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B-Course is a free web-based online data analysis tool, which allows the users to analyze
their data for multivariate probabilistic dependencies. These dependencies are repre-
sented as Bayesian network models. In addition to this, B-Course also offers facilities
for inferring certain type of causal dependencies from the data. The software uses a
novel “tutorial style” user-friendly interface which intertwines the steps in the data anal-
ysis with support material that gives an informal introduction to the Bayesian approach
adopted. Although the analysis methods, modeling assumptions and restrictions are to-
tally transparent to the user, this transparency is not achieved at the expense of analysis
power: with the restrictions stated in the support material, B-Course is a powerful anal-
ysis tool exploiting several theoretically elaborate results developed recently in the fields
of Bayesian and causal modeling. B-Course can be used with most web-browsers (even
Lynx), and the facilities include features such as automatic missing data handling and
discretization, a flexible graphical interface for probabilistic inference on the constructed
Bayesian network models (for Java enabled browsers), automatic pretty-printed layout
for the networks, exportation of the models, and analysis of the importance of the derived
dependencies. In this paper we discuss both the theoretical design principles underlying
the B-Course tool, and the pragmatic methods adopted in the implementation of the
software.
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1. Introduction

B-course is a free∗ online data (dependency) analysis tool motivated by the problems
in the current practice in statistical data analysis. In many cases, when practitioners
in various fields apply analysis tools, the underlying assumptions and restrictions
are not clear to the user, and the complicated nature of the software encourages the

∗The B-Course service (http://b-course.hiit.fi or http://b-course.cs.helsinki.fi) can be freely used
for educational and research purposes only.
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users to a “black box” approach where default parameter values are used without
any understanding of the actual modeling and analysis task. This observation holds
both in scientific data analysis (e.g., in social sciences) and in “business” data
analysis, where the users are not experts in the data analysis methods underlying
the analysis software. This has lead to the situation where the conclusions derived
from an analysis are frequently far from the intended plausible reasoning.

The B-Course tool is implemented as an Application Service Provider (ASP) —
an architectural choice we feel is very natural in the context of data analysis. There
is no downloading or installation of software, ASP allows a thin client at the user
end and the computational load for searching models is allocated to a server farm.
B-Course can be used with most web-browsers (even Lynx), and only requires the
user data to be a text file with data presented in a tabular format typical to any
statistical package (e.g., SPSS, Excel text format).

From the methodological point of view, B-Course is an attempt to offer a mul-
tivariate modeling method that can also be understood by applied practitioners. It
is a first step in this direction and consequently can definitely be improved upon.
However, it makes a serious attempt to give an informal introduction to the ap-
proach adopted. The software uses a novel “tutorial style” user-friendly interface
which intertwines the steps in the data analysis with support material that gives
an informal introduction to the Bayesian approach. Thus the analysis methods,
modeling assumptions and restrictions are totally transparent to the user. How-
ever, this transparency is not achieved at the expense of analysis power — with
the restrictions stated in the support material, B-Course is a powerful analysis tool
that can be expanded to address some of its current limitations. B-Course supports
inference on the constructed Bayesian network model as well as exporting the model
for further use.

One of the design choices for B-Course was to adopt the Bayesian framework
as indicated by the fact that the dependency models constructed are represented
by Bayesian networks. We have chosen the Bayesian modeling framework, since we
find it easier to understand than the classical statistical (frequentist) framework,
and from our experience it seems that it is more understandable to the users also.
We also feel that it has benefits over the classical framework, avoiding some of
the anomalies caused by the hidden assumptions underlying the standard methods
developed decades ago. This is not to say that Bayesian approaches do not have
problems of their own — both theoretical and practical problems are lively discussed
in the literature 1,4,22,10,15,14,19.

We strongly believe that Bayesian dependency modeling is a valuable tool in
practitioner’s data analysis toolbox. However, B-Course concentrates on being un-
derstandable, not merely being state-of-the-art. Almost all parts of B-Course can
and will be improved upon — in our initial design we have favored simplicity and
elegance over possibly minor gains in performance. On the other hand, presently
there are not many tools around to do dependency modeling even at B-Course’s
current sophistication level. In addition to being an integrated service coherently
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implementing many of the methods resulting from research by us and others dur-
ing the years, B-Course has also several unique features not available in any other
software we are aware of.

