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MDL Denoising Revisited
Teemu Roos, Petri Myllymäki, and Jorma Rissanen

Abstract— We refine and extend an earlier minimum de-
scription length (MDL) denoising criterion for wavelet-based
denoising. We start by showing that the denoising problem can be
reformulated as a clustering problem, where the goal is to obtain
separate clusters for informative and non-informative wavelet
coefficients, respectively. This suggests two refinements,adding a
code-length for the model index, and extending the model in order
to account for subband-dependent coefficient distributions. A
third refinement is the derivation of soft thresholding inspired by
predictive universal coding with weighted mixtures. We propose
a practical method incorporating all three refinements, which is
shown to achieve good performance and robustness in denoising
both artificial and natural signals.

Index Terms— Minimum description length (MDL) principle,
wavelets, denoising.

I. I NTRODUCTION

W AVELETS are widely applied in many areas of signal
processing [1], where their popularity owes largely to

efficient algorithms on the one hand and advantages of sparse
wavelet representations on the other. The sparseness property
means that while the distribution of the original signal values
may be very diffuse, the distribution of the corresponding
wavelet coefficients is often highly concentrated, having a
small number of very large values and a large majority of
very small values [2]. It is easy to appreciate the importance of
sparseness in signal compression, [3], [4]. The task of remov-
ing noise from signals, ordenoising, has an intimate link to
data compression, and many denoising methods are explicitly
designed to take advantage of sparseness and compressibility
in the wavelet domain, see e.g., [5]–[7].

Among the various wavelet-based denoising methods, those
suggested by Donoho and Johnstone [8], [9] are the best
known. They follow the frequentist minimax approach, where
the objective is to asymptotically minimize the worst-caseL2

risk simultaneously for signals, for instance, in the entire scale
of Hölder, Sobolev, or Besov classes, characterized by certain
smoothness conditions. By contrast, Bayesian denoising meth-
ods minimize theexpected (Bayes) risk, where the expectation
is taken over a given prior distribution supposed to govern the
unknown true signal [10], [11]. Appropriate prior models with
very good performance in typical benchmark tests, especially
for images, include the class of generalized Gaussian densities
[6], [12], [13], and scale-mixtures of Gaussians [14], [15]
(both of which include the Gaussian and double exponential
densities as special cases).
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A third approach to denoising is based on the minimum
description length (MDL) principle [16]–[20]. Several differ-
ent MDL denoising methods have been suggested [6], [12],
[21]–[25]. We focus on what we consider as the most pure
MDL approach, namely that of Rissanen [24]. Our motivation
is two-fold: First, as an immediate result of refining and
extending the earlier MDL denoising method, we obtain a
new practical method with greatly improved performance
and robustness. Secondly, the denoising problem turns out
to illustrate theoretical issues related to the MDL principle,
involving the problem of unbounded parametric complexity
and the necessity of encoding the model class. The study of
denoising gives new insight to these issues.

Formally, the denoising problem is the following. Letyn =
(y1, . . . , yn)T be a signal represented by a real-valued column
vector of lengthn. The signal can be, for instance, a time-
series or an image with its pixels read in a row-by-row order.
Let W be an n × m regressor matrix whose columns are
basis vectors. We model the signalyn as a linear combination
of the basis vectors, weighted by coefficient vectorβn =
(β1, . . . , βm)T , plus Gaussian i.i.d. noise:

yn =Wβm + ǫn, ǫi
i.i.d.
∼ N (0, σ2

N ), (1)

where σ2
N is the noise variance. Given an observed signal

yn, the ideal is to obtain a coefficient vector̃βm such that
the signal given by the transform̃yn = Wβ̃m contains the
informative part of the observed signal, and the differenceyn−
ỹn is noise.

For technical convenience, we adopt the common restriction
on W that the basis vectors form acomplete orthonormal
basis. This implies that the number of basis vectors is equalto
the length of the signal,m = n, and that all the basis vectors
are orthogonal unit vectors. There are a number of wavelet
transforms that conform to this restriction, for instance,the
Haar transform and the family of Daubechies transforms [1],
[26]. Formally, the matrixW is of sizen× n and orthogonal
with its inverse equal to its transpose. Also the mappingβn 7→
Wβn preserves the Euclidean norm, and we have Parseval’s
equality:

||βn|| =
√

〈βn, βn〉 =
√

〈Wβn,Wβn〉 = ||Wβn||. (2)

Geometrically this means that the mappingβn 7→ Wβn is a
rotation and/or a reflection. From a statistical point of view,
this implies that any spherically symmetric density, such as
Gaussian, is invariant under this mapping. All these properties
are shared by the mappingyn 7→ WT yn. We callβn 7→ Wβn

the inverse wavelet transform, andyn 7→ WT yn the forward
wavelet transform. Note that in practice the transforms arenot
implemented as matrix multiplications but by a fast wavelet
transform similar to the fast Fourier transform (see [1]), and
in fact not even the matrices need be written down.
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For complete bases, the conventional maximum likelihood
(least squares) method obviously fails to provide denoising un-
less the coefficients are somehow restricted since the solution
β̃n = WT yn gives the reconstructioñyn = WWT yn = yn

equal to the original signal, including noise. The solution
proposed by Rissanen [24] is to consider each subset of the
basis vectors separately and to choose the subset that allows
the shortest description of the data at hand. The length of the
description is determined by the negative logarithm of the so
called normalized maximum likelihood (NML) model.

In the linear–quadratic case, the NML model involves an
integral, which is undefined unless the range of integration(the
support) is restricted. This, in turn, implies hyper parameters,
which have received increasing attention in various contexts
involving, e.g., Gaussian, Poisson and geometric models [17],
[20], [27]–[30]. Rissanen used renormalization to remove
them and to obtain a second-level NML model. Although the
range of integration has to be restricted also in the second-
level NML model, the range for ordinary regression problems
does not affect the resulting criterion and can be ignored.
Roos et al. [31] give an interpretation of the method which
avoids the renormalization procedure and at the same time
gives a simplified view of the denoising process in terms
of two Gaussian distributions fitted to informative and non-
informative coefficients, respectively. In this paper we carry
this interpretation further and show that viewing the denoising
problem as a clustering problem suggests several refinements
and extensions to the original method.

The rest of this paper is organized as follows. A brief
introduction to model selection by the MDL principle, and the
NML criterion in particular, is given in Sec. II. In Sec. III we
reformulate the denoising problem as a task of clustering the
wavelet coefficients in two or more sets with different distri-
butions. In Sec. IV we propose three different modificationsof
Rissanen’s method, suggested by the clustering interpretation.
In Sec. V the modifications are shown to significantly improve
the performance of the method in denoising both artificial and
natural signals. The conclusions are summarized in Sec. VI.

