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Abstract. When high-dimensional data vectors are visualized on a two- or three-dimensional display,
the goal is that two vectors close to each other in the multi-dimensional space should also be close to
each other in the low-dimensional space. Traditionally, closeness is defined in terms of some standard
geometric distance measure, such as the Euclidean distance, based on a more or less straightforward
comparison between the contents of the data vectors. However, such distances do not generally reflect
properly the properties of complex problem domains, where changing one bit in a vector may completely
change the relevance of the vector. What is more, in real-world situations the similarity of two vectors
is not a universal property: even if two vectors can be regarded as similar from one point of view, from
another point of view they may appear quite dissimilar. In order to capture these requirements for
building a pragmatic and flexible similarity measure, we propose a data visualization scheme where the
similarity of two vectors is determined indirectly by using a formal model of the problem domain; in our
case, a Bayesian network model. In this scheme, two vectors are considered similar if they lead to similar
predictions, when given as input to a Bayesian network model. The scheme is supervised in the sense
that different perspectives can be taken into account by using different predictive distributions, i.e., by
changing what is to be predicted. In addition, the modeling framework can also be used for validating the
rationality of the resulting visualization. This model-based visualization scheme has been implemented
and tested on real-world domains with encouraging results.
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1 Introduction

When displaying high-dimensional data on a two- or three-dimensional device, each data vec-
tor has to be provided with the corresponding 2D or 3D coordinates which determine its visual
location. In traditional statistical data analysis (see, e.g., [8, 6]), this task is known as multidimen-
sional scaling. From one perspective, multidimensional scaling can be seen as a data compression
or data reduction task, where the goal is to replace the original high-dimensional data vectors
with much shorter vectors, while losing as little information as possible. Consequently, a prag-
matically sensible data reduction scheme is such that two vectors close to each other in the
multidimensional space are also close to each other in the three-dimensional space. This raises
the question of a distance measure — what is a meaningful definition of similarity when dealing
with high-dimensional vectors in complex domains?
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Traditionally, similarity is defined in terms of some standard geometric distance measure, such
as the Euclidean distance. However, such distances do not generally properly reflect the properties
of complex problem domains, where the data typically is not coded in a geometric or spatial form.
In this type of domains, changing one bit in a vector may totally change the relevance of the
vector, and make it in some sense quite a different vector, although geometrically the difference is
only one bit. In addition, in real-world situations the similarity of two vectors is not a universal
property, but depends on the specific focus of the user — even if two vectors can be regarded as
similar from one point of view, they may appear quite dissimilar from another point of view. In
order to capture these requirements for building a pragmatically sensible similarity measure, in
this paper we propose and analyze a data visualization scheme where the similarity of two vectors
is not directly defined as a function of the contents of the vectors, but rather determined indirectly
by using a formal model of the problem domain; in our case, a Bayesian network model defining
a joint probability distribution on the domain. From one point of view, the Bayesian network
model can be regarded as a module which transforms the vectors into probability distributions,
and the distance of the vectors is then defined in probability distribution space, not in the space
of the original vectors.

It has been suggested that the results of model-based visualization techniques can be com-
promised if the underlying model is bad. This is of course true, but we claim that the same holds
also for the so-called model-free approaches, as each of these approaches can be interpreted as a
model-based method where the model is just not explicitly recognized. For example, the standard
Euclidean distance measure is indirectly based on a domain model assuming independent and
normally distributed attributes. This is of course a very strong assumption that does not usually
hold in practice. We argue that by using formal models it becomes possible to recognize and
relax the underlying assumptions that do not hold, which leads to better models, and moreover,
to more reasonable and reliable visualizations.

A Bayesian (belief) network [20, 21] is a representation of a probability distribution over a
set of random variables, consisting of an acyclic directed graph, where the nodes correspond to
domain variables, and the arcs define a set of independence assumptions which allow the joint
probability distribution for a data vector to be factorized as a product of simple conditional
probabilities. Techniques for learning such models from sample data are discussed in [11]. One
of the main advantages of the Bayesian network model is the fact that with certain technical
assumptions it is possible to marginalize (integrate) over all parameter instantiations in order to
produce the corresponding predictive distribution [7, 13]. As demonstrated in, e.g., [18], such
marginalization improves the predictive accuracy of the Bayesian network model, especially in
cases where the amount of sample data is small. Practical algorithms for performing predictive
inference in general Bayesian networks are discussed for example in [20, 19, 14, 5].

