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Abstract

We present a scheme for translating high-level descriptions of conceptual hierarchies into a neural
network representation. The intuitive semantics of a conceptual hierarchy is provided by a Bayesian net,
and the neural network implementation provably approzimates the behaviour of this net under a stochastic
simulation rule.

1 Introduction

Hybrid neural-symbolic programming systems have recently been attracting increasing attention as a poten-
tially productive symbiosis of two complementary methodologies, benefiting from the advantages and avoid-
ing the disadvantages of both. In a hybrid system, the symbolic component would be used for complicated
inference, while the neural component would provide a basic robustness to the knowledge representation.
Some recent approaches to developing such systems are reported in [1, 2, 3, 4, 6, 7, 9].

In this paper, we describe a novel knowledge representation scheme which is currently being implemented
in the hybrid NEULOG system, developed at the University of Helsinki [6]. In our scheme, a conceptual
hierarchy, described in a high-level language, is interpreted as defining a particular probability distribution
over a set of variables that correspond to the concepts and their possible attribute values in the network. This
probability distribution can be conveniently represented as a Bayesian network [8], and this representation
has a natural realization as a neural net. The neural realization will be “correct” in the sense that it provably
approximates the behaviour of the Bayesian network under a stochastic simulation rule (cf. [8, Section 4.4]).

Of the hybrid system approaches mentioned above, ours is closest to that of Shastri [9]. In Shastri’s
system, a conceptual hierarchy is similarly interpreted as defining a particular probability distribution, and
the implementation network provably performs evidential reasoning according to this distribution. The
fundamental difference to our system is that Shastri does not make the connection to Bayesian networks,
and so instead of a stochastic Bayesian computation, his system implements a “maximum entropy” reasoning
rule. As a consequence of this difference, Shastri’s networks require more powerful computing elements and
a more involved control regime than ours.

2 Bayesian Networks and Stochastic Simulation

We present here a brief summary of Bayesian nets; for an extensive discussion, see Pearl’s excellent book
[8]. Let P be a probability distribution over the variables X3, ..., X,. For simplicity, let us assume that all
the variables are binary-valued. As in [8], we use boldface symbols to denote sets of variables, together with
the following concise notation: if X = {X;,,..., X;,} is a set of variables, X = & means that = is a k-bit
binary vector and X;; = 2(j) for every j =1,...,k.
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under its FINSOFT programme.
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Definition 2.1 [8, p. 83] Let X, Y, and Z be sets of variables. Then X is conditionally independent of
Y, given Z, if

PX=2Y=y,Z=2)=PX=2|Z=2)
holds for all vectors @, y, z such that P(Y =y,Z = z) > 0.

Intuitively, the variables in Z intercept any causal connections between the variables in X and the
variables in Y': knowing the values of Z renders information about the values of Y irrelevant to determining
the distribution of X.

Definition 2.2 {8, p. 120] A Bayesian network for a probability distribution P is a directed acyclic graph
D whose nodes correspond to the variables Xj,..., X,, and whose topology satisfies the following: each
variable X is conditionally independent of all its non-descendants in D, given its set of parents Fx, and no
proper subset of F'x satisfies this condition.

The parent variables Fx may intuitively be thought of as the immediate causes of variable X. The
importance of a Bayesian network structure lies in the way the network facilitates computing conditional
probabilities. To make this precise, let us introduce the following notation: given a variable X in a Bayesian
network D, let Fxy denote the set of parents of X, Sx the set of children of X, and Ux the set of all variables
except X. The following result is then an immediate consequence of Definition 2.2:

Theorem 2.1 [8, p. 121] Given a variable X in a Bayesian network D, define

Bx =FxUSxU U Fy.
YESX

Then X is conditionally independent of Ux — Bx, given Bx. O

Thus, to determine the distribution of a variable X, given the values of all the other variables, it suffices
to consider only the values of the variables in Bx. A set of variables covering X in this sense is called a
Markov blanket of X [8, p. 97]. Even an explicit formula for computing the distribution of X from its Markov
blanket can be given.