II. M ODEL SELECTION BY MDL

The minimum description length (MDL) principle states
that we should choose the model that yields the shortest
description of the data together with the description of the
model itself [16]–[20]. When probabilistic models are used,
the description lengths are given by negative logarithms of
probability or density1 values; this can be justified by the
Kraft-McMillan theorem, see [18], [20]. In the following, we
use natural logarithms, which gives the code lengths in nats
(one nat is equal to1/ ln 2 ≈ 1.443 bits).

A. Stochastic Complexity

The stochastic complexity of a sequence under a given
model class is a central concept in the MDL principle. Its
interpretation as the length of the shortest achievable descrip-
tion of the data given a model class (a set of distributions)

1For continuous data, a constant depending on quantization level is usually
omitted.

makes it a yardstick for the comparison of different model
classes. In recent formulations of MDL, stochastic complexity
is defined using the so called normalized maximum likelihood
(NML) model, originally introduced by Shtarkov [32] for data
compression; for the role of NML in MDL model selection,
see [17], [18], [20], [33], [34].

Since the introduction of the NML universal model in the
context of MDL, there has been significant interest in the
evaluation of NML stochastic complexity for different practi-
cally relevant model classes, both exactly and asymptotically.
For discrete models, exact evaluation is often computationally
infeasible since it involves a normalizing coefficient which is
a sum over all possible data-sets. For continuous cases, the
normalizing coefficient is an integral which can be solved in
only a few cases. Under certain conditions on the model class,
different versions of stochastic complexity (which include two-
part, mixture, and NML forms) have the same asymptotic
form — the so called Fisher information approximation, see
e.g. [17], [20], [33]. However, for small data-sets and for
model classes that do not satisfy the necessary conditions,the
asymptotic form is not accurate [35].

We will now define the NML model, and discuss its basic
properties.

B. Normalized Maximum Likelihood (NML)

Let againyn = (y1, . . . , yn) ∈ R
n, n ∈ N be a sequence.

We consider a model classM = {f(· ; θ) : θ ∈ Θ}, i.e., a
set of density functions over sequences inR

n. We denote the
maximum likelihood parameters bŷθ(yn). The ML parameters
do not have to be unique — in fact the model does not even
have to be parametric — since we will only use the maximized
likelihood f(yn ; θ̂(yn)).

The normalized maximum likelihood (NML) universal
model is given by

fnml(y
n) =

f(yn ; θ̂(yn))

Cn
, Cn =

∫

A

f(zn ; θ̂(zn)) dzn ,

where the range of integrationA can be either the set of all
possible sequences of lengthn, or only a subset, andCn is
a normalizing constant ensuring that the result is indeed a
probability density function (over the setA). In the discrete-
data case, the integral is replaced by the corresponding sum.

As shown by Shtarkov [32], the NML model is the unique
minimax optimal universal model in the sense that it minimizes
the worst-caseregret

max
yn∈A

ln
f(yn ; θ̂(yn))

fnml(yn)
= min

g
max
yn∈A

ln
f(yn ; θ̂(yn))

g(yn)
,

whereg can be any density function. The above log-likelihood
ratio, or the regret, can be interpreted as the excess numberof
bits used to encodeyn using modelg relative to the minimum
achieved by the ML parameters.

For some model classes, the normalizing coefficient is finite
only if the range of the data is restricted, see e.g. [17], [24],
[30]. The logarithm of the normalizing coefficient,lnCn,
is called theparametric complexity. It is equal to both the
minimax and maximin regret under log-loss, see e.g. [24],
[36], which makes the quantity interesting in its own right.
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On the other hand, we have the usual Fisher information
approximation [17]

lnCn =
d

2
ln

n

2π
+ ln

∫

Θ

√

det I(θ) dθ + o(1) , (3)

where d is the dimension of the parameter space. It is also
non-trivial to apply due to the integral involving the Fisher in-
formationI(θ). Using only the leading term (without2π), i.e.,
the BIC criterion [37], gives a rough approximation. Even if
the Fisher information formula can be used, there are practical
circumstances where it gives a very poor approximation [35].
As expected, rough approximations tend to perform worse in
model selection tasks than more refined approximations, or
ideally, the exact solution, see e.g. [18, Chap. 9].

III. D ENOISING AND CLUSTERING

A. Extended Model

We modify the basic model (1) in such a way that there
is no need for renormalization. This is achieved by inclusion
of the coefficient vectorβ in the model as a variable and by
selection of a (prior) density forβ. While the resulting NML
model will be equivalent to Rissanen’s renormalized solution,
the new formulation is easier to interpret and directly suggests
several refinements and extensions.

Consider a fixed subsetγ ⊆ {1, . . . , n} of the coefficient
indices. In the resulting model class,Mγ , the coefficientsβi

with i ∈ γ are modelled as independent outcomes from a
zero-mean Gaussian distribution with varianceτ2. In the basic
“hard threshold” version, allβi with i /∈ γ are forced to be
equal to zero. Thus the extended model is given by

yn =Wβn + ǫn,











ǫi
i.i.d.
∼ N (0, σ2

N ),

βi
i.i.d.
∼ N (0, τ2), if i ∈ γ,

βi = 0, otherwise.

(4)

This way of modeling the coefficients is akin to the so
called spike and slab model often used in Bayesian vari-
able selection [38], [39] and applications to wavelet-based
denoising [40], [41] (and references therein). In relationto the
sparseness property mentioned in the introduction, the ‘spike’
consists of coefficients withi /∈ γ that are equal to zero, while
the ‘slab’ consists of coefficients withi ∈ γ described by a
Gaussian density with mean zero. This is a simple form of a
scale-mixture of Gaussians with two components. In Sec. IV-B
we will consider a model with more than two components.

Let cn = βn+WT ǫn, whereWT ǫn gives the representation
of the noise in the wavelet domain. The vectorcn is the
wavelet representation of the signalyn, and we have

yn =Wβn +WWT ǫn =Wcn.

It is easy to see that the maximum likelihood parameters are
obtained directly from

β̂i =

{

ci, if i ∈ γ,

0, otherwise.
(5)

The i.i.d. Gaussian distribution forǫn in (4) implies that the
distribution of WT ǫn is also i.i.d. and Gaussian with the

same variance,σ2
N . As a sum of two independent random

variates, eachci has a distribution given by the convolution of
the densities of the summands,βi and theith component of
WT ǫn. In the casei /∈ γ this is simplyN (0, σ2

N ). In the case
i ∈ γ the density of the sum is also Gaussian, with variance
given by the sum of the variances,τ2 +σ2

N . All told, we have
the following simplified representation of the extended model
where the parametersβn are implicit:

yn =Wcn, ci
i.i.d.
∼

{

N (0, σ2
I ), if i ∈ γ,

N (0, σ2
N ), otherwise,

(6)

whereσ2
I := τ2 + σ2

N denotes the variance of the informative
coefficients, and we have the important restrictionσ2

I ≥ σ2
N

which we will discuss more below.
Due to orthogonality of the transformW , the density of

signalyn under the extended model (6) is equal to the density
of the wavelet representationcn = WT yn under a Gaussian
mixture:

f(yn ; σ2
I , σ2

N ) =
∏

i∈γ

φ(ci ; 0, σ2
I )
∏

i/∈γ

φ(ci ; 0, σ2
N ) , (7)

whereφ(· ; µ, σ2) is the Gaussian density function.