In this paper we discuss both the design principles of B-Course, and methods
adopted in the implementation of the software. We begin by discussing the prob-
lem addressed by B-Course, i.e., general principles of dependency modeling with
Bayesian networks (Section 2). In Section 3 we then proceed by demonstrating a
simple walk-through of a typical data analysis session. In addition to this discussion,
we strongly encourage the reader to experiment with B-Course by using the “ready-
made trails” provided by the service, or possibly with their own datasets if available.
Results of preliminary systematic empirical validation tests with B-Course can be
found in Section 5. Section 6 concludes our discussion.

2. Dependency Modeling with Bayesian Networks

In our context, dependence modeling means finding the model of the probabilistic
dependences of the variables. In dependency modeling one tries to find dependencies
between all the variables in the data. Since we are using probabilistic models,
in more technical terms this means modeling the joint probability distribution.
Dependencies can also be used to speculate about causalities that might cause them.
Besides revealing the domain structure of the data, dependency models can be used
to infer probabilities of any set of variables given any (other) set of variables. This
will lead to a “game” where one can interactively study the model by probing it as
implemented by the inference part in the B-Course software.

For the above purposes, in B-Course one will only need something that is called
pairwise conditional dependencies, since that is the only type of dependency† that
appears in our models. Saying that variables A and B are dependent on each other
means that if one knows what the value of variable A is, it helps to guess what the
value of variable B is.

To illustrate the type of models B-Course searches for, let us look at a small
example. For our present purposes it is not necessary to study the models in great
detail, the example just tries to give an idea about the dependency models. So let
us assume that our model has four variables A, B, C and D. In Table 1 we list
a set of statements about dependencies. This type of a set of statements defines
a dependency model (let us call the example dependency model M1). Obviously,
if the set of dependencies is large, such a descriptive list representation becomes
impractical and hard to understand.

In its full generality the problem of finding the best dependency model in an ar-
bitrary set of models is intractable (see the discussion in 22,4). In order to make the
task of creating dependency models out of data computationally feasible, B-Course
makes two important restrictions to the set of dependency models it considers.

†In the following, “dependency” always means “pairwise conditional dependency”. It should be
observed that this notion should not be confused with pairwise correlation.
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Table 1. An example of a dependency model.

• A and B are dependent on each other if we know something about C
or D (or both).

• A and C are dependent on each other no matter what we know and
what we don’t know about B or D (or both).

• B and C are dependent on each other no matter what we know and
what we don’t know about A or D (or both).

• C and D are dependent on each other no matter what we know and
what we don’t know about A or B (or both).

• There are no other dependencies that do not follow from those listed
above.

Firstly, B-Course only considers models for discrete data and it discretizes auto-
matically all the variables that appear to be continuous. Secondly, B-Course only
considers dependency models where the list of dependencies can be represented in
a graphical format using Bayesian network structures 20,17,9. For example, the list
of dependencies in Table 1 can be represented as a Bayesian network in Fig. 1.

Fig. 1. A Bayesian network representing the list of dependencies in Table 1.

An important property of Bayesian network models is that the joint probabil-
ity distribution over the model variables factorizes to a product of n conditional
probability distributions:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|Πi), (1)

where Πi denotes the parents (the immediate predecessors in the graph) of vari-
able Xi. Consequently, the parameters θ of a Bayesian network model M consist of
probabilities of the form θijk = P (Xi = xk|Πi = πj), where πj denotes the jth value
configuration of the parents Πi. In the sequel we will assume that the reader is famil-
iar with the basics of Bayesian networks, and refer to the introductions/textbooks
in the literature (see, e.g., 12).

This subset of models is interesting, but it has its limitations too. More specifi-
cally, if the variables of our model are in causal relationships with each other, and if
in our domain there are no latent variables (i.e., variables that for some reason are
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not included in our data) that have causal influence on the variables of our model,
then the dependencies caused by these causal relationships can be described by a
Bayesian network. On the other hand, latent variables often induce dependencies,
that cannot be described accurately by any Bayesian network structure. That can
severely restrict our ability to automatically infer something about causalities just
based on statistical dependencies (see Section 4.7).

Using the Bayesian approach provides for a way to recognize a good model when
the software finds one: in the Bayesian framework a good dependence model is one
with a high probability. Notice that it takes a Bayesian approach to speak about
the probability of the dependencies. Further discussions on this topic is deferred to
Section 4.2.

3. Walking through B-Course

In addition to offering a tool for automatically building dependency models that
lead to (unsupervised) probabilistic models of the joint probability distribution, the
new version of B-Course offers also a possibility for building (supervised) classifica-
tion models. This “C-trail” of B-Course will however not be discussed in this paper
— in the following we focus on the unsupervised “D-trail”.