Theorem 2.2 [8, p. 218] Let D be a Bayesian network over a variable set U = {Y1,...,Y,}. Given any
value vector w : {1,...,n} — {0,1} and a set of variables Z C U, let z denote the restriction of u to the
domain {i :Y; € Z}. The probability distribution of each variable X =Y; in the network, conditioned on the
values of all the other variables, may then be expressed as:

P(X=z|Ux =ux)=cP(X =z|Fx = fx) ][] P =u()Fr=fr), (1)
Y=Y;eSx

where z is 0 or 1, ¢ is a constant independent of z, and u is any value vector for U such that u(f) =z. O

Based on this result, and the fundamental properties of Markov chains [5], Pearl proposes a stochastic
simulation technique for computing probability assignments in a Bayesian network. Assume that we are
given as initial data the value vector y for some set of variables Y. Then the conditional probabilities
P(X = 1Y = y) can be estimated by the following procedure: first instantiate all variables in U — Y to
some arbitrary initial values; then repeatedly choose one variable X € U — Y and assign to it a new value
in accordance with (1), given the current values of the variables in Bx. More precisely, when a variable X
is being considered in a configuration where the other variables have values Ux = ux, first the ratio

P(X =1|Ux = ux)
P(X = 0[Ux = ux)’

r=

is computed according to (1). (Note that the expression for r no longer involves the normalization constant
¢.) Then X is assigned a new value at random, with value 1 having probability p = /(1 4 r), and value 0
having probability 1 —p = 1/(1 + r). Provided that all the probabilities P(Z = z|W = w) associated with
the arcs in the Bayesian network are nonzero, the theory of Markov chains guarantees that the frequency
with which X = 1 in the simulation converges to the correct probability value P(X = 1|Y = y).
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a. A Bayesian network

b. Corresponding neural net

G E@D x) @x) () 09
SIS

- @

Figure 1: A simple Bayesian network and part of its neural realization.
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3 A Neural Realization

In this section we show how Pearl’s stochastic simulation scheme for Bayesian nets can be realized by a
neural network consisting of two layers of simple binary stochastic units.

The first layer of units represents the variables in the Bayesian network. These are called the variable
units. The second layer, called the context units, contains for each variable X one unit for '

1. each possible vector of values fx for the variables in Fyx;
2. each possible vector of values fy for the variables in Fy = Fy U{Y} — {X}, for each variable Y € Sx.

The stochastic activation function of each unit is the sigmoid o(t) = (1+e~*)", where ¢ is the net weighted
input to the unit.

Figure 1 shows a simple Bayesian network and a part of its neural realization. Note the following
shorthand used in the figure: for a variable V, v denotes the value assignment V' = 1, and % denotes the
value assignment V = 0. We shall return in Section 4 to the very important issue of how the exponential
growth in the number of context units can be avoided in many practical situations.

The variable units simulate the behaviour of the variable nodes in a Bayesian network under the stochastic
simulation scheme. The context units associated with a given variable X collect information about the current
states of those variable units whose variables belong to the Markov blanket Bx of X. The variable and
context unit layers are updated alternately, so that in one phase all the variable units in parallel assume new
states, and in the following phase all the context units in parallel assume the appropriate states to propagate
the new information concerning the variable units.

The rules for assigning arc weights in the neural network are summarized in Figure 2. The constant
M appearing in the rules should be chosen so large that o(M) is “sufficiently close” to 1 and o(—M) is
sufficiently close to 0. In addition to the rules shown in Figure 2, each context unit of the form (X |b) (resp.
(b1]X¥")) receives a constant input of magnitude —(2p — 1)M, where p is the number of variables occurring
positively in the vector b (resp. b1b').
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Figure 2: Assignment of weights to arcs in the neural realization.
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The effect of the input arc weights on the context units is to turn on with high probability (depending
on the choice of M) exactly those units whose b vectors are consistent with the current states of the variable
units. The arc weights from context units to variable units implement formula (1). To illustrate this, consider
for instance the updating of variable unit X in Figure 1 in a configuration where the units belonging to its
Markov blanket have states W = 1,Y = 0, Z = 1. In the context update phase, with high probability exactly
the context units (X|w) and (§|Xz), among the set of units providing input to X, are activated. Hence in
the variable update phase, unit X receives a net input of magnitude