B. Denoising Criterion

The task of choosing a subsetγ can now be seen as a
clustering problem: each wavelet coefficient belongs either
to the set of the informative coefficients with varianceσ2

I ,
or the set of non-informative coefficients with varianceσ2

N .
The MDL principle gives a natural clustering criterion by
minimization of the code-length achieved for the observed
signal (see [42]). Once the optimal subset is identified, the
denoised signal is obtained by setting the wavelet coefficients
to their maximum likelihood values (5); i.e., retaining the
coefficients inγ and discarding the rest, and doing the inverse
transformation. It is well known that this amounts to an
orthogonal projection of the signal to the subspace spanned
by the wavelet basis vectors inγ.

The code length under the model (6) depends on the values
of the two parameters,σ2

I andσ2
N . The NML density under the

extended model (6) for a given coefficient subsetγ is defined
as

fnml(y
n ; γ) :=

f(yn ; σ̂2
I , σ̂2

N )

Cγ
,

where the numerator is given by (7), and

σ̂2
I =

1

k(γ)

∑

i∈γ

c2
i , σ̂2

N =
1

n− k(γ)

∑

i/∈γ

c2
i , (8)

wherek = k(γ) is the number of coefficients in subsetγ, are
the maximum likelihood parameters for datayn (for details,
see the appendix). The important normalizing coefficientCγ

depends on both the model classMγ and the sample sizen.
Restricting the data such that the maximum likelihood

parameters satisfy

σ2
min ≤ σ̂2

N , σ̂2
I ≤ σ2

max,
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and ignoring the constraintσ2
N ≤ σ2

I , the code length under
the extended model (6) is approximated by

n− k

2
ln

S(yn)− Sγ(yn)

n− k
+

k

2
ln

Sγ(yn)

k
+

1

2
ln k(n−k),

(9)

plus a constant independent ofγ; here S(yn) and Sγ(yn)
denote the sum of the squares of all the wavelet coefficients
and the coefficients for whichi ∈ γ, respectively (see the
appendix for a proof). The code length formula is very
accurate even for smalln since it involves only the Stirling
approximation of the Gamma function.

Remark 1: The set of sequences satisfying the restriction
σ2

min ≤ σ̂2
N , σ̂2

I ≤ σ2
max depends onγ. For instance, consider

the casen = 2. In a model withk = 1, the restriction corre-
sponds to a union of four squares:c1, c2 ∈ [−σmax,−σmin]∪
[σmin, σmax]. On the other hand, in a model with eitherk = 0
or k = 2, the relevant area is an annulus (two-dimensional
spherical shell):c2

1 + c2
2 = 2σ̂2 ∈ [2σ2

min, 2σ2
max]. However,

the restriction can be understood as a definition of the support
of the corresponding NML model, not a rigid restriction on the
data, and hence models with varyingγ are still comparable as
long as the maximum likelihood parameters for the observed
sequence satisfy the restriction. In practice, the restriction is
of no consequence, since we can choose as wide a range as to
guarantee that the data falls within the support, and the range
doesn’t appear in the final criterion.

The code length obtained is identical to that derived by
Rissanen with renormalization [24] (note the correction tothe
third term of (9) in [43]). The formula has a concise and
suggestive form that originally lead to the interpretationin
terms of two Gaussian densities [31]. It is also the form that
has been used in subsequent experimental work with somewhat
mixed conclusions [31], [44]: While for Gaussian low variance
noise it gives better results than a universal threshold of
Donoho and Johnstone [8] (VisuShrink), over-fitting occurs
in noisy cases [31] (see also Sec. V below).

Remark 2: It was proved in [24] that the criterion (9) is
minimized by a subsetγ which consists of some numberk of
the largest or smallest wavelet coefficients in absolute value.
It was also felt that in denoising applications the data are
such that the largest coefficients will minimize the criterion.
The above alternative formulation gives a natural solutionto
this question: by the inequalityσ2

I ≥ σ2
N , which implies

the inequalityσ̂2
I ≥ σ̂2

N in expectation (although not with
certainty), the set of coefficients with larger variance, i.e., the
one with larger absolute values, should be retained, ratherthan
vice versa.

Remark 3: The NML model corresponding to the extended
model (6) is identical to Rissanen’s renormalized model only
if the inequalityσ2

I ≥ σ2
N is ignored in the calculations (see

the appendix). However, the following proposition (provedin
the appendix) shows that the effect of doing so is independent
of k, and hence irrelevant.

Proposition 1: The effect of ignoring the constraintσ2
N ≤

σ2
I is exactly one bit.
We can safely ignore the constraint and use the model with-

out the constraint as a starting point for further developments

for the sake of mathematical convenience.

IV. REFINED MDL D ENOISING

A. Encoding the Model Class

It is customary to ignore encoding of the index of the model
class in MDL model selection; i.e., encoding the number of
parameters when the class is in one-to-one correspondence
with the number of parameters. One simply picks the class that
enables the shortest description of the data without considering
the number of bits needed to encode the class itself. Note that
here we do not refer to encoding the parameter values as in
two-part codes, which are done implicitly in the so-called ‘one-
part codes’ such as the NML and mixture codes. In most cases
there are not too many classes and hence omitting the code
length of the model index has no practical consequence. When
the number of model classes is large, however, this issue does
become of importance. In the case of denoising, the number
of different model classes is as large as2n (with n as large
as 512 × 512 = 262, 144) and, as we show, encoding of the
class index is crucial.