In our supervised model-based visualization scheme, two wvectors are considered similar if
they lead to similar predictions, when given as input to the same Bayesian network model. The
scheme is supervised, since different perspectives of different users are taken into account by using
different predictive distributions, i.e., by changing what is to be predicted. The idea is related
to the Bayesian distance metric suggested in [17] as a method for defining similarity in the case-
based reasoning framework. The reason for us to use Bayesian networks in this context is the
fact that this is the model family we are most familiar with, and according to our experience, it
produces more accurate predictive distributions than alternative techniques. Nevertheless, there
is no reason why some other model family could not also be used in the suggested visualization
scheme, as long as the models are such that they produce a predictive distribution. The principles
of the generic visualization scheme are described in more detail in Section 2.

Visualizations of high-dimensional data can be exploited in finding regularities in complex
domains; in other words, in data mining applications. As our visualization scheme is based on
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Bayesian network models, one can say that we are using Bayesian networks for data mining.
However, it is important to realize that our approach is fundamentally different from the more
direct application of Bayesian networks for data mining, discussed in, e.g., [12]: as Bayesian
network models represent regularities found in the problem domain, they can obviously be used
for data mining tasks by examining the properties of the model. In our case, on the other hand,
data mining is not performed by examining the properties of the model itself, but by visualizing
the predictive distributions produced by the model. We would like to emphasize that we are
not suggesting not to use Bayesian networks for data mining by examining the model properties;
rather, we see our visualization scheme as a complementary technique that can be used in addition
to normal application of Bayesian networks.

The scheme suggested by Bishop and Tipping [2] represents another interesting possibility for
applying Bayesian network models in data visualization and data mining. Bishop and Tipping
regard the visual coordinates as missing information, and estimate this information by using
standard techniques for learning latent variable models. In a sense, this approach resembles the
approach presented here, as the visualization is essentially based on the predictive distribution
of the latent variable. However, the scheme is completely unsupervised — the visualizations are
always made with respect to the latent variable — while in our supervised case the predictive
distribution concerns one or more of the original variables. Another difference is that our scheme
is flat in the sense that the result of the visualization process is one picture, while the latent
variable method described in [2] produces a hierarchy of pictures at different levels. Adapting
the idea of hierarchical visualization to our supervised model-based visualization scheme would
make an interesting research topic.

Kohonen’s self-organizing maps (SOMs) [15] offer yet another method for visualizing high-
dimensional data, but it should be noted that the approach is fundamentally different from the
scheme suggested here: a SOM is based on a neighborhood-preserving topological map tuned
according to geometric properties of sample vectors, instead of exploiting probabilistic distribu-
tions produced by a formal model. Consequently, although the scheme is fully unsupervised like
the scheme suggested by Bishop and Tipping, strictly speaking the method is not model-based
in the same sense as the Bayesian network based approach discussed above. A more involved
discussion on this topic can be found in [1].

As discussed in [2], when comparing Bayesian model-based visualization approaches to the
projection pursuit and related visualization methods (see, e.g., [4] and the references therein),
we can make the following observations: Firstly, the Bayesian approach is parameter-free in
the sense that the user is not required to participate in the data visualization process, but the
process can be fully automated. Nevertheless, the prior distributions of a Bayesian model offer the
user a theoretically justifiable method for affecting the model construction process, and hence
the resulting visualization, if such intervention is considered useful. Secondly, in contrast to
traditional “hard” hierarchical data partitioning and visualization methods, Bayesian methods
work with “soft” uncertainties (probabilities), and can hence be expected to produce more smooth
and robust visualizations.

After producing a 2D or 3D visualization of a complex domain, an obvious question concerns
the quality of the result: how do we know whether the visual picture represents the problem
domain in a reasonable manner? This question can of course be partly answered through the
results of a data mining process: if the user is capable of discovering new, interesting regularities
in the data based on the visualization obtained, we can say that the visualization is in some
sense reasonable, at least from a pragmatic point of view. However, we would like to come up
with a more theoretically rigorous, statistical methodology for estimating the quality of different
visualizations. This important question is discussed in Section 3.

The model-based visualization scheme discussed above has been implemented and tested on
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real-world domains with encouraging results. Illustrative examples with public-domain classi-
fication datasets are presented in Section 4. More involved projects for analyzing real-world
data with domain experts are currently in progress in co-operation with the Helsinki University
Central Hospital (a medical diagnosis problem related to the Helsinki Heart Study project) and
several domestic industrial partners. One of the partners has also started commercializing the
visualization method as part of a generic Bayesian data mining tool to be released later.

