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Abstract—We refine and extend an earlier minimum de-
scription length (MDL) denoising criterion for wavelet-based
denoising. We start by showing that the denoising problem aabe
reformulated as a clustering problem, where the goal is to otain
separate clusters for informative and non-informative waelet
coefficients, respectively. This suggests two refinementiding a
code-length for the model index, and extending the model inrder
to account for subband-dependent coefficient distributios. A
third refinement is the derivation of soft thresholding inspired by
predictive universal coding with weighted mixtures. We prgose
a practical method incorporating all three refinements, whth is
shown to achieve good performance and robustness in denaigi
both artificial and natural signals.

Index Terms— Minimum description length (MDL) principle,
wavelets, denoising.

I. INTRODUCTION

A third approach to denoising is based on the minimum
description length (MDL) principle [16]-[20]. Several fif-
ent MDL denoising methods have been suggested [6], [12],
[21]-[25]. We focus on what we consider as the most pure
MDL approach, namely that of Rissanen [24]. Our motivation
is two-fold: First, as an immediate result of refining and
extending the earlier MDL denoising method, we obtain a
new practical method with greatly improved performance
and robustness. Secondly, the denoising problem turns out
to illustrate theoretical issues related to the MDL pritejp
involving the problem of unbounded parametric complexity
and the necessity of encoding the model class. The study of
denoising gives new insight to these issues.

Formally, the denoising problem is the following. Lgt =
(y1,-..,yn)" be a signal represented by a real-valued column
vector of lengthn. The signal can be, for instance, a time-

AVELETS are widely applied in many areas of signaseries or an image with its pixels read in a row-by-row order.

processing [1], where their popularity owes largely tet W be ann x m regressor matrix whose columns are
efficient algorithms on the one hand and advantages of spasegis vectors. We model the signgl as a linear combination
wavelet representations on the other. The sparsenessriyropgf the basis vectors, weighted by coefficient vecttr =

means that while the distribution of the original signalues

may be very diffuse, the distribution of the corresponding
wavelet coefficients is often highly concentrated, having a

,Bn)T, plus Gaussian i.i.d. noise:

YT =WE™ + €, & KNN(0,0%),

(Brs- -
1)

small number of very large values and a large majority Qfhere o2, is the noise variance. Given an observed signal
very small values [2]. Itis easy to appreciate the imporéaoic ,» the ideal is to obtain a coefficient vectgf” such that
sparseness in signal compression, [3], [4]. The task of vemQ@ne signal given by the transforgi® = Wj3™ contains the
ing noise from signals, odenoising, has an intimate link t0 jnformative part of the observed signal, and the differegite
data compression, and many denoising methods are explicigh js nojse.

designed to take advantage of sparseness and comprégsibiliFor technical convenience, we adopt the common restriction

in the wavelet domain, see e.g., [5]-[7].

on W that the basis vectors form eomplete orthonormal

Among the various wavelet-based denoising methods, thasgsis. This implies that the number of basis vectors is emual
suggested by Donoho and Johnstone [8], [9] are the b@sé |length of the signaln = n, and that all the basis vectors
known. They follow the frequentist minimax approach, whergre orthogonal unit vectors. There are a number of wavelet
the objective is to asymptotically minimize the worst-cdSe transforms that conform to this restriction, for instantee
risk simultaneously for signals, for instance, in the enicale  Haar transform and the family of Daubechies transforms [1],
of Holder, Sobolev, or Besov classes, characterized bigicer [26]. Formally, the matrix/V is of sizen x n and orthogonal
smoothness conditions. By contrast, Bayesian denoisiig-meyjith its inverse equal to its transpose. Also the mappifig—

ods minimize thexpected (Bayes) risk, where the expectationy3» preserves the Euclidean norm, and we have Parseval's
is taken over a given prior distribution supposed to govem t equality:

unknown true signal [10], [11]. Appropriate prior modelsthwi
very good performance in typical benchmark tests, esggcial

18™] = (B, B7) = /(WB, Wp™) = [IWB"|l.  (2)

for images, include the class of generalized Gaussian EnsiGeometrically this means that the mappifiy — W™ is a
[6], [12], [13], and scale-mixtures of Gaussians [14], [15fotation and/or a reflection. From a statistical point ofwie
(both of which include the Gaussian and double exponentifls implies that any spherically symmetric density, sush a

densities as special cases).
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implemented as matrix multiplications but by a fast wavelet

m{ransform similar to the fast Fourier transform (see [1)da

in fact not even the matrices need be written down.



For complete bases, the conventional maximum likelihoadakes it a yardstick for the comparison of different model
(least squares) method obviously fails to provide dengisim- classes. In recent formulations of MDL, stochastic comipyex
less the coefficients are somehow restricted since theigolutis defined using the so called normalized maximum likelihood
g = WTy" gives the reconstructiop” = WWTy" =y (NML) model, originally introduced by Shtarkov [32] for dat
equal to the original signal, including noise. The solutionompression; for the role of NML in MDL model selection,
proposed by Rissanen [24] is to consider each subset of se® [17], [18], [20], [33], [34].
basis vectors separately and to choose the subset thatsallowSince the introduction of the NML universal model in the
the shortest description of the data at hand. The lengtheof ttontext of MDL, there has been significant interest in the
description is determined by the negative logarithm of the ®valuation of NML stochastic complexity for different ptac
called normalized maximum likelihood (NML) model. cally relevant model classes, both exactly and asymptbtica