The encoding method we adopt for the class index is simple.
We first encodek, the number of retained coefficients with a
uniform code, which is possible since the maximal number
n is fixed. This part of the code can be ignored since it
only adds a constant to all code lengths. Secondly, for each
k there are a number of different model classes depending
on which k coefficients are retained. Note that while the
retained coefficients are always thelargest k coefficients, this
information is not available to the decoder at this point and
the index set to be retained has to be encoded. There are

(

n
k

)

sets of sizek, and we use a uniform code yielding a code
length ln

(

n
k

)

nats, corresponding to a prior probability

π(γ) =

(

n

k

)−1

=
k!(n− k)!

n!
. (10)

Applying Stirling’s approximation to the factorials and
ignoring all constants w.r.t.γ gives the final code length
formula

n− k

2
ln

S(yn)− Sγ(yn)

(n− k)3
+

k

2
ln

Sγ(yn)

k3
. (11)

The proof can be found in the appendix.
This way of encoding the class index is by no means

the only possibility but it will be seen to work sufficiently
well, except for one curious limitation: As a consequence
of modeling both the informative coefficients and the noise
by densities from the same Gaussian model, the code length
formula approaches the same value ask approaches either zero
or n, which actually are disallowed. Hence, it may be that in
cases where there is little information to recover, the random
fluctuations in the data may yield a minimizing solution near
k = n instead of a correct solution neark = 0. A similar
phenomenon has been demonstrated for “saturated” Bernoulli
models with one parameter for each observation [28], and
resembles the inconsistency problem of MDL in Markov chain
order selection [45]: In all these cases pure random noise is
incorrectly identified as maximally regular data. In order to
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Fig. 1. Log-scale representation of the empirical histograms of the wavelet
coefficients on dyadic levels 6–9 for the Boat image (see Sec.V below). Finer
levels have narrower (smaller variance) distributions than coarser levels; the
finest level (9) is drawn with solid line.

prevent this we simply restrictk ≤ .95n, which seems to
avoid such problems. A general explanation and solution for
these phenomena would be of interest2.

B. Subband Adaptation

It is an empirical fact that for most natural signals the
coefficients on different subbands corresponding to differ-
ent frequencies (and orientations in 2D data) have different
characteristics. Basically, the finer the level, the smaller the
variance of the coefficients, see Fig. 1. (This is not the case
for pure Gaussian noise or, more interestingly, signals with
fractal structure [2].) Within the levels, the histograms of the
subbands for different orientations of 2D transforms typically
differ somewhat, but the differences between orientationsare
not as significant as between levels.

In order to take the subband structure of wavelet transforms
into account, we let each subbandb ∈ {1, . . . , B} have its own
variance,τb. We choose the set of the retained coefficients
separately on each subband, and letγb denote the set of
the retained coefficients on subbandb, with kb := |γb|. For
convenience, letγ0 be the set of all the coefficients that are
not retained. Note that this way we havek0 + . . . + kb = n.
In order to encode the retained and the discarded coefficients
on each subband, we use a similar code as in the ‘flat’ case
(Sec. IV-A). For each subband1, . . . , B, the number of nats
needed isln

(

nb

kb

)

.
Ignoring again the constraintσ2

I ≥ σ2
N for the sake of

mathematical convenience, the levels can be treated as separate
sets of coefficients with their own Gaussian densities just as
in the previous subsection, where we had only two such sets.

2Perhaps a solution could be found in algorithmic information theory
(Kolmogorov complexity) and the concept of Kolmogorovminimal sufficient
statistic [46] which is the simplest one of many equally efficient descriptions.
However, for practical purposes, a modification of the concept is needed
in order to account for the fluctuations near the extremes; these are easily
succumbed byO(1) terms usually ignored in algorithmic information theory.

ALGORITHM 1.
Input: signalyn

0. setcn ←WT yn

1. initialize kb = nb for all b ∈ {1, . . . , B}
2. do until convergence
3. for eachb ∈ {B0 + 1, . . . , B}
4. optimizekb wrt. criterion (12)
5. end
6. end
7. for eachi ∈ {1, . . . , n}
8. if i /∈ γ then setci ← 0
9. end
10. outputWcn

Fig. 2. Outline of an algorithm for subband-adaptive MDL denoising. The
coarsestB0 subbands are not processed in the loop of Steps 3–5. In Step 8,
the final modelγ is defined by the largestkb coefficients on each subbandb.
A soft thresholding variation to Step 8 is described in Sec. IV-C.

The code length function, including the code length forγ,
becomes after Stirling’s approximation to the Gamma function
and ignoring constants as follows:

B
∑

b=0

(

kb

2
ln

Sγb
(yn)

kb
+

1

2
ln kb

)

+
B
∑

b=1

ln

(

nb

kb

)

. (12)

The proof is omitted since it is entirely analogous to the
proof of Eq. (9) (see the appendix), the only difference being
that now we haveB + 1 Gaussian densities instead of only
two. Notwithstanding the added code-length for the retained
indices, for the caseB = 1 this coincides with the original
setting, where the subband structure is ignored, Eq. (9), since
we then havek0 = n−k1. This code can be extended to allow
kb = 0 for some subbands simply by ignoring such subbands,
which formally corresponds to reducingB in such cases3.

Finding the index setsγb that minimize the NML code
length simultaneously for all subbandsb is computationally
demanding. While on each subband the best choice always
includes somekb largest coefficients, the optimal choice ofkb

on subbandb depends on the choices made on theB−1 other
subbands. A reasonable approximate solution to the search
problem is obtained by iteration through the subbands and,
on each iteration, finding the locally optimal coefficient set
on each subband, given the current solution on the other
subbands. Since the total code length achieved by the current
solution never increases, the algorithm eventually converges,
typically after not more than five iterations. Algorithm 1 in
Fig. 2 implements the above described method. Following
established practice [9], [12], all coefficients are retained on
the smallest (coarsest) subbands4.

3In fact, when reducingB the constants ignored also get reduced. This
effect is very small compared to terms in (12), and can be safely ignored
since codes with positive constants added to the code lengths are always
decodable.

4We retain all subbands below level 4, i.e., all subbands with16 or less
coefficients. This has little effect to the present method, but since it is
important for other methods to which we compare, especiallySureShrink,
we adopted the practice in order to facilitate comparison.
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C. Soft Thresholding by Mixtures

The methods described above can be used to determine the
MDL model, defined by a subsetγ of the wavelet coefficients,
that gives the shortest description to the observed data. How-
ever, in many cases there are several models that achieve nearly
as good a compression as the best one. Intuitively, it seems
then too strict to choose the single best model and discard
all the others. A modification of the procedure is to consider
a mixture, where all models indexed byγ are weighted by
Eq. (10):

fmix(y
n) :=

∑

γ

fnml(y
n ; γ)π(γ). (13)

Such a mixture model is universal (see e.g. [19], [20]) in
the sense that with increasing sample size the per sample
average of the code length−n−1 ln fmix(y

n) approaches that
of the bestγ for all yn. Consequently, predictions obtained by
conditioning on past observations converge to the optimal ones
achievable with the chosen model class. A similar approach
with mixtures of trees has been applied in the context of
compression [47].