The B-Course “D-trail” data service offers a simple three step procedure (data
upload, model search, analysis of the model) for building a Bayesian Network de-
pendency model. As B-Course is used via a Web-browser, user can freely use the
browser features (“Back” and “Forward” buttons, resizing of the window etc.) dur-
ing this procedure. In particular, a first time user is encouraged to follow the links
leading to pages explaining many of the concepts discussed in the interface. These
pages form the “B-Course library” that is maintained and updated every time a
new feature is added to the analysis.

Of the three main steps, the last one is the most complex one as it allows the
user to interactively use the inferred model, export both the graphical and textual
representations of the model, check for strengths of the dependencies etc. It should
be emphasized that there are no parameter settings involved except the fact that the
user decides the length of the search phase by interactively inspecting the progress of
search. Discretization, handling of missing data, setting non-informative priors and
other technical details are handled automatically by the software. In the following
we give a short description of each of these main steps.

3.1. Step 1: Data upload

B-Course attempts to give a simple, yet accurate description of the format of the
data it accepts. In general it expects the data to be in tab-limited ASCII format
with additional header line containing the names of the variables. This format
is readily available in most of the database, spreadsheet and statistical software.
B-Course also allows for missing data.

Uploading the data is implemented by standard HTML-form File input, that
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sends the data file to the server. As B-Course is currently implemented by using a
server farm, the front end server directs the data to one of the servers in B-Course
server pool in order to do load-balancing.

B-Course notifies user of the possible problems during the data upload. It also
gives simple descriptive statistics of each variable so that the user can verify the
upload was successful. At this point user can also exclude the variables he/she does
not want to be part of the model, such as data ID etc. (see Fig. 2).

Fig. 2. Summary information presented by B-Course after uploading the data. A click on the
variable name provides for descriptive statistics of the variable in question.

3.2. Step 2: Model search phase

In the model search phase the user is first prompted to initiate the dedicated server
to start searching for a good Bayesian network model for the data. Once the search
is on, the user is lead to a page showing the current best model. User can now
study the structure of this model, but she can also ask for an updated report on the
search. B-Course then again shows the current best model together with a report
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how much better the current model is compared to the previous one (assuming
some improvement has occurred). The search can be stopped any time — for
example, when no progress in search has been gained for some time — or the user
can wait until the system search time limit (currently 15 minutes) has been reached.
Searching for the dependency model is computationally very intensive (the problem
is NP hard) and in any realistic case with many variables it is impossible to search
exhaustively the whole search space.

Fig. 3. Search status report after the model search is completed (shows search statistics and the
best dependency structure found).

3.3. Step 3: Analysis of the model found

Once the search has ended, B-Course gives the final report together with a list of
ways to study the selected dependency model (see Fig. 3). The final report displays
the constructed graph structure which the user can save if needed. The user is
also given a report on strengths of the pairwise unconditional dependencies (i.e.,
arcs in the constructed Bayesian network) of the model. In addition to the standard
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Fig. 4. Probabilistic inference can be performed on the constructed Bayesian network model with
the inference Java applet.

Bayesian network representation, B-Course also offers two graphical representations
describing the possible causal relationships that may have caused the dependencies
of the model. These causal graphs are based on the calculus introduced by Pearl 21.
As far as we know this feature is unique to B-Course, we are not aware of any other
software package supporting Pearl’s causal analysis.

B-Course also provides interactive tools called “playgrounds” that allow user to
perform inference on the constructed Bayesian network. Several playgrounds are
offered in order to support browsers with various capabilities. The “Vanilla play-
ground” is intended to be used with “low-end” browsers with restricted graphical
capabilities and works even with text-only browsers such as Lynx. The “Java play-
ground” (see Fig. 4) requires a Java-enabled browser, but then offers a more flexible
graphical user interface with zooming, pop-up displays of the distributions attached
to variable nodes etc. In addition to using B-Course playgrounds online for model
inspection, the model can also be exported in a format accepted by Hugin-software
in order to allow off-line use of the model.
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4. The B-Course Approach