In the linear—quadratic case, the NML model involves aRor discrete models, exact evaluation is often computatipn
integral, which is undefined unless the range of integratiom infeasible since it involves a normalizing coefficient whis
support) is restricted. This, in turn, implies hyper parteng a sum over all possible data-sets. For continuous cases, the
which have received increasing attention in various castexnormalizing coefficient is an integral which can be solved in
involving, e.g., Gaussian, Poisson and geometric mod&ls [1only a few cases. Under certain conditions on the model class
[20], [27]-[30]. Rissanen used renormalization to remowdifferent versions of stochastic complexity (which inodusivo-
them and to obtain a second-level NML model. Although thegart, mixture, and NML forms) have the same asymptotic
range of integration has to be restricted also in the secorfdrm — the so called Fisher information approximation, see
level NML model, the range for ordinary regression problems.g. [17], [20], [33]. However, for small data-sets and for
does not affect the resulting criterion and can be ignorechodel classes that do not satisfy the necessary conditioas,
Roos et al. [31] give an interpretation of the method whicasymptotic form is not accurate [35].
avoids the renormalization procedure and at the same timeé/Ne will now define the NML model, and discuss its basic
gives a simplified view of the denoising process in termproperties.
of two Gaussian distributions fitted to informative and non-
informative coefficients, respectively. In this paper werga B. Normalized Maximum Likelihood (NML)
this interpretation fur'gher and show that viewing the de_'mg Let againy” = (y1,...,yn) € R", n € N be a sequence.
problem as a clustering prpblem suggests several refinemefk consider a model classt — {(f(-:6) : 60}, ie,a
and extensions to the original method. _set of density functions over sequenceRih. We denote the
_ The rest of this paper is organized as follows. A briefyayimum likelihood parameters yy"). The ML parameters
introduction to model selection by the MDL principle, an@th 45 not have to be unique — in fact the model does not even

NML criterion in particular, is given in Sec. Il In Sec. lllev 56 tg be parametric — since we will only use the maximized
reformulate the denoising problem as a task of clusteri®g thyelihood Fly" é(yn))_

wavelet coefficients in two or more sets with different distr  The normalized maximum likelihood (NML) universal
butions. In Sec. IV we propose three different modificatiohs ,5qel is given by
Rissanen’s method, suggested by the clustering intetfyeta R
In Sec. V the modifications are shown to significantly improvey. ny _ f"; 0y")) o, = / F s B dem
the performance of the method in denoising both artificial an Cn A
natural signals. The conclusions are summarized in Sec. Vyhere the range of integratiad can be either the set of all
possible sequences of length or only a subset, and’, is
Il. MODEL SELECTION BY MDL a normalizing constant ensuring that the result is indeed a
The minimum description length (MDL) principle stategprobability density function (over the set). In the discrete-
that we should choose the model that yields the shortektta case, the integral is replaced by the corresponding sum
description of the data together with the description of the As shown by Shtarkov [32], the NML model is the unique
model itself [16]-[20]. When probabilistic models are usedninimax optimal universal model in the sense that it minesiz
the description lengths are given by negative logarithms tife worst-caseegret
probability or density values; this can be justified by the n. Alom n. Alm
Kraft-McMillan theorem, see [18], [20]. In the following,av max In 1" 0")) = min max 1nM

use natural logarithms, which gives the code lengths in nats ¥" <% Fomi () g yned 9(y™)
(one nat is equal td/In2 ~ 1.443 bits). whereg can be any density function. The above log-likelihood

ratio, or the regret, can be interpreted as the excess nuafiber
A. Sochastic Complexity bits used to encodg" using model relative to the minimum
. . . achieved by the ML parameters.
The stochastic complexity of a sequence under a 9VeNEGr some model classes, the normalizing coefficient is finite

model cIa_ss is a central concept in the MDL princip_le. Itﬁnly if the range of the data is restricted, see e.g. [17]],[24
interpretation as the length of the shortest achievablerites 30]. The logarithm of the normalizing coefficienty C

tion of the data given a model class (a set of distribution called theparametric complexity. It is equal to both the

1For continuous data, a constant depending on quantizagian is usually minimax. and maximin regre_t U_nder |O.g-|O.SS., see eg [24],
omitted. [36], which makes the quantity interesting in its own right.
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On the other hand, we have the usual Fisher informatisame varianceg%,. As a sum of two independent random
approximation [17] variates, each; has a distribution given by the convolution of
d n the densities of the summands, and theith component of
InC,, = 3 In 7. T ln/ Vdet I(0)df +o(1) , (3) WTe". Inthe casé ¢ + this is simplyA'(0,0%). In the case
© 1 € v the density of the sum is also Gaussian, with variance
whered is the dimension of the parameter space. It is algfiven by the sum of the variances’ + o3,. All told, we have
non-trivial to apply due to the integral involving the Fishie-  the following simplified representation of the extended elod
formationI(#). Using only the leading term (withotr), i.e., where the parameters” are implicit:
the BIC criterion [37], gives a rough approximation. Even if
the Fisher information formula can be used, there are paicti n n iid. | N(0,0%), ifi€n,
circumstances where it gives a very poor approximation.[35] yr=wet, e {/\/’(0, 0%,), otherwise,
As expected, rough approximations tend to perform worse in
model selection tasks than more refined approximations, whereo? := 72 + ¢%, denotes the variance of the informative

ideally, the exact solution, see e.g. [18, Chap. 9]. coefficients, and we have the important restrictigh> 0%
which we will discuss more below.
1. DENOISING AND CLUSTERING Due to orthogonality of the transforiV, the density of

signaly™ under the extended model (6) is equal to the density

A. Extended Model of the wavelet representatiait = WW7'y™ under a Gaussian
We modify the basic model (1) in such a way that thergixture:

is no need for renormalization. This is achieved by inclasio

of the coefficient vectop in the model as a variable and by f(y" ; o7,0%) = Hq&(ci ; 0,07) H¢(Ci ;0,0%) , ()
selection of a (prior) density fof. While the resulting NML i€y igy

model will be equivalent to Rissanen’s renormalized sohuti
the new formulation is easier to interpret and directly ®gig
several refinements and extensions.

Consider a fixed subset C {1,...,n} of the coefficient B, Denoising Criterion
indices. In the resulting model class/.,, the coefficientss;
with ¢ € v are modelled as independent outcomes from
zero-mean Gaussian distribution with varianée In the basic
“hard threshold” version, alp; with i ¢ ~ are forced to be
equal to zero. Thus the extended model is given by

where¢(- ; pu,0?) is the Gaussian density function.