For denoising purposes we need a slightly different setting
since we cannot letn grow. Instead, given an observed signal
yn, consider another imagezn from the same source (with
the sameγ and βn but different ǫn). We denote the joint
likelihood of signalsyn andzn under the mixture density (13)
by fmix(y

n, zn). Denoising is now equivalent to estimating
the expected value ofzn, which is given byWβn. Obtaining
predictions forzn given yn from the mixture is in principle
easy: one only needs to evaluate a conditional mixture

fmix(z
n | yn) =

fmix(y
n, zn)

fmix(yn)

=
∑

γ

fnml(z
n | yn ; γ)π(γ | yn).

with new updated ‘posterior’ weights for the models, obtained
by multiplying the NML density by the prior weights and
normalizing wrt.γ:

π(γ | yn) :=
fnml(y

n ; γ)π(γ)
∑

γ′ fnml(yn ; γ′)π(γ′)
. (14)

Since in the denoising problem we only need the mean value
instead of a full predictive distribution for the coefficients,
we can obtain the predicted mean as a weighted average of
the predicted means corresponding to eachγ by replacing the
densityfnml(z

n | yn ; γ) by the coefficient valueci = ci(y
n)

obtained fromyn for i ∈ γ and zero otherwise, which gives
the denoised coefficients

∑

γ

ci Ii∈γ π(γ | yn) = ci

∑

γ∋i

π(γ | yn), (15)

where the indicator functionIi∈γ takes value one ifi ∈ γ and
zero otherwise. Thus the mixture prediction of the coefficient
value is simplyci times the sum of the weights of the models
wherei ∈ γ with the weights given by Eq. (14).

The practical problem that arises in such a mixture model
is that summing over all the2n models is intractable. Since
this sum appears as the denominator of (14), we cannot

evaluate the required weights. We now derive a tractable
approximation. To this end, given a fixed model (index set)
γ, let γ1 . . . 1i . . . γn denote a model which is obtained from
γ by forcing the ith coefficient into the model, i.e., setting
i ∈ γ. Similarly, let γ1 . . . 0i . . . γn denote a model which is
obtained fromγ by settingi /∈ γ. The weight with which each
individual coefficient contributes to the mixture prediction can
be obtained from

ri :=

∑

γ∋i π(γ | yn)
∑

γ 6∋i π(γ | yn)
=

∑

γ∋i π(γ | yn)

1−
∑

γ∋i π(γ | yn)

⇐⇒
∑

γ∋i

π(γ | yn) =
ri

1 + ri
, (16)

where the sums are over all modelsγ that include or exclude
the ith coefficient. Note that ratiori is equal to

ri =

∑

γ π(γ1 . . . 1i . . . γn | yn)
∑

γ′ π(γ′
1 . . . 0i . . . γ′

n | y
n)

.

This can be approximated by
∑

γ π(γ1 . . . 1i . . . γn | yn)
∑

γ′ π(γ′
1 . . . 0i . . . γ′

n | y
n)
≈

π(γ̂1 . . . 1i . . . γ̂n | yn)

π(γ̂1 . . . 0i . . . γ̂n | yn)
:= r̃i,

whereγ̂ = γ̂1 . . . γ̂n is the model with maximal NML posterior
weight (14). The approximation amounts to replacing the
exponential sums in the numerator and the denominator by
their largest terms, assuming that forcingγi to be one or
zero has no effect on the other components ofγ̂. The ratio of
two weights can be evaluated without knowing their common
denominator, and hence this gives an efficient recipe for
approximating the weights needed in Eq. (15).

Intuitively, if fixing γi = 0 decreases the posterior weight
significantly compared toγi = 1, the approximated value of
ri becomes large and thei′th coefficient is retained near its
maximum likelihood valueci. Conversely, coefficients that
increase the code length when included in the model are
shrunk towards zero. Thus, the mixing procedure implementsa
general form of ‘soft’ thresholding, of which a restricted piece-
wise linear form has been found in many cases superior to hard
thresholding in earlier work [8], [12]. Such soft thresholding
rules have been justified in earlier works by their improved
theoretical and empirical properties, while here they arise
naturally from a universal mixture code. The whole procedure
for mixing different coefficient subsets can be implementedby
replacing Step 8 of Algorithm 1 in Fig. 2 by the instruction

setci ← ci
r̃i

1 + r̃i

where r̃i denotes the approximated value ofri. The behavior
of the resulting soft threshold is illustrated in Fig. 3.

V. EXPERIMENTAL RESULTS

A. Data and Setting

The effect of the three refinements of the MDL denoising
method was assessed separately and together on a set of arti-
ficial 1D signals [9] and natural images5 commonly used for

5The images were the same as used in many earlier papers, available at
http://decsai.ugr.es/∼javier/denoise/.
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Fig. 3. The behavior of the soft thresholding method implemented by
Algorithm 2 for one of the subbands of the Boat image with no added noise
(see Sec. V): the original wavelet coefficient valueci on the x-axis, and the
thresholded valueci r̃i/(1 + r̃i) on the y-axis. For coefficients with large
absolute value, the curve approaches the diagonal (dotted line). The general
shape of the curve is always the same but the scale depends on the data: the
more noise, the wider the non-linear part.

benchmarking. The signals were contaminated with Gaussian
pseudo-random noise of known varianceσ2, and the denoised
signal was compared with the original signal. The Daubechies
D6 wavelet basis was used in all experiments, both in the 1D
and 2D cases. The error was measured by the peak-signal-to-
noise ratio (PSNR), defined as

PSNR := 10 · log10

(

Range2

MSE

)

,

where Range is the difference between the maximum and
minimum values of the signal (for imagesRange = 255); and
MSE is the mean squared error. The experiment was repeated
15 times for each value ofσ2, and the mean value and standard
deviation was recorded.

The compared denoising methods were the original MDL
method [24] without modifications; MDL with the modifica-
tion of Sec. IV-A; MDL with the modifications of Secs. IV-
A and IV-B; and MDL with the modifications of Secs. IV-
A, IV-B and IV-C. For comparison, we also give results
for three general denoising methods applicable to both 1D
and 2D signals, namely VisuShrink [8], SureShrink [9], and
BayesShrink [12]6.

B. Results

Figure 4 illustrates the denoising results for theBlocks
signal [9] with signal lengthn = 2048. The original signal,
shown in the top-left display, is piece-wise constant. The
standard deviation of the noise isσ = 0.5. The best method,
having the highestPSNR (and equivalently, the smallestMSE)
is the MDL method with all the modifications proposed in the

6All the compared methods are available as a free package, downloadable at
http://www.cs.helsinki.fi/teemu.roos/denoise/. The pack-
age includes the source code in C, using wavelet transforms from the Gnu
Scientific Library (GSL). All the experiments of Sec. V can bereproduced
using the package.

present work, labeled MDL (A-B-C) in the figure. Another
case, thePeppers image with noise standard deviationσ = 30,
is shown in Fig. 5, where the best method is BayesShrink.
Visually, SureShrink and BayesShrink give a similar result
with some remainder noise left, while MDL (A-B-C) has
removed almost all noise but suffers from some blurring.