One of the most important advantages of the Bayesian modeling approach is that
it offers a solid theoretical framework for integrating subjective knowledge with
objective empirical observations. In the current version of B-Course we however
neglect this opportunity, and aim to be as objective as possible. Technically this
means that the prior distributions used should be as non-informative as possible.
The reason for this choice is that one of the main design principles underlying
the current version of B-Course was that it should be easy to use also by non-
experts. This implies that the user cannot be expected to be able to enter complex
technical parameters or make decisions on selection of the mathematical methods
used. Consequently, B-Course has no user definable technical parameters — all the
data preprocessing (discretization, missing data handling etc.) and search related
decisions (search criteria, search bias etc.) are handled automatically. From the
user point of view, part of this simplicity is due to the elegant Bayesian theory that
offers a solid theoretical background with very few parameters to tamper with, but
some of it is based on hardwired implementation choices that are made on the behalf
of the user. However, following the transparency requirement, B-Course tries to be
very explicit about these choices in its online documentation. In the following we
will discuss these implementation choices, occasionally also touching the relevant
issues in Bayesian modeling.

4.1. Discretization

The set of dependency models B-Course considers (namely discrete Bayesian net-
works) expects the variables to be categorical (e.g., gender, favorite color etc.).
However, many times the variables are naturally numerical (like age) or the values
have at least some natural order (like the so-called Likert scale “strongly agree”,
“agree” “indifferent” “disagree” and “strongly disagree”). In such cases B-Course
will categorize the variables, a process which destroys all the information about the
numerical value and order. Continuous numerical variables are discretized into in-
tervals and even the order of the intervals is neglected. Similarly in ordered variables
the information about the order is ignored.

The main reason for such a discretization is that for categorical variables we
can build models that capture “non-linear” relationships between variables. We
also get rid of the restricting distributional assumptions (like multivariate normality
assumptions prevalent in current statistical practice). Thus the advantage is making
less assumptions and the possibility to find more complex relationships.

However, discretization is also in many ways problematic. We loose statistical
power, since if the relationship between variables happen to be linear, linear models
will find out that relationship with less data than B-Course will (which is not
surprising since linear models are naturally good in detecting linear dependencies,
otherwise they would be totally useless). On the other hand, as opposed to many
classical statistical estimation procedures, no Bayesian analysis is ever nonviable
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due to “too little data”. In other words, the Bayesian analysis takes into account
all the data available, there are no preset sample sizes that have to be satisfied in
order to be able to perform the dependency analysis. If the database is small, the
dependencies found are simply weaker and the best model found may not be very
much better than the second best.

How to discretize numerical data so that the amount of information lost is as
small as possible? The canonical Bayesian answer could be that good discretization
is a discretization that is very probable. However, it is not clear that discretization
can be handled as something we do not know, but that still is there. Rather it is an
artifact that has been created, so the probability of discretization is not necessarily
a meaningful concept. At the moment B-Course does not attempt the sophisticated
full Bayesian approach, but instead takes a straightforward approach and tends to
discretize the data to very few intervals. This way the amount of data required for
finding out interesting dependencies can be expected to be reasonably small.

If the user has continuous variables he/she might want to manually discretize
the data beforehand to get a meaningful discretization. Many times certain dis-
cretization is meaningful because of some theoretical assumptions in the domain.
Naturally such things cannot be inferred automatically. However, it should be noted
that the way one discretizes the data can make a notable difference when building
the model. If one discretizes continuous variables to just few intervals, one is likely
to find out more dependencies than if the values are discretized to very many in-
tervals. In addition, the result may change if one changes the division points that
define the discretization.

4.2. Quality of the model

B-Course adopts a standard Bayesian answer to assess the quality of the model: the
model that is most probable for the data is selected to be the best one 4,1. While
this principle is both intuitive and theoretically justified, it is not the only possible
one. For example, it would be very legitimate to base the quality score of the model
on some kind of usefulness measure rather than probability. However, many times
this ’usefulness’ is very hard to formalize and there are no standard ways to express
this type of information. Incorporating such features to the software would also
make B-Course harder to use.

Given a data set D, the most probable dependency model M̂ is the one maxi-
mizing the posterior probability:

M̂ = arg max
M

P (M |D) = arg max
M

P (D|M)P (M). (2)

The last equality follows from the fact that with respect to the dependency models
M , the probability P (D) is a constant that can be ignored when comparing the
probabilities of models.