P(zjw) 41 P(g|zz)

t=In—— n——-=.
P(z|w) P(g|zz)
Denoting
P(X = l|lwgz)
r= — =
P(X = 0lwyz)

we see, by formula (1), that ¢t =Inr, and so X assumes the value 1 with the correct probability of

_ 1 _ 1 T
T l4et T 14T 14

a(t)

4 Translating Conceptual Hierarchies into Bayesian and Neural
Nets

We now outline a scheme for translating high-level descriptions of conceptual hierarchies into a Bayesian
network representation, which may then be realized neurally as described in the previous section. For
simplicity, we consider here only conceptual hierarchies that are trees, i.e. such that every concept has at
most one immediate ancestor in the inheritance ordering. However, our techniques can be generalized to
arbitrary singly connected hierarchies, where there is only one inheritance path from a concept to any of its
ancestors. A particularly important feature of our translation scheme is the way the conceptual hierarchy is
used to reduce the number of context units in the neural implementation.
As an example, consider the following conceptual hierarchy, described in a generic high-level language:
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concept fruit is basic (100) with
taste : [ sweet (60), sour (40) ];
colour : { red, green, yellow };
concept lemon is fruit (10) with
taste = sour;
yellow in colour;
red, green notin colour;
concept apple is fruit (50) with
origin : [ domestic (25), imported (25) };
taste = sweet (40), sour (10);
size = medium;
concept mcintosh is apple (10) with
origin = domestic;
taste = sweet (6), sour (4);
red in colour;
green in colour (7);
yellow notin colour.

Here, a description of a single concept consists of a reference to its immediate ancestor (if any), a list
of attributes local to this concept and inherited by its descendants, and a sequence of value assignments
to attributes visible at the concept. There are two types of attributes: exclusive (indicated by the square
brackets “[ ]” enclosing the list of possible values) and set-valued (indicated by the curly braces “{ }”).
For any object, an exclusive attribute must be assigned exactly one value from its list of possible values;
a set-valued attribute may possess any number of values (including zero) from its list. The parenthesized
numbers indicate the “frequency” of a given value for an attribute, or at the header of a concept declaration,
the “frequency” of objects falling into that concept class. These numbers may either be actual objective
frequencies, or subjective estimates of the “typicality” of certain contingencies.

A Bayesian network corresponding to the “fruits” hierarchy is shown in Figure 3. In this network, a
binary variable is assigned to each concept class and attribute-value pair. To save space in the figure,
variable names have been abbreviated in an obvious manner: f for “fruit”, t:sw for “taste = sweet” etc.
If variable X is a parent of variable Y in the network, the value of P(Y|X) is indicated next to the arc
representing the dependency. The reader can convince him/herself, directly on the basis of Definition 2.2,
that the probability distribution determined by the Bayesian net in Figure 3 indeed provides a natural
interpretation for the description of the “fruits” hierarchy.

As can be seen from the figure, groups of mutually exclusive variables, such as the immediate descendants
of a concept variable (I and a for f), or the value variables for an exclusive attribute (t:sw and t:50) give
rise to zero-probability dependencies in the Bayesian network. Unfortunately, such dependencies cause a
problem if the network is queried using a stochastic simulation technique. The convergence of node activity
frequencies to their correct values is guaranteed only if all the probabilities associated with the arcs in the
network are nonzero.

To circumvent this difficulty, we introduce a parameter 7, which is to have some small positive value, and
replace all the probability 0 arcs in the network by arcs of probability ». This approximation introduces a
small systematic error to the results obtained from the network; the error may of course be decreased at the
cost of increased computation time by diminishing 7.