The relative performance of the methods depends strongly
on the noise level. Figure 6 illustrates this dependency in
terms of the relative PSNR compared to the MDL (A-B-C)
method7. It can be seen that the MDL (A-B-C) is uniformly
the best among the four MDL methods except for a range
of small noise levels in thePeppers case, where the original
method [24] is slightly better. Moreover, it can be seen thatthe
modifications of Secs. IV-B and IV-C improve the performance
on all noise levels for both signals.

In [31], the poor performance of the original MDL method
in the high-noise regime was attributed to splitting what is
essentially a single Gaussian density into a mixture of two
Gaussians. It can be seen that the problem is remedied already
by the inclusion of the encoding of the model index (Sec. IV-
A). The right panels of Fig. 6 show that the overall best method
is BayesShrink, except for small noise levels inBlocks, where
the MDL (A-B-C) method is the best. This is explained by the
fact that the generalized Gaussian model used in BayesShrink
is especially apt for natural images but less so for 1D signals
of the kind used in the experiments.

The above observations generalize to other 1D signals and
images as well, as shown by Tables I and II. For some 1D
signals (Heavisine, Doppler) the SureShrink method is best
for some noise levels. In images, BayesShrink is consistently
superior for low noise cases, although it can be debated
whether the test setting where the denoised image is compared
to the original (natural) image, which in itself already contains
some noise (as all natural images do), gives meaningful results
in the low noise regime. For moderate to high noise levels,
BayesShrink, MDL (A-B-C) and SureShrink typically give
similar PSNR output.

VI. CONCLUSIONS

We have revisited an earlier MDL method for wavelet-
based denoising for signals with additive Gaussian white
noise. In doing so we gave an alternative interpretation of
Rissanen’s renormalization technique for avoiding the problem
of unbounded parametric complexity in normalized maximum
likelihood (NML) codes. This new interpretation suggested
three refinements to the basic MDL method which were shown
to significantly improve empirical performance.

The most significant contributions are: i) an approach in-
volving what we called theextended model, to the problem
of unbounded parametric complexity which may be useful
not only in the Gaussian model but, for instance, in the
Poisson and geometric families of distributions with suitable
prior densities for the parameters; ii) a demonstration of the
importance of encoding the model index when the number

7Figure 6 and Tables I–II give the sample standard deviation (SD) for each
entry over 15 repetitions; the standard error of the mean,SEx̄ is obtained as
SEx̄ = SD/

√
15.
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Fig. 4. Simulation Results. Panels from top to bottom, left to right: Blocks signal [9], sample sizen = 2048; noisy signal, noise standard deviationσ = 0.5,
PSNR=23.2; original MDL method [24], PSNR=28.5; MDL with modification of Sec. IV-A, PSNR=29.0; MDL with modifications ofSecs. IV-A and IV-B,
PSNR=29.6; MDL with modifications of Secs. IV-A, IV-B and IV-C, PSNR=30.1; VisuShrink [8], PSNR=28.6; SureShrink [9], PSNR=28.9; BayesShrink [12],
PSNR=29.8. (Higher PSNR is better).

of potential models is large; iii) a combination of universal
models of the mixture and NML types, and a related predictive
technique which should also be useful in MDL denoising
methods (e.g. [21], [22], [25]) that are based on finding a
single best model, and other predictive tasks.

The extended model gives an interpretation of the MDL
denoising method as one where the noiseless wavelet coeffi-
cients are modeled by a Gaussian density, with an additional
point mass at the origin. In practice, it is likely that in certain
domains, such as natural images, other density models will fit
the actual data significantly better; the BayesShrink method,
for instance, is based on a generalized Gaussian density model.
The fact that the density model is explicit in the extended
model also makes it possible to consider variations obtained
by using more elaborate density models, which potentially
improves the performance still more.

APPENDIX I
POSTPONEDPROOFS

Proof of Eq. (9): The proof of Eq. (9) is technically similar
to the derivation of therenormalized NML model in [24],
which goes back to [48].

First note that due to orthonormality, the density ofyn

under the extended model is always equal to the density of
cn evaluated atWT yn. Thus, for instance, the maximum
likelihood parameters for datayn are easily obtained by
maximizing the density ofcn atWT yn. We repeat the density
of cn here from (7) for convenience:

f(cn ; σ2
I , σ2

N ) =
∏

i∈γ

φ(ci ; 0, σ2
I )
∏

i/∈γ

φ(ci ; 0, σ2
N), (17)

φ(· ; µ, σ2) denotes a Gaussian density function with meanµ
and varianceσ2.

Let Sγ(yn) be the sum of squares of the wavelet coefficients
with i ∈ γ:

Sγ(yn) :=
∑

i∈γ

c2
i .

and letS(yn) denote the sum of all wavelet coefficients. With
slight abuse of notation, we also denote these two bySγ(cn)
andS(cn), respectively. Letk be the size of the setγ.

Using this notation, the maximum likelihood parameters (8)
can be written as

σ̂2
I =

Sγ(yn)

k
, σ̂2

N =
S(yn)− Sγ(yn)

n− k
. (18)
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Fig. 5. Simulation Results. Panels from top to bottom, left to right: Peppers image,n = 256 × 256; noisy image, noise standard deviationσ = 30,
PSNR=18.6; original MDL method [24], PSNR=19.9; MDL with modification of Sec. IV-A, PSNR=23.9; MDL with modifications ofSecs. IV-A and IV-B,
PSNR=24.9; MDL with modifications of Secs. IV-A, IV-B and IV-C, PSNR=25.5; VisuShrink [8], PSNR=23.2; SureShrink [9], PSNR=24.6; BayesShrink [12],
PSNR=25.9. (Higher PSNR is better).