Following the objectivity requirement discussed above, in the current version
of B-Course, all models M are assumed to be equally probable before any data is
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seen. In other words, we assume that the prior distribution P (M) over the models
is uniform, i.e., P (Mi) = P (Mj) for any two models Mi and Mj . This means that
posterior probability of the models is now proportional to the marginal likelihood of
the data:

P (M |D) ∝ P (D|M) =
∫

P (D|θ, M)P (θ|M)dθ, (3)

where the integral goes over all the parameter instantiations θ of model M .
As was seen in Section 2, the parameters of a Bayesian network model M consist

of probabilities of the form P (Xi = xk|Πi = πj), where Π denotes the parents
(the immediate predecessors in the graph) of variable Xi. The data D is discrete
(originally discrete, or discretized as discussed above), so it is natural to treat
the data as a multinomial sample with sufficient statistics Nijk, i = 1, . . . , n, j =
1, . . . , qi, k = 1, . . . , ri, where Nijk is the number of rows in D where variable Xi

has value xk and the parents Πi of Xi have a value configuration πj .
The prior P (θ|M) for the parameters is assumed to be the Dirichlet distribution

that is a conjugate prior distribution for the multinomial. This assumption, together
with certain additional technical assumptions (see e.g. 13), allows us to compute the
marginal likelihood term in Eq. (3) in closed form:

P (D|M) =
n∏

i=1

qi∏

j=1

Γ(N ′
ij)

Γ(N ′
ij + Nij)

ri∏

k=1

Γ(N ′
ijk + Nijk)
Γ(N ′

ijk)
, (4)

where Γ denotes the gamma function, n is the number of variables in M , qi is the
number of value configurations for the parents of variable Xi, ri is the number of
values of Xi, Nijk are the sufficient statistics discussed above, and Nij =

∑ri

k=1 Nijk.
The constants N ′

ijk are the hyperparameters determining the prior distribution
P (θ|M).

4.3. Choosing the prior distribution for the parameters

Eq. (4) gives us now the required model quality criterion for validating a model M ,
as soon as we choose the hyperparameters N ′

ijk determining the parameter prior
P (θ|M). Following again the objectivity principle, the hyperparameters should be
selected in such a way that the resulting prior distribution is as non-informative as
possible. Setting N ′

ijk to one for all triplets i, j, k produces the uniform prior distri-
bution, which however — perhaps rather counter-intuitively — can not be regarded
as a very good non-informative prior. One reason for this is that the uniform distri-
bution is not invariant to variable transformations. A practical consequence of this
fact is that with the uniform prior, the marginal likelihoods of two Bayesian network
models representing the same set of dependency statements may be different. All
in all, unfortunately it turns out that the problem of choosing a non-informative
prior is a most controversial issue that has raised a lot of discussion 2,8, and that
no simple solution can be found for solving this problem.

One solution, suggested in 5, is to set N ′
ijk = N ′/(riqi), where N ′ is a global

constant called the equivalent sample size (ESS). The intuition behind the equivalent
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sample size prior is that it effectively behaves as if it were calculated from a “prior”
data set of size N ′. An important advantage with this prior is that the marginal
likelihood score (4) now follows the score equivalence criterion: if two Bayesian
network models M1 and M2 represent the same set of dependency statements, then
the marginal likelihoods are also equivalent.

The ESS prior described above still leaves us with one parameter, N ′. In order
to determine this constant, let us have a look at another prior with nice theoretical
properties, the so called Jeffreys’ prior 16. When Jeffreys’ prior is proper, it is
defined by 1,23:

π(θ) =
|I(θ)|1/2

∫ |I(η)|1/2dη
, (5)

where |I(θ)| is the determinant of the Fisher (expected) information matrix. One
of the advantages of Jeffreys’ prior is that unlike with the uniform prior, the prior
distribution is now invariant with respect to one-to-one transformations in the pa-
rameter space. Additional theoretical properties of this function are studied in 1,7,23.

In the Bayesian network model family, Jeffreys’ prior turns out to be proper:
the formulas for computing Jeffreys’ prior for Bayesian networks can be found in 18.
However, unfortunately the resulting distribution is not of the desired conjugate
Dirichlet form, which makes this prior computationally difficult to use.

The basic strategy in the current version of B-Course is to try to choose the
parameter N ′ in such a way that the resulting ESS prior distribution is close to
Jeffreys’ prior. The hope is that this would give us a prior that is not too sensitive
for variable transformations, but is still computationally convenient to use. In
practice we currently set N ′ = (

∑n
i=1 ri)/2n. The motivation for this is that as

can be seen from the result given in 18, with an empty network (with no arcs), this
selection produces exactly the Jeffreys’ prior.

4.4. Handling missing data

Missing data is a problem for many statistical procedures, and B-Course is not
an exception. Bayesian theory has a very clear theoretical answer to the lack of
information caused by missing data. Unfortunately, this answer is computationally
infeasible, so B-Course ends up doing something much simpler to approximate this
answer.