2 Supervised Model-Based Visualization

Let X = {x1,...,xn} denote a collection of N vectors each consisting of values of n attributes
X1,...,X,. For simplicity, in the sequel we will assume the attributes X; to be discrete. Now
let X' denote a new data matrix where each n-component data vector x; is replaced by a two- or
three-component data vector x;. As this new data matrix can easily be plotted on a two- or three-
dimensional display, we will call X the visualization of data X. Consequently, for visualizing
high-dimensional data, we need to find a transformation (function) which maps each data vector
in the domain space to a vector in the visual space. In order to guarantee the usefulness of
the transformation used, an obvious requirement is that two vectors close to each other in the
domain space should also be close to each other in the visual space. Formally, we can express
this requirement in the following manner:

N N
Minimize Y Y (d(xi,x)) — d'(x;, %)), 1)
i=1 j=it1

where d(x;, ;) denotes the distance between vectors x; and x; in the domain space, and d’(x;, x;)
the distance between the corresponding vectors in the visual space. Finding visual locations by
minimizing this criterion is known as Sammon’s mapping (see [15]).

The visual space is used for graphical, geometric representation of data vectors, so the geo-
metric Euclidean distance seems a natural choice for the distance metric d'(-). Nevertheless, it is
important to realize that there is no a priori reason why this distance measure would make a good
similarity metric in the high-dimensional domain space. As a matter of fact, in many complex
domains it is quite easy to see that geometric distance measures reflect poorly the significant
similarities and differences between the data vectors. The main problems one encounters when
using Euclidean distance in these domains are the following:

Difficulties in handling discrete data. Many data sets contain nominal or ordinal attributes,
in which case finding a reasonable coding with respect to the Euclidean distance metric is
a difficult task.

Lack of focus. Euclidean distance is inherently unsupervised in the sense that all attributes are
treated equally.

Dependence of attribute scaling. As all attributes are treated as equal, it is obvious that an
attribute with a scale of, say, between -1000 and 1000, is more influential than an attribute
with a range between -1 and 1.

Implicit assumptions. Although at first sight it would seem that Euclidean distance is model-
free in the sense that the similarities are not based on a any specific domain model, this
view is flawed: it is easy to see that when summing over the pairwise distances between
different attribute values independently, we are already implicitly using a model with global
independence between normally distributed model attributes, although we have not stated
this (and other) assumptions explicitly.
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We argue that although the Euclidean distance is an obvious choice for the distance metric d'(-),
in general d(-) should be different from d'(-).

There have been several attempts to circumvent the above weaknesses by using various coding
schemes or variants of the Euclidean distance measure, such as the Mahalanobis distance (see,
e.g., [6]). However, the proposed approaches either use ad hoc methodologies with no theoretical
framework to support the solutions presented, or are based on relatively simple implicit assump-
tions that do not usually hold in practice. As an example of the latter case, it is easy to see that
the Euclidean distance is based on an underlying model with normally distributed, independent
variables, while the Mahalanobis distance assumes the multivariate normal model. These models
are clearly too simple for modeling practically interesting, complex domains, especially without
the explicit, formal theoretical framework that can be used for determining the model parameters.

We propose that in order to overcome the problems listed above, our assumptions concern-
ing the domain space should be explicitly listed in a formal model of the problem domain,
instead of using implicit models defined by distance measures. By a model M we mean here
a parametric model form so that each parameterized instance (M, #) of the model produces a
probability distribution P(X7y,...,X,|M,0) on the space of possible data vectors x. To make
our presentation more concrete, for the remainder of the paper we assume that the models M
represent different Bayesian network structures (for an introduction to Bayesian network models,
see e.g., [20, 19, 14, 5]).

In our supervised model-based visualization scheme, two vectors are considered similar if
they lead to similar predictions, when given as input to the same Bayesian network model M. To
make this idea more precise, let us assume that we wish to visualize our data with respect to m
target attributes X1, ..., X;n- Given a data vector x; and a model M, we can now compute the
predictive distribution for the target attributes:

P(X1,.o, X | X7, M) = P(X1, .., Xon | X1 = Toy1y ooy Xy = x4, M), (2)

where x; ™ denotes the values of x; outside the target set, and x is the value of attribute X}, in
data vector x;. Data vectors x; and x; are now considered similar if the corresponding predictive
distributions are similar. It is easy to see that distance measures based on this type of similarity
measures are supervised, as we can easily change the focus of the metric by changing the target
set X1,..., Xm- The scheme is also scale invariant as we have moved from the original attribute
space to the probability space where all the numbers lie between 0 and 1. This also allows us
to handle different types of attributes (discrete or continuous) in the same consistent framework.
Furthermore, the framework is theoretically on a more solid basis, as our domain assumptions
must be formalized in the model M.