The task of choosing a subsetcan now be seen as a
c?ustering problem: each wavelet coefficient belongs eithe
to the set of the informative coefficients with varianeg,
or the set of non-informative coefficients with varianeg.
The MDL principle gives a natural clustering criterion by

eﬁ'?'vd'/\f(o,a]?v), minimization of the code-length achieved for the observed

n _ n_, n ivi.d. o signal (see [42]). Once the optimal subset is identified, the
yr=WET e BTN, 72), ifie 7_’ @ denoised signal is obtained by setting the wavelet coefflisie
Bi =0, otherwise. to their maximum likelihood values (5); i.e., retaining the

This way of modeling the coefficients is akin to the sgoefficients iny and discarding the rest, and doing the inverse
called spike and slab model often used in Bayesian vari-transformation. It is well known that this amounts to an
able selection [38], [39] and applications to wavelet-bas@rthogonal projection of the signal to the subspace spanned
denoising [40], [41] (and references therein). In relatiothe Y the wavelet basis vectors i
sparseness property mentioned in the introduction, thigesp ~ The code length under the model (6) depends on the values
consists of coefficients with¢ ~ that are equal to zero, while Of the two parameters;; ando?3;. The NML density under the
the ‘slab’ consists of coefficients with € v described by a extended model (6) for a given coefficient subgas defined
Gaussian density with mean zero. This is a simple form ofa$ W a9 o
scale-mixture of Gaussians with two components. In Se® V- Fa (Y™ 5 ) == f(y’—o'I’UN)’
we will consider a model with more than two components. o
Letc™ = ﬁ"ﬂ—WTe", whereWT en gives the repres_entationwhere the numerator is given by (7), and
of the noise in the wavelet domain. The vectdr is the
wavelet representation of the signdl, and we have 22 k(l ) 2 52 = 1/{( ) an @)
Y =W+ WIWTe = wen. V) iy " 7 ity
It is easy to see that the maximum likelihood parameters j&'€rek = k(v) is the number of coefficients in subsgtare
obtained directly from the maximum likelihood parameters for dajé (for details,
see the appendix). The important normalizing coeffici€nt
B - {ci, if i€, (5) depends on both the model clas$., and the sample size.

0, otherwise. Restricting the data such that the maximum likelihood

. . L _ o parameters satisfy
The i.i.d. Gaussian distribution fa™ in (4) implies that the

distribution of WTe" is also i.i.d. and Gaussian with the 02, < 63,62 <o



and ignoring the constraint3, < 0%, the code length under for the sake of mathematical convenience.
the extended model (6) is approximated by

IV. REFINED MDL DENOISING
— ny _ n n 1
n—k S =50 EIHM—F—lnk(n—k), .
2 n—k 2 k 2 A. Encoding the Model Class
©) It is customary to ignore encoding of the index of the model

plus a constant independent of here S(y") and S, (y") class in MDL model selection; i.e., encoding the number of
denote the sum of the squares of all the wavelet coefficief@rameters when the class is in one-to-one correspondence
and the coefficients for which € ~, respectively (see the with the number of parameters. One simply picks the clags tha
appendix for a proof). The code length formula is vergnables the shortest description of the data without cenisig
accurate even for smafl since it involves only the Stirling the number of bits needed to encode the class itself. Note tha
approximation of the Gamma function. here we do not refer to encoding the parameter values as in
Remark 1: The set of sequences satisfying the restrictioivo-part codes, which are done implicitly in the so-calledé-
o2, <&%,62 < o2, depends ony. For instance, consider part codes’ such as the NML and mixture codes. In most cases
the casen = 2. In a model withk = 1, the restriction corre- there are not too many classes and hence omitting the code
sponds to a union of four squares;, cz € [~0max, —omia] U  l€Ngth of the model index has no practical consequence. When
[0 min, Tmax)- ON the other hand, in a model with eithee= 0 the number of model classes is large, however, this issugs doe
or k = 2, the relevant area is an annulus (two-dimensionaecome of importance. In the case of denoising, the number
spherical shell)c? + ¢ = 262 € [202,,,202,.].- However, of different model classes is as large s (with n as large
the restriction can be understood as a definition of the suppas512 x 512 = 262, 144) and, as we show, encoding of the
of the corresponding NML model, not a rigid restriction or thclass index is crucial.
data, and hence models with varyingare still comparable as  The encoding method we adopt for the class index is simple.
long as the maximum likelihood parameters for the observ&de first encodek, the number of retained coefficients with a
sequence satisfy the restriction. In practice, the regricis uniform code, which is possible since the maximal number
of no consequence, since we can choose as wide a range as i6 fixed. This part of the code can be ignored since it
guarantee that the data falls within the support, and thgerarpnly adds a constant to all code lengths. Secondly, for each
doesn’t appear in the final criterion. k there are a number of different model classes depending
The code length obtained is identical to that derived byn which k& coefficients are retained. Note that while the
Rissanen with renormalization [24] (note the correctiontite retained coefficients are always treegest & coefficients, this
third term of (9) in [43]). The formula has a concise andéhformation is not available to the decoder at this point and
suggestive form that originally lead to the interpretation the index set to be retained has to be encoded. Ther¢/are
terms of two Gaussian densities [31]. It is also the form th&ets of sizek, and we use a uniform code yielding a code
has been used in subsequent experimental work with somewleagthln () nats, corresponding to a prior probability
mixed conclusions [31], [44]: While for Gaussian low vaiian

-1
noise it gives better results than a universal threshold of m(y) = (") - M (10)
Donoho and Johnstone [8] (VisuShrink), over-fitting occurs k n!
in noisy cases [31] (see also Sec. V below). Applying Stirling’s approximation to the factorials and

Remark 2: It was proved in [24] that the criterion (9) isignoring all constants w.r.ty gives the final code length
minimized by a subsef which consists of some numbgrof  fgrmula

the largest or smallest wavelet coefficients in absolutee:al n—k_ S-S, u") k. S, (y")
It was also felt that in denoising applications the data are 5 In 2 kvb,y + §1n 7];3/ (11)
such that the largest coefficients will minimize the criberi (n — k)