The simplest way to handle missing data is to ignore all the data rows that have
some missing entries. The other possibility is to impute the missing data. That
means guessing some values to those entries of the data matrix that are missing.
After imputation we could then continue the analysis as if there were no missing
data at all. B-Course does something between these two extremes. It tries to throw
away only those parts of the data row that are missing. In fact for technical reasons
B-Course discards a little bit more than this.

B-Course uses the method called “ignoring”. The calculation of the probabilities
of the models is essentially based on the frequency of different patterns of data in
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the database. When calculating these pattern frequencies B-Course simply ignores
the patterns that contain missing data. Because of this, the probability of the
model is slightly miscalculated. This method works fine when the data is missing
randomly. However, in many cases values are not missing completely at random.
Since B-Course will deal with discrete values anyway, it is often a good idea to
handle missing values as legitimate values for a variable. In particular, this should
be done, if we suspect that there is some systematic reason for values to be missing.
Of course, handling missing values as “ordinary” values is not meaningful, if the
amount of missing values is very small (like once in one variable). To treat missing
data as value of its own the user can simply replace missing positions with any
name he/she likes (e.g., ?, missing, *, no answer, etc) as long as the newly created
value name does not clash with existing values. Of course, user is also free to use
any other way to pre-fill the missing data before uploading the data into B-Course.

4.5. Model search

In the full Bayesian approach, in making predictions one needs to marginalize over
the complete posterior distribution of models 4,1. In contrast to this, B-Course
attempts to find and use a single best dependency model structure — in standard
statistical terminology B-Course is doing model selection. The main reason for this
is that the full posterior distribution is extremely complex, and thus not computa-
tionally feasible to use. Furthermore, from the data mining point of view it is not
clear at all how the full posterior could be meaningfully presented to the user.

Finding the most probable model for the (discrete) data (even without missing
values) is NP-hard 6, so the optimal model selection method would be to go through
all the models, calculate the probability for each of them and then pick the best
one. However, the number of Bayesian network structures grows very rapidly as a
function of the number of variables 24: for example, for 20 variables the severely
underestimated number of possible Bayesian network structures is 1.6 ∗ 1057, hence
in practice we are forced to use search heuristics. B-Course uses a combination of
stochastic and greedy search heuristics to explore the very high-dimensional spaces.
Notice that since the model quality criterion and the search procedure have been
separated, the B-Course “search engine” can be improved independently of the
model selection criterion.

4.6. Weights of dependencies

The adopted model selection approach has naturally some drawbacks: when there
are many models that have approximately the same probability (or marginal like-
lihood) as the most probable model, those other models should also be consulted
when we make predictions (generalizations) for the data we have not seen, i.e., when
we want to say something about cases that were not in our data sample. In fact
to be exact, all the possible models should be used when making predictions and
the contribution of each model should be proportional to model’s probability. If we
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pick just one model, our predictions (generalizations) are worse than if we use many
models. Only in cases where the most probable model has very much higher proba-
bility than any other model, other models can be neglected and the predictions can
be done with the most probable model. This is natural, since in this case we are
almost sure that our model is the proper one. In addition, using just a single model
does not allow us to estimate our certainty about the predictions that are based
on that model. This is due to the fact that picking one model equals pretending
that we have found the “true” model of the world, and when the truth is known,
there is no uncertainty left. Of course, if it so happens, that the best model has the
probability very near one, we are safe. In future versions of B-Course this issue will
be at least partially resolved by showing a high-scoring set of dependency models
for the user, instead of showing only the single best model.

In the current version of B-Course, uncertainty about goodness of the network
found during the model search is expressed by analyzing the importance of indi-
vidual arcs. However, although it is natural to ask how probable or strong certain
unconditional dependency statement represented by an arc in the model is, in non-
linear models it is not an easy task to give “strengths” to arcs, since the dependencies
between variables are determined by many arcs in a somewhat complicated manner.
Furthermore, the strength of a dependency is conditional on what you know about
the other variables.

Fortunately one can get a relatively simple measure of the importance of an
arc by observing how much the probability of the model is changed by removing
the arc. This type of a local analysis can be motivated by the following line of
reasoning: The final model is the most probable model B-Course could find given
the time used for searching. However, there may be other models that are almost
as probable as our final model. Natural candidates for other probable models are
the ones that can be obtained by slightly changing the final model by removing one
of the existing arcs.

