445, March 2000.

[11] J. Rissanen. Strong optimality of the normalized ML models as universal codes and information
in data. IEEE Transactions on Information Theory, 47(5):1712–1717, July 2001.

[12] P. Grünwald. Minimum description length tutorial. In P. Grünwald, I.J. Myung, and M. Pitt,
editors, Advances in Minimum Description Length: Theory and Applications, pages 23–79. The
MIT Press, 2006.

[13] J. Rissanen. Lectures on statistical modeling theory, August 2005. Available online at www.mdl-
research.org.

[14] P. Kontkanen and P. Myllymäki. MDL histogram density estimation. In Proceedings of the
Eleventh International Conference on Artificial Intelligence and Statistics (to appear), San Juan,
Puerto Rico, March 2007.

[15] M.E. Dyer, R. Kannan, and J. Mount. Sampling contingency tables. Random Structures and
Algorithms, 10(4):487–506, 1997.