The above scheme still leaves us with the question of defining a similarity measure between
two predictive distributions. The standard solution for computing the distance between two
distributions is to use the Kullback-Leibler divergence (see, e.g, [10]). However, this asymmetric
measure is not a distance metric in the geometric sense, and what is more, it has an infinite range
which leads easily to computational problems with practical implementations. For these reasons,
we propose the following distance metric to be used in practice:

d(x;, Xj) = 1.0 — P(MAP(x;) = MAP(Xj)), (3)

where MAP(x;) denotes the mazimum posterior probability assignment for the target attributes
X1,..., X, with respect to the predictive distribution (2). In Section 4, we present practical
examples that were obtained by using this distance measure.
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3 Validating the Visualization Results

The practical relevance of a visualization X can be indirectly measured through a data mining
process, where domain experts try to capture interesting regularities from the visual image. From
this point of view, no visualization can be considered “wrong” — some visualizations are just
better than the others. However, as demonstrated below, there are also statistical methods for
validating the goodness of different visualizations. Some examples of the results obtained by
using the suggested validation scheme are reported in the next section.

Given two visualizations X and X, of the same high-dimensional data set X, we can use
criterion (1) for deciding between X and X,. However, although this criterion can be used for
comparing alternative visualizations, it does not directly tell us how good the visualizations are.
Of course, if we manage to find the global optimum of criterion (1), we have found the best
possible visualization with respect to criterion (1) and distance measures d(-) and d'(-), but this
is rarely the case in practice. In practical situations we have to settle for approximations of (1),
and as the scale of this criterion varies with different coding schemes and distance measures, it
would be difficult to give any general guidelines for validating the visualizations based on the
absolute value of criterion (1).

On the other hand, as discussed earlier, data visualization can be considered as a data com-
pression/transformation task where the goal is to maintain as much information as possible when
converting X to X'. From this point of view, different visualizations could be evaluated by cal-
culating the amount of information in the resulting reduced data set X', and by comparing the
result to the amount of information in the original data set X. However, although this approach
is theoretically valid, implementing it in practice would be technically demanding. Moreover,
even if we could calculate the absolute information content of a data set, the result would not
constitute a very intuitive measure. For these reasons, we suggest a different approach for valid-
ating different data visualizations, based on the idea of estimating the predictive accuracy in the
reduced data set X'

Recall from the previous section that our visualization scheme is based on the predictive
distribution on the set of target attributes. This predictive distribution is computed by using
the values of the attributes outside the target set. Consequently, the reduced data set X' can
be seen to contain information from those columns in X that contain the values of attributes
Xm+1,-- -, Xn. If we have succeeded in our data reduction process, we should be able to predict
the target data X™ from the visual data X', where X™ denotes the first m columns of X. A
natural prediction method for this purpose is the nearest neighbor method, where, given a partial
input vector as a query, the closest vectors to the query vector in X' are first identified, and the
prediction is performed by using the target data in the corresponding rows in the matrix X.
The overall predictive accuracy can then be estimated by using some empirical technique, such
as the crossvalidation method [22, 9]. Note that the suggested validation method, based on the
nearest neighbor prediction accuracy measurement as described above, can be used for comparing
two alternative visualizations X; and X5, even in cases where the visualizations are produced
with a different distance function d(-).

4 Empirical Results

To illustrate the validity of the suggested data visualization scheme, we performed a series of
experiments with publicly available classification datasets from the UCI data repository [3]. The
24 data sets used and their main properties are listed in Table 1.

In each case, the data was visualized by using the class variable as the target set — in other
words, the data vectors were visualized according to the classification distribution obtained by
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Table 1:
The datasets used in the experiments.
Dataset Size  #Attrs. #Classes
Adult 32561 15 2
Australian Credit 690 15 2
Balance Scale 625 5 3
Breast Cancer (Wisconsin) 699 11 2
Breast Cancer 286 10 2
Connect-4 67557 43 3
Credit Screening 690 16 2
Pima Indians Diabetes 768 9 2
German Credit 1000 21 2
Heart Disease (Hungarian) 294 14 2
Heart Disease (Statlog) 270 14 2
Hepatitis 155 20 2
Tonosphere 351 35 2
Iris Plant 150 ) 3
Liver Disorders 345 7 2
Lymphography 148 19 4
Mole Fever 425 33 2
Mushrooms 8124 23 2
Postoperative Patient 90 9 3
Thyroid Disease 215 6 3
Tic-Tac-Toe Endgame 958 10 2
Vehicle Silhouettes 846 19 4
Congressional Voting Records 435 17 2
Wine Recognition 178 14 3