For studying the importance of the arcs, B-Course offers a list of statements
describing how removing an arc affects the probability of the model. If the re-
moval makes the model much worse (i.e., less probable), it can be considered as an
important arc (dependency). If removing the arc does not affect the probability
of the model much, it can be considered to be a weak dependency. In the list the
strongest dependencies are listed first. For “weaker” arcs A→B, B-Course also gives
the probability ratio 1 : N that should be read as follows: the final model is N times
as probable as the model that is otherwise identical, but in which the arc between
A and B has been removed.

4.7. Inferring causality

The theory of inferred causation (see 21) makes it possible to speculate about the
causalities that have caused the dependencies of the model. In B-Course there are
two different speculations (called “naive model” and “not so naive model”) which
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are based on different background assumptions.
Inferring causality from statistical dependence is an issue of a long-term de-

bate 25,11,21. However, causal models have many desirable properties, so the task
is worth pursuing in dependency modeling tools such as B-Course. It also appears
that by making some additional assumptions, inferring causalities from observed
statistical dependencies can be justified.

Arguing that we can infer causality from statistical dependencies necessarily
relies on the properties of causality and statistical dependencies. While people seem
to be naturally good in inferring about causality, they are not naturally talented
in making inferences about statistical dependencies. In general it is somewhat
plausible to think that all the dependencies between things in the world are due
to some kind of a causal mechanism. In the “naive model” B-Course makes an
additional assumption that all the dependencies between variables are due to the
causal relationships between variables in the model. Effectively this denies the
possibility that one has excluded some variables that could cause dependencies in
our model. That equals denying the possibility of latent causes. Naive model also
assumes that there are no causal cycles in the domain.

If we, however, make the naive assumption of excluding latent variables, the
inference of causes seem to become possible since all the unconditional dependencies
between A and B (A and B are dependent of each other no matter what we know
or don’t know about other variables) must be explained by either A causing B or B
causing A. But how can we know the direction of causality? We cannot always, but
sometimes we are lucky to have such a model, that the coexistence of dependencies
cannot be explained without a certain causal relationship. If A and B seem to be
dependent no matter what, and B and C seem to be dependent no matter what, but
A and C are not dependent of each other if we know something about certain other
variables S (S can be empty), and nothing about B and the rest of the variables,
then we know for sure that A has causal effect on B. How come? This is because B
cannot be the cause of A or otherwise A and C would always be dependent too, but
we just said that that sometimes (given S not containing B) they are independent.

Sometimes inferring existence or non-existence of causalities between variables
is possible even if we relax the naive assumption that there are no latent variables
involved in dependencies. In general all the dependencies between variables might
be caused by one latent variable. Postulating such variable is however somewhat
against scientific inquiry where the goal is to make as few assumptions as possible
(Occam’s razor). If we however restrict ourselves to the latent variable models where
every latent variable is a parent of exactly two observed variables, and none of the
latent variables has parents, we can infer something about causal relationships of
observed variables. We call this restricted set of latent variable models “not so naive
causal models”. This restriction is not as bad as it sounds, since it can be shown,
that under very reasonable assumptions, all causal models with latent variables can
be represented as models in this class.

Sometimes the subset of dependencies in our model can help us exclude the
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possibility of A causing B even when A and B seem to be always dependent. This
is the case if there is a third variable C that given S (that does not include A or B
or C) is dependent of A but independent of B. If A were a direct cause of B, the
dependence between C and A would always make C and B dependent too. This is
against our assumption that our model contains a statement saying C and B are
independent given S (that does not contain A or B or C). The only possibilities left
are that either B causes A or that there is a latent common cause for A and B, that
makes them appear dependent.

The “naive” and “not so naive” approaches for causal modeling have both been
implemented in the B-Course software, and the causal dependencies found are vi-
sualized as a graph. Although B-Course is to our knowledge the first software
package supporting the causal modeling framework described in 21, unfortunately
the current version of the software supports only causal analysis of data — causal
inference can not yet be performed on top of the constructed causal models in the
same way probabilistic inference can be performed on the constructed Bayesian
network models. The work in this area is still in progress.

5. Empirical Validation

When designing a learning algorithm to construct models from data sets with non-
informative prior information (i.e., no preference for the structure in advance), a
challenging and interesting task is to evaluate the “quality” of the learning algo-
rithm. In addition to the theoretical justifications of the Bayesian model construc-
tion, with such an analysis tool as B-Course, empirical validation is a necessary step
in the development process.