The above alternative formulation gives a natural soluton The proof can be found in the appendix.
this question: by the inequality? > &%, which implies This way of encoding the class index is by no means
the inequalityé? > 6% in expectation (although not with the only possibility but it will be seen to work sufficiently
certainty), the set of coefficients with larger variance,,ithe well, except for one curious limitation: As a consequence
one with larger absolute values, should be retained, rdtizer of modeling both the informative coefficients and the noise
vice versa. by densities from the same Gaussian model, the code length
Remark 3: The NML model corresponding to the extendedormula approaches the same valugagpproaches either zero
model (6) is identical to Rissanen’s renormalized modelonbr n, which actually are disallowed. Hence, it may be that in
if the inequalityc? > o%; is ignored in the calculations (seecases where there is little information to recover, the cand
the appendix). However, the following proposition (provad fluctuations in the data may yield a minimizing solution near
the appendix) shows that the effect of doing so is independén= n instead of a correct solution near= 0. A similar

of k, and hence irrelevant. phenomenon has been demonstrated for “saturated” Bernoull
Proposition 1. The effect of ignoring the constrainti, < models with one parameter for each observation [28], and
o? is exactly one bit. resembles the inconsistency problem of MDL in Markov chain

We can safely ignore the constraint and use the model witbrder selection [45]: In all these cases pure random noise is
out the constraint as a starting point for further developtae incorrectly identified as maximally regular data. In order t
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ALGORITHM 1.
Input: signaly™

setc” «— WTyn
initialize k, = np forall b € {1,..., B}
do until convergence
for eachb € {By +1,...,B}
optimizek;, wrt. criterion (12)
end
end
for eachi € {1,...,n}
if i ¢ v then sete; — 0
end
0. outputWc™

0.001

1e-04 |

BOO~NOOR~WONMEO

1e-05 ‘_2:)0} 200 o 100 " Fig. 2. Outline of an algorithm for subband-adaptive MDL dising. The
coarsestB, subbands are not processed in the loop of Steps 3-5. In Step 8,
the final modely is defined by the largesi, coefficients on each subbanad

A soft thresholding variation to Step 8 is described in S&eCl

Fig. 1. Log-scale representation of the empirical histoggaf the wavelet
coefficients on dyadic levels 6-9 for the Boat image (see Béelow). Finer

levels have narrower (smaller variance) distributionsnticaarser levels; the
finest level (9) is drawn with solid line.

The code length function, including the code length for
becomes after Stirling’s approximation to the Gamma fuorcti

prevent this we simply restrick < .95n, which seems to and ignoring constants as follows:

avoid such problems. A general explanation and solution for g

n B
these phenomena would be of intefest Z (% In %y) + %m kb) + Zln (Zb) (12)
b=0 b b=1 b

B. Subband Adaptation The proof is omitted since it is entirely analogous to the
It is an empirical fact that for most natural signals th@roof of Eq. (9) (see the appendix), the only difference fein
coefficients on different subbands corresponding to diffethat now we haveB + 1 Gaussian densities instead of only
ent frequencies (and orientations in 2D data) have differefivo. Notwithstanding the added code-length for the rethine
characteristics. Basically, the finer the level, the smathe indices, for the casé = 1 this coincides with the original
variance of the coefficients, see Fig. 1. (This is not the casetting, where the subband structure is ignored, Eq. (8esi
for pure Gaussian noise or, more interestingly, signali wive then havés, = n— k;. This code can be extended to allow
fractal structure [2].) Within the levels, the histogranfstioe £, = 0 for some subbands simply by ignoring such subbands,
subbands for different orientations of 2D transforms tgflic which formally corresponds to reducing in such cases
differ somewhat, but the differences between orientatanms Finding the index setsy, that minimize the NML code

not as significant as between levels. length simultaneously for all subbandsis computationally
In order to take the subband structure of wavelet transforrggmanding. While on each subband the best choice always
into account, we let each subbainé {1, ..., B} have its own includes somé, largest coefficients, the optimal choicefof

variance,r,. We choose the set of the retained coefficientsn subband depends on the choices made on fhe 1 other
separately on each subband, and {gtdenote the set of subbands. A reasonable approximate solution to the search
the retained coefficients on subbahdwith &, := [y,|. For problem is obtained by iteration through the subbands and,
convenience, lety be the set of all the coefficients that aren each iteration, finding the locally optimal coefficient se
not retained. Note that this way we hakg+ ...+ k, = n. on each subband, given the current solution on the other
In order to encode the retained and the discarded coefficiegtibbands. Since the total code length achieved by the ¢urren
on each subband, we use a similar code as in the ‘flat’ cagflution never increases, the algorithm eventually caye®r
(Sec. IV-A). For each subbantl ..., B, the number of nats typically after not more than five iterations. Algorithm 1 in
needed isn (7*). Fig. 2 implements the above described method. Following
Ignoring again the constraini; > o3 for the sake of established practice [9], [12], all coefficients are re¢giron
mathematical convenience, the levels can be treated asasepahe smallest (coarsest) subbahds
sets of coefficients with their own Gaussian densities jgst a

in the previous subsection, where we had only two such SetSin fact, when reducingB the constants ignored also get reduced. This
effect is very small compared to terms in (12), and can belysagmored

2perhaps a solution could be found in algorithmic informatitheory —since codes with positive constants added to the code lerayh always

(Kolmogorov complexity) and the concept of Kolmogonminimal sufficient decodable.

statistic [46] which is the simplest one of many equally &t descriptions. 4We retain all subbands below level 4, i.e., all subbands Whor less

However, for practical purposes, a modification of the cphds needed coefficients. This has little effect to the present methodt &ince it is

in order to account for the fluctuations near the extremessehare easily important for other methods to which we compare, especidllyeShrink,

succumbed by) (1) terms usually ignored in algorithmic information theory.we adopted the practice in order to facilitate comparison.