using a Bayesian network model M. As we in this empirical setup did not have access to any
domain knowledge outside the data, the Bayesian network model had to be constructed from
the data itself. This was done by splitting the data sets into two parts, of which the first part
was used for constructing the Bayesian network model after which this data was thrown away
and only the data in the second part was used for visualization. We understand that in practice
it would make more sense to use all the data for constructing the model to be used, as well as
for visualization, but by using this experimental setup we wanted to guarantee that we do not
accidentally introduce any errors in the validation experiments exploiting the validation scheme
described in the previous section.

The model structure used in this set of experiments was fixed to be the structurally simple
naive Bayes model; this allowed us to avoid the problem of searching for a good model struc-
ture. A description of this model can be found in, e.g., [16]. Of course, using more sophisticated
Bayesian network model structures would probably improve the results further, with the cost of
increased computational requirements. For minimizing criterion (1), we used a very straightfor-
ward stochastic greedy algorithm. The resulting two-dimensional plots are given in Figures 1-4.
Vectors with different class labels are shown with different types of markers.

An example of the corresponding three-dimensional plots is given in Figure 5, modified for
grayscale printing. Different classes are shown with different colors. The colored versions of these
images, produced by the POV-Rayl software package, can be obtained through the CoSCo-group
home page.

For estimating the quality of the visualizations produced, we used the validation scheme
described in the previous section. The prediction methods used are listed in Table 2, and the
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corresponding prediction accuracies are shown in Table 3. It should be noted that results are not
comparable to similar crossvalidation reported earlier, as we used some of the data for construct-

P. Kontkanen et al. / Supervised model-based visualization of high-dimensional data

onvy

Pt

s

0 N ’ .
o
c“ .
'it;_: ° oL
S 00 . . e o
Adult

Australian Credit

Breast Cancer (Wisconsin)

Breast Cancer

Connect-4

Figure 1: Two-dimensional visualizations of datasets 1-6 in Table 1.
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Figure 2: Two-dimensional visualizations of datasets 7-12 in Table 1.

ing the Bayesian network model, and this data was not used in the validation process.
From these results we can make two observations. Firstly, the visualizations obtained by
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Figure 3: Two-dimensional visualizations of datasets 13-18 in Table 1.

the supervised model-based approach generally perform better in nearest neighbor classification
than the visualizations produced by Euclidean multidimensional scaling. In the two-dimensional
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Figure 4: Two-dimensional visualizations of datasets 19-24 in Table 1.

case, the model-based approach yields better results with 15 datasets (with one tie), and in
the three-dimensional case the results are better with 17 datasets (with 3 ties). Secondly, the
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Figure 5: An example of a three-dimensional visualization, obtained with the “Balance” dataset.

overall classification accuracy with the reduced data sets is not significantly worse than with the
methods exploiting the original multidimensional vectors. As a matter of fact, in some cases
the classification accuracy can even be improved by using the visualization process. This means
that the visualizations have been capable of preserving most of the information in the data, with
respect to the supervised classification task chosen.

Table 2:

The classification methods used

Label  Explanation

NB Leave-one-out crossvalidated prediction accuracy of the Naive Bayes model with the
original data set X.
NN Leave-one-out crossvalidated prediction accuracy of the nearest neighbor classifier

with the original data set X.

NN2YP  Leave-one-out crossvalidated prediction accuracy of the nearest neighbor classifier
with the two-dimensional data set obtained from the predictive distribution of the
Naive Bayes model constructed from external training data.

NNéVDB Leave-one-out crossvalidated prediction accuracy of the nearest neighbor classifier
with the three-dimensional data set obtained from the predictive distribution of the
Naive Bayes model constructed from external training data.

NNZS" Leave-one-out crossvalidated prediction accuracy of the nearest neighbor classifier
with the two-dimensional data set obtained by Euclidean multidimensional scaling.

NN3Eg Leave-one-out crossvalidated prediction accuracy of the nearest neighbor classifier
with the three-dimensional data set obtained by Euclidean multidimensional scaling.