There are several possible ways to study the performance of a model construction
algorithm, and many of the schemes are based on simulating the future prediction
tasks by reusing the data available, e.g., with cross-validation methods. These
approaches have problems of their own and they tend to be complex for cases
where one is interested in probabilistic models for the joint distributions as opposed
to for example classification. Therefore in many cases in the literature the so-
called synthetic or “Golden Standard” approach is used to evaluate the learning
algorithm. In this approach one first selects a “true model” (Golden standard) and
then generates data stochastically from this model. The quality of the learning
algorithm is then judged by its ability to reconstruct this model from the generated
data.

In addition to the already quite extensive use with real data sets, B-Course was
also tested using synthetic data sets generated from known Bayesian networks. In
this case the particular interest in these experiments was to find out how well the
B-Course learner can “recover” the Golden Standard network for Bayesian networks
of varying complexity using data sets of different sizes. Following the dependency
modeling aspects underlying B-Course, the main interest was in comparing the
structural differences, not parameters. Several sets of tests were performed by vary-
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ing the network size (5, 15, and 50 nodes) and the dependency structure complexity
against the maximum of n2 arcs (0%, i.e., all independent, 10%, and 40% of possible
structural dependencies). In addition, the average node incoming/outgoing degree
(i.e., the number of arcs pointing to or from a node) was varied (1, 3, and 5). Finally
the construction rate (i.e., the “statistical power”) was studied by varying the size
of the generated data set from 100 to 10000 data vectors. The resulting Bayesian
networks were compared to the generating network by comparing the skeletons, i.e.,
the underlying undirected structure, and the V-structures which together define an
equivalence relation among the networks 20.

The results clearly validated that the model search in B-Course finds dependency
structures present in the underlying data generating mechanism. For the small
networks (5 nodes), regardless of the structure complexity in almost all the cases
the correct network could be recovered with 100 to 1000 data vectors. Even if
this was not the case, the differences in B-Course inferred network and the “true”
dependency model were only 1–2 missing dependencies. Similarly the performance
with 15 node random networks was comparable (typically 1–2 missing dependencies
or 1 incorrect V-structure), albeit now the data set sizes needed to recover the
network were typically 1000 as opposed to 100 sufficient for the smaller networks.
As expected, when the network size was increased to 50 with a notable connection
complexity (0.1 to 0.4), even the data set sizes of 10000 were sufficient to recover
the generating structure only very approximatively. The typical amount of missing
dependencies varied from 10% to 50%. However, one has to remember that the
amount of data used for these cases is way too small for such complex models by
any means (networks with more than 1000 arcs with 10000 to 15000 parameters!).
The main purpose of the tests with larger networks was to find out, whether the
model search produces “spurious dependencies”, i.e., adds dependencies that only
reflect the noise in the data. In this respect B-Course is extremely well-behaving
— it almost never adds a dependency where there should not be one and prefers
simpler models in the light of lesser amounts of evidence (i.e., smaller data sets).

6. Conclusions and Future Work

The two main design principles in building the current version of B-Course were
transparency and ease of use. On one hand, we wanted to build a system where
the modeling assumptions are explicitly visible so that applied practitioners can
fully understand what the results of the analysis of their data mean without having
to consult a statistics textbook. On the other hand, we wanted the data analysis
to be fully automated so that the users would not have play with parameters the
meaning of which would be clear only to modeling experts. These two requirements
were met by adopting the Bayesian dependence modeling approach: according to
our experience, the basic theoretical concepts in this probabilistic framework seem
to be easier to understand than the concepts of classical frequentist statistics, and
by using a series of explicitly stated assumptions, we were able to get rid of all the
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model parameters, leaving the user with a fully automated data analysis tool, as
was the goal.

Nevertheless, although the initial goals of the B-Course development project
have been met with the current version of the software, the current implementa-
tion leaves naturally room for many improvements. For example, the modeling
assumptions allowing us to offer the users a “non-parametric” tool are not neces-
sarily always very reasonable. Furthermore, the question of choosing an objective
“non-informative” prior for the model parameters turned out to be a most complex
issue, linking this superficially simple task directly to the most fundamental prob-
lems in statistics. On the other hand, as the chosen Bayesian approach offers an
elegant framework for integrating subjective knowledge with empirical observations,
it would be nice to be able to offer the more sophisticated users a possibility for
expressing their expertise as a prior distribution on the dependency statements, or
on the model parameters. Finally, it is evident that uncertainty on the result of the
analysis should be expressed in a more elaborate manner than with the straightfor-
ward local analysis of the importance of the individual arcs. These issues will be
addressed when developing future versions of the B-Course data analysis service.
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