C. Soft Thresholding by Mixtures evaluate the required weights. We now derive a tractable

The methods described above can be used to determine@RBroximation. To this end, given a fixed model (index set)
MDL model, defined by a subsetof the wavelet coefficients, 7> €t 71 ... 1i...7, denote a model which is obtained from
that gives the shortest description to the observed date- HG' by forcing theith coefficient into the model, i.e., setting
ever, in many cases there are several models that achiestg néa€ 7- Similarly, let~; ... 0;...~, denote a model which is
as good a compression as the best one. Intuitively, it seeff¥ained fromy by settingi ¢ ~. The weight with which each
then too strict to choose the single best model and discdfdlividual coefficient contributes to the mixture predtican
all the others. A modification of the procedure is to considdi€ obtained from

a mixture, where all models indexed by are weighted by PO CART s ™y 1Y)
. ry = =
Eq. (10): Sz ly) 1= (v [ y)
Foi (™) = 3" fom (5™ 5 1) (7). (13) =Sl |y) = ——, (16)
. o 1+r;

Such a mixture model is universal (see e.g. [19], [20]) iwhere the sums are over all modelghat include or exclude

the sense that with increasing sample size the per samgeith coefficient. Note that ratio; is equal to
average of the code lengthn ! In fqix(y™) approaches that
g g fmix(y™) app B 2777(71---11'---%1 | y™)

of the besty for all 4. Consequently, predictions obtained by = .

conditioning on past observations converge to the optimako >y 0y [ y)

achievable with the chosen model class. A similar approaghis can be approximated by

with mixtures of trees has been applied in the context 0& _ n . . .

compression [47]. AT i [y T L v -
For denoising purposes we need a slightly different setting_ 7(¥1 ---0i .. [y™) (1.0 A | y™)

since we cannot let grow. Instead, given an observed SignaJvhereﬁ — 4, ... 4, is the model with maximal NML posterior
y", consider another image” from the same source (with \yeight (14). The approximation amounts to replacing the
the samey and 5" but differente™). We denote the joint oy honential sums in the numerator and the denominator by
likelihood of signalsy™ andz" under the mixture density (13) iheir largest terms, assuming that forcing to be one or

by frix(y",2"). Denoising is now equivalent to estimating,grg has no effect on the other components.oThe ratio of

the expected value of", which is given by)V5". Obtaining o weights can be evaluated without knowing their common

predictions forz" giveny" from the mixture is in principle genominator, and hence this gives an efficient recipe for
easy: one only needs to evaluate a conditional mixture approximating the weights needed in Eq. (15).

(2]

Fri(2 | 4™) = Fmix(y™, 2™) . Infu_Jitiver, if fixing ~; = 0 decreases the_posterior weight
mix y)= —me(yn) significantly compared te; = 1, the approximated value of
B Zf Gy s )y | g™ r; becomes large and thiéth coefficient is retained near its
- itz LY )Ty 1Y) maximum likelihood valuec;. Conversely, coefficients that

5

_ _ _ increase the code length when included in the model are
with new updated ‘posterior’ weights for the models, obé&in shrunk towards zero. Thus, the mixing procedure implements
by multiplying the NML density by the prior weights andgeneral form of ‘soft’ thresholding, of which a restricteiepe-

normalizing wrt.~: wise linear form has been found in many cases superior to hard
. fam (™ 5 )7 () thresholding in earlier work [8], [12]. Such soft threshioigl
(v |y") = Zv’ Fm (™ Y)Y (14)  rules have been justified in earlier works by their improved

) ) o theoretical and empirical properties, while here they earis
Since in the denoising problem we only need the mean valygtyrally from a universal mixture code. The whole procedur

we can obtain the predicted mean as a weighted averagg&ljacing Step 8 of Algorithm 1 in Fig. 2 by the instruction

the predicted means corresponding to eadby replacing the ;.

density fom (2™ | ¥™ ; v) by the coefficient value; = ¢;(y") setc; «— ¢; —
obtained fromy™ for i € v and zero otherwise, which gives 7
the denoised coefficients where7; denotes the approximated valueef The behavior

N N of the resulting soft threshold is illustrated in Fig. 3.
el m(v [y =i > w(v]y"), (15)
v 731 V. EXPERIMENTAL RESULTS
where the indicator functiofc takes value one if € v and A. Data and Setting

zero otherwise. Thus the mixture prediction of the coeffitie The eff t the th . f the MDL denoisi
value is simplyc; times the sum of the weights of the models e effect of the three refinements of the enoising
wherei € v with the weights given by Eq. (14) method was assessed separately and together on a set of arti-

The practical problem that arises in such a mixture modﬁ:‘fial 1D signals [9] and natural imagesommonly used for

is.that summing over all the” mod_els is intractable. Since  stpe images were the same as used in many earlier papersatieait
this sum appears as the denominator of (14), we canmotp://decsai . ugr.es/ ~j avi er/ denoi se/ .
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present work, labeled MDL (A-B-C) in the figure. Another
case, thdPeppersimage with noise standard deviatien= 30,

is shown in Fig. 5, where the best method is BayesShrink.
Visually, SureShrink and BayesShrink give a similar result
with some remainder noise left, while MDL (A-B-C) has
removed almost all noise but suffers from some blurring.

The relative performance of the methods depends strongly
on the noise level. Figure 6 illustrates this dependency in
terms of the relative PSNR compared to the MDL (A-B-C)
method. It can be seen that the MDL (A-B-C) is uniformly
the best among the four MDL methods except for a range
of small noise levels in th®eppers case, where the original
method [24] is slightly better. Moreover, it can be seen that
modifications of Secs. IV-B and IV-C improve the performance
on all noise levels for both signals.

Fig. 3. The behavior of the soft thresholding method impletee by In [31], the poor performance of the original MDL method
Algorithm 2 for one of the subbands of the Boat image with ndeatinoise in the high-noise regime was attributed to splitting what is
(see Sec. V). the original wavelet coefficient valueon the x-axis, and the aggantially a single Gaussian density into a mixture of two
thresholded value:; 7; /(1 + 7;) on the y-axis. For coefficients with large . . .
absolute value, the curve approaches the diagonal (datte}i The general Gaussians. It can be seen that the problem is remedied plread
shape of the curve is always the same but the scale depentie afata: the by the inclusion of the encoding of the model index (Sec. IV-
more noise, the wider the non-linear part. A). The right panels of Fig. 6 show that the overall best métho
is BayesShrink, except for small noise levelsBiocks, where

the MDL (A-B-C) method is the best. This is explained by the

bggngﬁgﬁ'gng:sszg;e}ligvege gfgg'gggeg]ggzniiu: dsﬁlgt that the generalized Gaussian model used in BayedShrin
pseu : wh varl I5€0 i especially apt for natural images but less so for 1D sgnal

signal was compared with the original signal. The Daubexhie ; . )
i . : . the kind used in the experiments.
D6 wavelet basis was used in all experiments, both in the 1% . : :