The size of the neighborhood used in the nearest neighbor classifier in the experiments repor-
ted in Table 3 was 9. Runs with different size neighborhoods gave very similar results, as long
as the neighborhood size was above one: it seems that the 1-nearest neighbor method does not
measure very well the visual quality of the images produced. Visual inspection of the images
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Table 3:
Crossvalidation results with the methods described in Table 2
Dataset NB NN NNYP O ONNDP O ONNES NNEE
Adult 82.40 81.20  85.20 84.60  79.40  80.60
Australian Credit 84.93 84.35 85.51 86.09 83.77  81.74
Balance Scale 89.78  87.86 89.46 87.54 69.97  73.48
Breast Cancer (Wisconsin) 96.57 94.86  96.00 96.00  94.57  94.29
Breast Cancer 76.92 69.93  69.93 74.13  72.03  74.13
Connect-4 65.00 61.20  67.00 70.00 61.20  60.00
Credit Screening 84.64 84.06 80.29 81.45 81.16  80.87
Pima Indians Diabetes 74.48  76.04 72.66 73.96 70.83 73.18
German Credit 75.20 77.20 70.40 72.00 74.80  74.40
Heart Disease (Hungarian) 85.03 85.71 87.76 88.44  84.35  85.71
Heart Disease (Statlog) 8741 8593 83.70 86.67 83.70 87.41
Hepatitis 87.18 87.18 9231 92.31 89.74  87.18
Tonosphere 90.34 77.84 92.61 92.05 84.66 85.23
Iris Plant 96.00 100.00  92.00 93.33  97.33  100.00
Liver Disorders 69.36 54.34  49.13 49.13  46.24  47.98
Lymphography 85.14 78.38  78.38 82.43 71.62  75.68
Mole Fever 89.67 78.87  85.45 89.67  75.59  80.75
Mushrooms 91.40 97.20  96.00 96.80  93.40  95.40
Postoperative Patient 64.44  55.56 55.56 60.00 62.22 60.00
Thyroid Disease 98.15 91.67  99.07  99.07 94.44  91.67
Tic-Tac-Toe Endgame 69.52 71.61 68.68 70.15 70.77  64.09
Vehicle Silhouettes 58.16  64.07 57.21 60.05 52.48 53.43
Congressional Voting Records 89.45  91.28 90.83 90.83 91.28 90.83
Wine Recognition 97.75 98.88  93.26 93.26  95.51  98.88

produced conforms to the statistical analysis: the images produced by the model-based method
look visually much better than the images produced by the Euclidean method. Actually, the
model-based images look better even in cases where the nearest neighbor classifier gives worse
crossvalidation results than the results obtained by using the Euclidean visualizations. An ex-
ample of such a situation is given in Figure 6. This means that the nearest-neighbor based
crossvalidation scheme does not reflect the visual quality of the images as well as we would have
wanted, it can only be used for revealing general guidelines.

One can of course argue that the basic Euclidean multidimensional scaling is not a very soph-
isticated data visualization method, and its performance can be substantially improved by using
various techniques. This is without doubt true, but we can similarly argue that the Bayesian
network model used in this study was the structurally simple Naive Bayes model, and the per-
formance of the model-based visualization scheme can most likely be improved a great deal by
using more elaborate Bayesian network models. The algorithm used for minimizing criterion (1)
was in both cases exactly the same, so the comparison should be fair in this sense also.

5 Conclusion

We have described a model-based visualization scheme based on the idea of defining a distance
metric with respect to predictions obtained by a formal, probabilistic domain model. The scheme
is supervised in the sense that the focus of the visualization can be determined by changing the
target of the predictions. We also discussed methods for validating the quality of different visual-
izations, and suggested a simple scheme based on estimating the prediction accuracy that can be
obtained by using the reduced, low-dimensional data. Our empirical results with publicly avail-
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Breast Cancer Breast Cancer

Figure 6: An example of the difference in the quality of the images produced by the model-based
(left) and Euclidean (right) visualization.

able classification datasets demonstrated that the scheme produces visualizations that are much
better (with respect to the validation scheme suggested) than those obtained by classical Euc-
lidean multidimensional scaling. Current examples were obtained by using a structurally simple
Bayesian network model for producing the predictive distributions required, and a straightfor-
ward search algorithm for determining the visual locations of the data vectors. It is our belief
that the results can be further improved by using more sophisticated methods in these tasks.
This hypothesis will be examined in a project that aims at commercializing the ideas presented
in a generic Bayesian data mining tool.
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