With the maximum likelihood parameters (18) the likelihood
(17) becomes

f(cn ; σ̂2
I , σ̂2

N ) = (2πσ̂2
I )−k/2 exp

(

−
Sγ(yn)

2σ̂2
I

)

× (2πσ̂2
N )−(n−k)/2 exp

(

−
S(yn)− Sγ(yn)

2σ̂2
N

)

,

which further simplifies to

(2πe)−n/2

(

Sγ(yn)

k

)− k

2

(

S(yn)− Sγ(yn)

n− k

)−n−k

2

. (19)

The normalization constantCγ is also easier to evaluate by
integrating the likelihood in terms ofcn:

Cγ = A

∫

(Sγ(cn))
−k/2

(S(cn)− Sγ(cn))
−n−k

2 dcn,

(20)

whereA is given by

A = (2πe)−n/2kk/2(n− k)
n−k

2 ,

and the range of integrationR is defined by requiring that
the maximum likelihood estimators (18) are both within the
interval [σ2

min, σ2
max]. It will be seen that the integral diverges

without these bounds. The integral can be written in in two
parts, the first one involving only the coefficients withi ∈
γ, and the second one involving only the coefficients with
i /∈ γ. Furthermore, the resulting two integrals depend on
the coefficients only through the valuesSγ(cn) andS(cn) −
Sγ(cn), and thus, they can be expressed in terms of these
two quantities as the integration variables — we denote them
respectively bys1 ands2. The associated Riemannian volume
elements are infinitesimally thin spherical shells (surfaces of
balls); the first one with dimensionk and radiuss1/2

1 , the
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Fig. 6. Simulation Results. PSNR difference compared to theproposed method (MDL with modifications of Secs. IV-A, IV-B and IV-C), see Figs. 4 and 5.
Errorbars show standard deviation of PSNR over 15 repetitions (too small to be visible in bottom row). Top row: Blocks signal [9], sample sizen = 2048.
Bottom row: Peppers image,n = 256 × 256. Left panels show the effect of each of the three modifications in Sec. IV; right panels show comparison to
VisuShrink [8], SureShrink [9], and BayesShrink [12].

second one with dimensionn− k and radiuss1/2
2 , given by

πk/2s
k/2−1
1

Γ(k/2)
ds1,

π(n−k)/2s
(n−k)/2−1
2

Γ((n− k)/2)
ds2.

Thus the integral in (20) is equivalent to

∫ kσ2

max

kσ2

min

πk/2s
k/2−1
1

Γ(k/2)
s
−k/2
1 ds1

×

∫ (n−k)σ2

max

(n−k)σ2

min

π(n−k)/2s
(n−k)/2−1
2

Γ((n− k)/2)
s
−(n−k)/2
2 ds2.

Both integrands become simply of the form1/x and hence,
the value of the integral is given by

πn/2

Γ(k/2)Γ((n− k)/2)

(

ln
σ2

max

σ2
min

)2

, (21)

Plugging (21) into (20) gives the value of the normalization
constant

Cγ =
kk/2(n− k)(n−k)/2

(2e)n/2Γ(k/2)Γ((n− k)/2)

(

ln
σ2

max

σ2
min

)2

.

Normalizing the numerator (19) byCγ , and canceling like
terms finally gives the NML density:

fnml(y
n) =

Γ(k/2)Γ((n− k)/2)

πn/2(Sγ(yn))k/2(S(yn)− Sγ(yn))(n−k)/2

×

(

ln
σ2

max

σ2
min

)−2

, (22)

and the corresponding code length becomes

− ln fnml(y
n) =

k

2
lnSγ(yn) +

n− k

2
ln(S(yn)− Sγ(yn))

− ln Γ

(

k

2

)

− ln Γ

(

n− k

2

)

+
n

2
lnπ + 2 ln ln

σ2
max

σ2
min

.

Applying Stirling’s approximation

ln Γ(z) ≈

(

z −
1

2

)

ln z − z +
1

2
ln 2π,
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TABLE I

NUMERICAL RESULTS. THE PEAK-SIGNAL-TO-NOISE RATIO FOR VARIOUS1D SIGNALS, DENOISING METHODS, AND NOISE LEVELS. COLUMNS: NOISE

STANDARD DEVIATION σ; PSNRFOR DIFFERENT METHODS± STANDARD DEVIATION OF EACH ENTRY IN 15 REPETITIONS(SEE ALSOFIG. 6), BEST

VALUE (S) IN BOLDFACE.

(Rissanen, 2000) MDL (A) MDL (A-B) MDL (A-B-C) VisuShrink SureShrink BayesShrink

Blocks (n = 2048)

σ = 0.1 44.4±0.32 43.8±0.34 44.5±0.34 44.9±0.30 43.6±0.34 41.9±0.24 40.1±0.33

0.5 28.9±0.46 29.1±0.48 30.1±0.47 30.8±0.44 29.0±0.48 29.0±0.24 30.1±0.28

1.0 20.4±0.53 24.4±0.50 25.5±0.38 26.2±0.38 24.3±0.45 25.2±0.47 26.1±0.28

1.5 15.0±0.21 21.6±0.37 22.8±0.33 23.4±0.29 21.5±0.30 22.8±0.55 23.9±0.23

2.0 11.7±0.21 19.6±0.56 21.6±0.50 22.2±0.44 19.5±0.56 21.6±0.38 22.6±0.41

Bumps (n = 2048)

σ = 0.1 39.4±0.50 39.6±0.39 40.0±0.35 40.7±0.36 39.2±0.41 38.8±0.26 38.3±0.31

0.5 20.6±0.17 26.8±0.48 27.8±0.55 28.4±0.43 26.1±0.43 27.2±0.31 28.0±0.29

1.0 13.9±0.11 21.5±0.30 23.0±0.42 23.7±0.38 21.3±0.28 23.3±0.15 24.0±0.29

1.5 10.3±0.14 18.6±0.50 20.6±0.39 21.3±0.46 18.9±0.42 20.5±0.40 21.9±0.41

2.0 7.9±0.11 17.7±0.40 19.2±0.47 19.9±0.40 17.9±0.33 19.5±38 20.3±0.46

Heavisine (n = 2048)

σ = 0.1 51.3±0.77 50.4±0.67 51.3±0.50 51.9±0.44 51.1±0.76 48.8±0.48 48.1±0.48

0.5 35.6±0.80 37.4±0.43 39.1±0.71 39.5±0.55 37.7±0.71 38.3±0.48 38.9±0.52

1.0 27.0±1.16 32.9±0.65 34.1±0.62 34.6±0.57 33.2±0.67 34.7±0.54 34.1±0.50

1.5 19.8±0.57 30.6±1.00 31.6±0.87 32.0±0.74 30.8±1.17 32.3±0.77 32.3±1.08

2.0 15.4±0.34 28.1±1.30 30.5±1.24 31.0±0.93 28.2±1.24 31.2±0.79 31.3±0.93

Doppler (n = 2048)

σ = 0.1 24.5±0.68 28.4±0.39 29.2±0.39 29.8±0.39 28.3±0.41 28.6±0.40 29.5±0.50

0.5 6.2±0.17 17.8±0.69 19.3±0.86 19.9±0.84 17.7±0.67 19.6±0.83 20.3±0.62

1.0 0.1±0.13 12.6±1.05 15.4±0.77 16.0±0.77 13.1±1.02 16.1±0.95 16.2±0.77

1.5 -3.5±0.16 10.7±0.67 13.3±1.11 13.7±0.69 10.8±0.59 14.0±0.58 13.9±1.30

2.0 -5.9±0.14 9.9±0.73 11.3±1.25 11.5±1.07 10.1±0.72 12.2±0.76 11.8±1.11

to the Gamma functions yields now

− ln fnml(y
n) ≈

k

2
lnSγ(yn) +

n− k

2
ln(S(yn)− Sγ(yn))

−

(

k − 1

2

)

ln

(

k

2

)

+
k

2

−

(

n− k − 1

2

)

ln

(

n− k

2

)

+
n− k

2

− ln 2π +
n

2
lnπ + 2 ln ln

σ2
max

σ2
min

.