. The above observations generalize to other 1D signals and
and 2D cases. The error was measured by the peak-signal-to- I h b bl d
noise ratio (PSNRY), defined as images as well, as shown by Tables | an Il. For some 1D

' signals Heavising, Doppler) the SureShrink method is best

Range’ for some noise levels. In images, BayesShrink is consigtent
MSE /° superior for low noise cases, although it can be debated

where Range is the difference between the maximum an%/jvhether the test setting where the denoised image is comhpare

- : . ) o the original (natural) image, which in itself already tains
minimum values of the signal (for imag&ange = 255); and . ) : .
: > ome noise (as all natural images do), gives meaningfultsesu
MSE is the mean squared error. The experiment was repeafe . : . .
he low noise regime. For moderate to high noise levels,

. I
15 t_|m_es for each value @f?, and the mean value and Standaré]ayesShrink, MDL (A-B-C) and SureShrink typically give
deviation was recorded. imilar PSNR outout

The compared denoising methods were the original MDi put.
method [24] without modifications; MDL with the modifica-
tion of Sec. IV-A; MDL with the modifications of Secs. V- VI. CONCLUSIONS
A and IV-B; and MDL with the modifications of Secs. IV- We have revisited an earlier MDL method for wavelet-
A, IV-B and IV-C. For comparison, we also give resulthased denoising for signals with additive Gaussian white
for three general denoising methods applicable to both Iidise. In doing so we gave an alternative interpretation of
and 2D signals, namely VisuShrink [8], SureShrink [9], angissanen’s renormalization technique for avoiding thebfem

20+

PSNR:= 10 - log, (

BayesShrink [12) of unbounded parametric complexity in normalized maximum
likelihood (NML) codes. This new interpretation suggested
B. Results three refinements to the basic MDL method which were shown

_ . . to significantly improve empirical performance.
Figure 4 illustrates the denoising results for tBéncks The most significant contributions are: i) an approach in-

e e o o oo W it we caled e mod, 1 e raem
standard deviation of the noise és= 0.5. The best method, of unbounded parametric complexity which may be useful

. X . not only in the Gaussian model but, for instance, in the
having the highedPS\R (and equivalently, the smalleBtSE) : : o o . .
is the MDL method with all the modifications proposed in th Poisson and geometric families of distributions with shia

%rior densities for the parameters; ii) a demonstrationhef t

6All the compared methods are available as a free packageldadable at Importance of encodlng the model index when the number

http://ww. cs. hel sinki.fi/teenmu.roos/denoi se/.The pack-

age includes the source code in C, using wavelet transforom the Gnu “Figure 6 and Tables |-l give the sample standard deviadn) for each
Scientific Library (GSL). All the experiments of Sec. V can tproduced entry over 15 repetitions; the standard error of the mé&dfy; is obtained as
using the package. SEz = SD//15.
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Fig. 4. Simulation Results. Panels from top to bottom, leftight: Blocks signal [9], sample size = 2048; noisy signal, noise standard deviatien= 0.5,
PSNR=23.2; original MDL method [24], PSNR=28.5; MDL with dification of Sec. IV-A, PSNR=29.0; MDL with modifications &fecs. IV-A and IV-B,
PSNR=29.6; MDL with modifications of Secs. IV-A, IV-B and &; PSNR=30.1; VisuShrink [8], PSNR=28.6; SureShrink [$NR=28.9; BayesShrink [12],
PSNR=29.8. (Higher PSNR is better).

of potential models is large; iii) a combination of univdrsa First note that due to orthonormality, the density «gf

models of the mixture and NML types, and a related predictivender the extended model is always equal to the density of

technique which should also be useful in MDL denoising® evaluated atV”y". Thus, for instance, the maximum

methods (e.g. [21], [22], [25]) that are based on finding l&kelihood parameters for datg™ are easily obtained by

single best model, and other predictive tasks. maximizing the density of” atV7y". We repeat the density
The extended model gives an interpretation of the MDof ¢™ here from (7) for convenience:

denoising method as one where the noiseless wavelet coeffi- ., ) )

cients are modeled by a Gaussian density, with an additiona/ (¢ 5 07,0) = H¢(Ci ; 0,07) H¢(Ci ; 0,0%), (17)

point mass at the origin. In practice, it is likely that in én i€y iy

domains, such as nqtgral images, other density mpdels Will(y(_ . 1,0) denotes a Gaussian density function with mgan

the actual data significantly better; the BayesShrink mtha, 4 variancer2.

for instance, is based on a generalized Gaussian densitglmod

The fact that the density model is explicit in the extende\;ai

model also makes it possible to consider variations obthine

by using more elaborate density models, which potentially

improves the performance still more.

Let S, (y™) be the sum of squares of the wavelet coefficients

th i €.
Sy(y") = ch
1€y

and letS(y™) denote the sum of all wavelet coefficients. With
slight abuse of notation, we also denote these twabi™)
and S(c™), respectively. Let: be the size of the set.

Using this notation, the maximum likelihood parameters (8)
Proof of Eqg. (9): The proof of Eqg. (9) is technically similar €&n be written as

to the derivation of therenormalized NML model in [24], S, (y™)
which goes back to [48]. 5

APPENDIX |
POsTPONEDPROOFS

o7 = oy = (18)
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s i " T

VisuShrink SureShrink BayesShrlnk

Fig. 5. Simulation Results. Panels from top to bottom, leftright: Peppers image: = 256 x 256; noisy image, noise standard deviation= 30,
PSNR=18.6; original MDL method [24], PSNR=19.9; MDL with dification of Sec. IV-A, PSNR=23.9; MDL with modifications &ecs. IV-A and IV-B,
PSNR=24.9; MDL with modifications of Secs. IV-A, IV-B and I¥; PSNR=25.5; VisuShrink [8], PSNR=23.2; SureShrink [$NRR=24.6; BayesShrink [12],
PSNR=25.9. (Higher PSNR is better).