Let us then consider realizing the Bayesian fruits network of Figure 3 neurally, according to the scheme
of Section 3. It can be seen that because of the hierarchical structure of the network, most of the context
units prescribed by the basic translation scheme are in fact redundant: the value combinations indicated in
their condition parts can never occur.

Consider, for instance, the node representing the variable :so. According to the basic scheme, this should
have input arcs from 16 context units, corresponding to all possible combinations of values to the variables f,
1, a, and t:sw. Let us for the moment forget about the 0 probability dependency from #:sw, and imagine that
the parent variables of t:so are f, I, and a. Now, by the hierarchy, variables [ and a cannot simultaneously
have value 1, which reduces the number of context nodes required from 8 to 6. (In these calculations, we are
using the exact form of the hierarchy instead of the n approximation.) Moreover, because ! and a have no
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Figure 3: Bayesian network corresponding to the “fruits” description.

other parents than f, knowledge that I = 1 or a = 1 entails the knowledge that f = 1. (Actually, because
the variable f is located at the top of the hierarchy, the case f = 0 cannot occur anyway.) We obtain
immediately the following relations:

P(t:solf,1,a) - not possible
P(t:solf, La) = P(t:so|l) =1
P(tsolf, I—, a) = P(tsola)=0.2

The remaining probability value P(t:so|f, 1 @) can be computed most conveniently directly from the
textual description of the fruits hierarchy (here #c denotes the number of objects in concept class ¢):

#(ts0) fla _ #(tso)f — #(t:s0)l — #(t:s0)a

P(t:s0|fla)

#fla #f—#l—#a
401010
= Too—10-850 O™

In general, it can be seen that if an attribute-value variable X in the Bayesian network has as parents
the concept variables Cy, ..., Cy, all from the same treelike conceptual hierarchy, then:

1. If C; and Cj; belong to different branches of the tree, then P(c;, cj,b) = 0 for any value assignment b.
Hence no context units are needed for value assignments that contain positive occurrences of variables
from different branches. Moreover, if C; and C; belong to different branches, then P(z|c;,¢;,b) =
P(z|c;, b).

2. If C; and C; belong to the same branch in the tree, and Cj is an ancestor of Cj, then P(¢;,¢;,b) =0
for any value assignment b. Hence no context units are needed for value assignments that contain a
negative occurrence of some variable, and a positive occurrence of its descendant. Moreover, if Cj is
an ancestor of Cj, then P(z|c;, ¢j, b) = P(z|c;, b).

By these two rules, the only context units needed to transmit information from variable units representing
concepts to variable units representing attribute values are of the types (X|c) and (X|ed; ...dg), where X
is an attribute-value variable, C is a concept variable, and Dy, ..., Dy are concept variables descendant to
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C. The probabilities P(z|c) can be deduced immediately from the description of the conceptual hierarchy,
and the probabilities P(z|cd . ..dx) can be computed as in the example above:

B #zcg’l...d"k _ ftec— (Fadi+ -+ Hady)
T fedy...dy T fe—(fdi+ - -Fdi)

So far, we have glossed over a significant complication in the translation scheme: the treatment of mutually
exclusive variable sets. Recall that if Yi,...,Y;, is either the set of children of some concept variable, or
the set of attribute-value variables for some attribute of an exclusive type, then there is a probability n
dependency arc from each variable Y; to variable Yj, where i < j. Now it would seem that in such a case
an exponential (in n) number of context units would be needed, and that horrendously complex expressions
would arise in computing the requisite probabilities P(yg |by), where y is a value assignment to Y1,.. ., Ye-1,
and b is a value assignment to some other variables. Luckily, these probabilities can be well approximated
as follows (we omit the precise calculations):

P(z|edy ... dx)

1. if y contains a positive occurrence of some Y;, i < k, then P(yx|by) =n + o(n?);

2. otherwise

where p; = P(yi|b),i =k — 1, k.

Note that again the number of context units needed is greatly reduced.
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