Rearranging the terms gives the formula

− ln fnml(y
n) ≈

k

2
ln

Sγ(yn)

k
+

n− k

2
ln

S(yn)− Sγ(yn)

n− k

+
1

2
ln k(n− k) + const, (23)

whereconst is a constant wrt.γ, given by

const =
n

2
ln 2πe− ln 4π + 2 ln ln

σ2
max

σ2
min

.

Proof of Proposition 1: The maximum likelihood parame-
ters (18) may violate the restrictionσ2

I ≥ σ2
N that arises from

the definitionσ2
I := τ2 + σ2

N . The restriction affects range of

integration in Eq. (21) giving the non-constant terms as follows

∫ kσ2

max

kσ2

min

(

∫ ((n−k)/k)s1

(n−k)σ2

min

s−1
1 s−1

2 ds2

)

ds1

=

∫ kσ2

max

kσ2

min

s−1
1 (ln s1 − ln kσ2

min) ds1. (24)

Using the integral
∫

s−1
1 ln s1 ds1 = 1

2 (ln s1)
2 gives then

1

2
(ln kσ2

max)
2 −

1

2
(ln kσ2

min)2 − ln kσ2
min

(

ln
σ2

max

σ2
min

)

, (25)

where the first two terms can be written as

1

2

(

ln kσ2
max + ln kσ2

min

)

(

ln
σ2

max

σ2
min

)

.

Combining with the third term of (25) changes the plus into
a minus and gives finally

1

2

(

ln
σ2

max

σ2
min

)(

ln
σ2

max

σ2
min

)

,

which is exactly half of the integral in Eq. (21), the constant
terms being the same. Thus, the effect of the restriction on
the code length where thelogarithm of the integral is taken,
is one bit, i.e.,ln 2 nats.
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TABLE II

NUMERICAL RESULTS. THE PEAK-SIGNAL-TO-NOISE RATIO FOR VARIOUS IMAGES, DENOISING METHODS, AND NOISE LEVELS. COLUMNS: NOISE

STANDARD DEVIATION σ; PSNRFOR DIFFERENT METHODS± STANDARD DEVIATION OF EACH ENTRY IN 15 REPETITIONS(SEE ALSOFIG. 6), BEST

VALUE (S) IN BOLDFACE.

(Rissanen, 2000) MDL (A) MDL (A-B) MDL (A-B-C) VisuShrink SureShrink BayesShrink

Lena (512 × 512)

σ = 0 39.1± – 36.6± – 38.5± – 39.3± – 37.3± – 43.2± – 46.9± –

10 31.6±0.02 30.8±0.03 31.8±0.02 32.4±0.02 30.1±0.02 32.8±0.03 33.1±0.02

20 25.0±0.04 27.8±0.04 28.8±0.03 29.4±0.03 27.1±0.02 29.5±0.03 29.9±0.03

30 19.8±0.03 26.0±0.04 27.1±0.03 27.6±0.04 25.4±0.03 27.8±0.03 28.2±0.03

40 16.7±0.01 24.9±0.04 26.0±0.03 26.5±0.03 24.3±0.03 26.4±0.07 27.0±0.03

Boat (512 × 512)

σ = 0 36.2± – 33.2± – 35.1± – 35.9± – 32.9± – 39.2± – 40.3± –

10 30.2±0.01 28.6±0.02 29.8±0.02 30.5±0.02 28.0±0.02 31.3±0.02 31.7±0.01

20 24.2±0.03 25.8±0.03 26.8±0.03 27.5±0.03 25.2±0.02 27.9±0.03 28.3±0.02

30 19.6±0.01 24.3±0.03 25.2±0.02 25.8±0.02 23.7±0.02 26.1±0.02 26.5±0.02

40 16.6±0.02 23.2±0.03 24.2±0.02 24.7±0.03 22.8±0.03 24.9±0.06 25.3±0.02

House (256 × 256)

σ = 0 41.4± – 36.7± – 42.5± – 43.5± – 41.0± – 47.4± – 54.2± –

10 31.4±0.05 30.7±0.05 31.5±0.04 32.1±0.03 30.2±0.07 32.5±0.12 32.8±0.03

20 24.7±0.06 27.3±0.05 28.1±0.05 28.7±0.05 26.8±0.06 28.7±0.03 29.2±0.05

30 19.7±0.04 25.4±0.07 26.4±0.05 27.0±0.05 24.9±0.07 26.9±0.05 27.4±0.04

40 16.7±0.04 24.2±0.07 25.2±0.07 25.7±0.08 23.7±0.08 25.4±0.07 26.2±0.06

Peppers (256 × 256)

σ = 0 38.9± – 36.1± – 37.9± – 38.7± – 36.9± – 42.7± – 51.2± –

10 30.7±0.03 29.3±0.05 30.3±0.04 31.0±0.04 28.6±0.05 31.5±0.03 31.5±0.04

20 24.7±0.06 25.9±0.05 26.9±0.06 27.6±0.05 25.1±0.05 27.1±0.05 27.9±0.06

30 19.9±0.03 23.9±0.06 24.9±0.05 25.5±0.04 23.1±0.08 24.6±0.06 25.9±0.05

40 16.8±0.02 22.4±0.08 23.3±0.05 23.9±0.05 21.6±0.06 22.8±0.14 24.4±0.12

Proof of Eq. (11): The relevant terms in the code length
ln
(

n
k

)

, i.e. those depending onk, for the index of the model
class are

− ln(k!(n− k)!) = − ln[k(k − 1)!(n− k)(n− k)!]

= − ln(k(n− k))− ln Γ(k)− ln Γ(n− k),

which gives after Stirling’s approximation (ignoring constant
terms)

− ln(k(n− k))−

(

k −
1

2

)

ln k + k

−

(

n− k −
1

2

)

ln(n− k) + (n− k)

= −
k

2
ln k2 −

n− k

2
ln(n− k)2 +

1

2
ln k(n− k) + n. (26)

Adding this to Eq. (9) (without the constantn) gives Eq. (11).
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