With the maximum likelihood parameters (18) the likelihooavhere A is given by
(17) becomes A= (2me) MM (n — k)3,

f(c"; 6%,6%) = (2n63)~ k/2 exp( 52( )) and the range of integratioR is defined by requiring that
n the maximum likelihood estimators (18) are both within the
x (2m6%,)~ "R/ exp ( (y )> , interval 02, , 02 .]. It will be seen that the integral diverges
without these bounds. The integral can be written in in two
which further simplifies to parts, the first one involving only the coefficients withe

s —k n N ~, and the second one involving only the coefficients with
(gm)—nﬂ <M> (M) . (19) @ ¢ ~. Furthermore, the resulting two integrals depend on
k n—k the coefficients only through the valugs (¢™) and S(c™) —
The normalization constar®’, is also easier to evaluate byS,(c*), and thus, they can be expressed in terms of these

integrating the likelihood in terms af*: two quantities as the integration variables — we denote them
k) . _nk respectively bys; andss. The associated Riemannian volume
= A/ (5(c") = Sy(c")) 7 de™, elements are infinitesimally thin spherical shells (suefaof

(20) balls); the first one with dimensioh and radiuss,’?, the
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Fig. 6. Simulation Results. PSNR difference compared toptioposed method (MDL with modifications of Secs. IV-A, IV-BdlIV-C), see Figs. 4 and 5.
Errorbars show standard deviation of PSNR over 15 repestiitoo small to be visible in bottom row). Top row: Blocks red) [9], sample sizer = 2048.
Bottom row: Peppers image; = 256 x 256. Left panels show the effect of each of the three modificationSec. 1V; right panels show comparison to
VisuShrink [8], SureShrink [9], and BayesShrink [12].

second one with dimensiom — k£ and radiu33§/2, given by  Normalizing the numerator (19) by, and canceling like

terms finally gives the NML density:

7T19/28116/271 ﬂ_(n—k)/2sén*k)/2*1

dSl, dSQ.
I'(k/2) L((n —k)/2) ™ L(k/2)0((n —k)/2)
nml{Y ) =
. ) . ) n/2 n\\k/2 ny _ n))(n—k)/2
Thus the integral in (20) is equivalent to w2 (S5 (ym)R 2 (S(y™) — Sy (y™))( _2)
a'rznax
/koﬁ]ax 7_‘_]{;/28116/2*1 7k/2d X hlﬁ y (22)
w2, T2 |
k)02 (me k) /21 and the corresponding code length becomes
n—k)o2. I'((n—k)/2 n k o n—k n n
(n—k)o?, (( )/2) ~ I fam(3") = 5 I S, (5") + 5= I(S(") = S, (5"))

Both integrands become simply of the fortiz and hence,
the value of the integral is given by

() 252

ﬂ—n/2 01211ax ’ n 02 g
e (M) e Fahmeingg =
Plugging (21) into (20) gives the value of the normalizatio . e L
constant E\pplylng Stirling’s approximation
kk/Z(n _ k)(n—k)/Z 2 2 1 1
— 1 max . ~ _ _ _
= Gt o7 () r(e) = (3 )=+ gn
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NUMERICAL RESULTS. THE PEAK-SIGNAL-TO-NOISE RATIO FOR VARIOUS1D SIGNALS, DENOISING METHODS AND NOISE LEVELS. COLUMNS: NOISE
STANDARD DEVIATION o; PSNRFOR DIFFERENT METHODSt STANDARD DEVIATION OF EACH ENTRY IN 15 REPETITIONS(SEE ALSOFIG. 6), BEST

VALUE (S) IN BOLDFACE.

(Rissanen, 2000) MDL (A) MDL (A-B) MDL (A-B-C)  VisuShrink  SeShrink  BayesShrink
Blocks (v = 2048)
o=0.1 44.4+0.32 43.840.34 44.5+0.34 44.9+0.30 43.6+0.34 41.9+0.24 40.1+0.33
0.5 28.9+0.46 29.1+0.48  30.1+0.47 30.8+0.44 29.04+0.48 29.0+0.24 30.14+0.28
1.0 20.4+0.53 24.44+0.50 25.54+0.38 26.2+0.38 24.3+0.45 25.2+0.47 26.14+0.28
15 15.0+0.21 21.6+0.37 22.84+0.33 23.44+0.29 21.5+0.30 22.8+0.55 23.9+0.23
2.0 11.7+0.21 19.6+0.56  21.6+0.50 22.24+0.44 19.5+0.56 21.6+0.38 22.6+0.41
Bumps @ = 2048)
o=0.1 39.4+0.50 39.6+0.39  40.0+0.35 40.7 +0.36 39.2+0.41 38.84+0.26  38.3+0.31
0.5 20.6+0.17 26.8+0.48  27.84+0.55 28.41+0.43 26.1+0.43 27.2+0.31 28.04+0.29
1.0 13.940.11 21.5+0.30 23.0£0.42 23.7+0.38 21.340.28 23.3+0.15 24.0+0.29
15 10.3+0.14 18.6+0.50 20.6+0.39 21.34+0.46 18.9+0.42 20.5+0.40 21.9+0.41
2.0 7.940.11 17.74+0.40 19.24+0.47 19.940.40 17.940.33 19.5438 20.3+0.46
Heavisine 1 = 2048)
o=0.1 51.34+0.77 50.44+0.67 51.3+0.50 51.9+0.44 51.1+0.76  48.84+0.48 48.11+0.48
0.5 35.6+0.80 37.4+40.43 39.1+0.71 39.5+0.55 37.740.71  38.3+0.48 38.94+0.52
1.0 27.0+1.16 32.9+0.65 34.14+0.62 34.6+0.57 33.2+0.67 34.74+0.54 34.14+0.50
15 19.8+0.57 30.6+1.00 31.6+0.87 32.0+0.74 30.8+1.17 32.34+0.77 32.3+1.08
2.0 15.440.34 28.1+1.30 30.5+1.24 31.04+0.93 28.24+1.24 31.2+0.79 31.3+0.93
Doppler (z = 2048)
o=0.1 24.5+0.68 28.4+0.39  29.24+0.39 29.8 +0.39 28.3+0.41 28.6+0.40 29.54+0.50
0.5 6.24+0.17 17.8+0.69 19.3+0.86 19.9+0.84 17.740.67 19.6+0.83 20.3+0.62
1.0 0.1+0.13 12.6+1.05 15.44+0.77 16.0+0.77 13.1+1.02 16.1+0.95 16.2+0.77
1.5 -3.5+0.16 10.7+0.67 13.3+1.11 13.740.69 10.840.59 14.0+0.58 13.9+1.30
2.0 -5.9+0.14 9.9+0.73 11.3+1.25 11.54+1.07 10.14+0.72 12.2+0.76 11.8+1.11

to the Gamma functions yields now

—In fom(y") =~ gln Sy (y™) + n
— (%)m

n—k—1

_ (T

—In27 + glnw+2lnln

Rearranging the terms gives the formula

n—k

In(S(y") = 5, (y"))

2
k k
(5)*5
n—=k

(5

n—=k
2

max

min

integration in Eq. (21) giving the non-constant terms akofed

J

ko ax /((ﬂ—k)/k)sl
(n—k)o2

2
9 min

min

2

min

—1.-1
51 85 dsa

d81

_ / s sy ko) dsi. (24)
ko

Using the integralf sfl Ins;ds; = %(ln s1)? gives then

1
5

In ko2

max

1
)2 — 5(111 ko?

min

)2 —Inko?

min

UIQ'HH-X
(m 3 > (25)

min

where the first two terms can be written as

S(y™) = S5 (y")

—In fom (yn) ~

wherecongt is a constant wrtzy, given by

const = gln27re —In47 +2Inln

2

n—k
1
+ §lnk(n— k) + congt,

2

Umax

2

O min

(23)

l (ln ko2
2

max

a minus and gives finally

2

2
ag
max
— <1n =
min

+1n kafnin) (ln @) .
Umin

Combining with the third term of (25) changes the plus into

2
o

max

) (ln 3

min

which is exactly half of the integral in Eqg. (21), the constan
m terms being the same. Thus, the effect of the restriction on
Proof of Proposition 1: The maximum likelihood parame-the code length where tHegarithm of the integral is taken,
ters (18) may violate the restrictiar? > o3%; that arises from is one bit, i.e.In 2 nats.
the definitiono? := 72 + 0%,. The restriction affects range of
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NUMERICAL RESULTS. THE PEAK-SIGNAL-TO-NOISE RATIO FOR VARIOUS IMAGES DENOISING METHODS AND NOISE LEVELS. COLUMNS: NOISE
STANDARD DEVIATION o; PSNRFOR DIFFERENT METHODSt STANDARD DEVIATION OF EACH ENTRY IN 15 REPETITIONS(SEE ALSOFIG. 6), BEST
VALUE (S) IN BOLDFACE.

(Rissanen, 2000) MDL (A) MDL (A-B) MDL (A-B-C)  VisuShrink SeShrink  BayesShrink
Lena 612 x 512)
c=0 39.1+ - 36.6+ — 385+ — 39.3+ — 37.3+ — 432+ — 469+ —
10 31.6+0.02 30.8+0.03 31.8+£0.02 32.4+0.02 30.1+0.02 32.840.03 33.1+0.02
20 25.0+0.04 27.8+0.04 28.84+0.03 29.440.03 27.1+40.02  29.5+0.03 29.9+0.03
30 19.8+0.03 26.0+£0.04  27.1+0.03 27.6+0.04 25.440.03 27.840.03 28.2+0.03
40 16.7+0.01 24.940.04  26.0+0.03 26.54+0.03 24.3+0.03  26.4+0.07 27.0+0.03
Boat 612 x 512)
c=0 36.2+ — 33.2+ — 351+ — 359+ — 329+ — 39.2+ — 403+ —
10 30.2+0.01 28.61+0.02 29.840.02 30.5+0.02 28.0+0.02  31.3+0.02 31.7+0.01
20 24.2+0.03 25.840.03 26.84+0.03 27.5+0.03 25.2+40.02 27.9+0.03 28.3+0.02
30 19.6+0.01 24.3+0.03  25.2+0.02 25.84+0.02 23.74£0.02  26.1+0.02 26.540.02
40 16.640.02 23.2+0.03 24.2+0.02 24.740.03 22.840.03  24.9+0.06 25.3+0.02
House 256 x 256)
c=0 414+ - 36.7+ - 425+ — 435+ - 410+ - 4744+ — 542+ -
10 31.44+0.05 30.7+0.05 31.5+0.04 32.1+0.03 30.2+0.07 32.5+0.12 32.8£0.03
20 24.74+0.06 27.3+£0.05 28.1+0.05 28.74+0.05 26.8+0.06 28.7+0.03  29.2+0.05
30 19.7+0.04 25.440.07 26.4+0.05 27.04+0.05 24.940.07 26.9+0.05 27.440.04
40 16.740.04 24.2+0.07 25.2+0.07 25.7+0.08 23.7+£0.08  25.4+0.07 26.2+0.06
Peppers Z56 x 256)
c=0 389+ — 36.1+ - 379+ - 38.7+ - 369+ — 427+ - 51.2+ -
10 30.7+0.03 29.3+0.05 30.3+0.04 31.0+0.04 28.6+0.05 31.5+0.03 31.5+0.04
20 24.74+0.06 25.9+0.05 26.9+0.06 27.6+0.05 25.1+40.05 27.1+£0.05 27.940.06
30 19.940.03 23.91+0.06 24.9140.05 25.5+0.04 23.1+0.08 24.6+0.06 25.9+0.05
40 16.84+0.02 22.440.08 23.3+0.05 23.940.05 21.6+0.06 22.8+0.14 24.4+0.12
Proof of Eq. (11): The relevant terms in the code length[2] —, “A theory for multiresolution signal decompositiothe wavelet

In (}), i.e. those depending of, for the index of the model

class are

—In(k!(n — k)) = —In[k(k — D)!(n — k)(n — k)!]
=—In(k(n —k)) —InT(k) —InT'(n — k), 4]
which gives after Stirling’s approximation (ignoring caast

terms)

1

—In(k(n—k)) — (k —5

)lnk—i—k

—(n—k—%)ln(n—k)—i—(n—k)

k
:—Elnlf—

n —

Adding this to Eq. (9) (without the constanj gives Eq. (11).
|
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