
International Symposium on Information Theory and its Applications, ISITA2008
Auckland, New Zealand, 7-10, December, 2008

On Recurrence Formulas for Computing the Stochastic Complexity

Tommi Mononen and Petri Myllymäki

Helsinki Institute for Information Technology (HIIT), University of Helsinki, Finland
E-mail: <firstname>.<lastname>@hiit.fi

Abstract

Stochastic complexity is a criterion that can be used
for model selection and other statistical inference tasks.
Many model families, like Bayesian networks, use multi-
nomial variables as their basic components. There now
exists new efficient computation methods, based on
generating functions, for computing the stochastic com-
plexity in the multinomial case. However, the theo-
retical background behind these methods has not been
been extensively formalized before. In this paper we de-
fine a bivariate generating function framework, which
makes the problem setting more comprehensible. Uti-
lizing this framework, we derive a new recurrence rela-
tion over the values of a multinomial variable, and show
how to apply the recurrence for computing the stochas-
tic complexity. Furthermore, we show that there can-
not be a generic homogeneous linear recurrence over
data size. We also suggest that the presented form of
the marginal generating function, which is valid in the
multinomial case, may also generalize to more complex
cases.

1. Introduction

Minimum Description Length (MDL) is an infor-
mation-theoretic principle for statistical inference [12].
A central concept in this framework is stochastic com-
plexity. Given a parametric model M, the stochastic
complexity of a discrete observed data matrix xn with
n data vectors is

SC(xn | M) = − logPNML(xn | M) (1)

where

PNML(xn | M) =
P (xn | θ̂(xn),M)

∑

yn P (yn | θ̂(yn),M)
. (2)

The above probability, where θ̂(xn) denotes the max-
imum likelihood parameters of the model, defines the
normalized maximum likelihood (NML) distribution [14].
The model selection task is to search from a fixed model

family (a set of parametric models with varying com-
plexity) the model minimizing the stochastic complex-
ity (1).

Many probabilistic models, like for example Bayes-
ian networks, use the multinomial variable as an im-
portant building block. However, even in this simple
case computing the stochastic complexity is difficult,
as the denominator of (2) (denoted in the sequel by
C(L, n)), requires summation over all the data tables
yn that are of the same size as our observed data. For
a multinomial variable the normalizing sum is

C(L, n) =
∑

h1+···+hL=n

n!

h1! · · ·hL!

L
∏

k=1

(

hk

n

)hk

, (3)

where hk is a number of data points assigned to the
kth value and L is the number of values of the multi-
nomial variable. Using this definition directly is obvi-
ously not feasible, but there now exist several efficient
linear time algorithms for this task [6, 11] and also a
very good asymptotic approximation [4] and for fixed
precision there is even a sub-linear time computation
method [9]. Derivation of efficient computation meth-
ods for the multinomial normalizing sum utilize the
one-parameter generating function family:

BL(z) =

(

1

1 − T (z)

)L

=
∞
∑

n=0

C(L, n)nn zn

n!
, (4)

where T (z) is the tree function [5, 4]. For example,
there exists an efficient recurrence formula

C(L, n) = C(L − 1, n) +

(

n

L − 2

)

C(L − 2, n), (5)

which can be used for computing multinomial normal-
izing sums, if the corresponding binomial normalizing
sum (L = 2) is computed first, which can be done in
O(n) time using the definition with a trivial parameter
substitution trick [6].

However, the generating function and the recur-
rence formula seem to be mismatching pairs: the coeffi-
cient sequence in (4) goes over the variable n, while (5)
goes over the variable L. Next we redefine the problem
so that this ambiguity disappears.

2. Bivariate Generating Function

The multinomial normalizing sum has two param-
eters L and n, hence we are looking for a bivariate
generating function [2]. First we however define the
tree function properly [5]:

T (z) =
∞
∑

n=1

nn−1 zn

n!
(6)

and it satisfies

T (z) = zeT (z). (7)

Now we can return to the original problem and write
the bivariate generating function in the form

∞
∑

L=0

BL(z)uL =

∞
∑

L=0

(

1

1 − T (z)

)L

uL (8)

=
∞
∑

L=0

∞
∑

n=0

C(L, n)nn zn

n!
uL. (9)

We want to have (9) in closed form. Since we know
that

1

1 − au
= 1 + au + a2u2 + a3u3 + · · · ,

we can just replace a by B(z) and get

f(z, u) =

∞
∑

L=0

∞
∑

n=0

C(L, n)nn zn

n!
uL (10)

=
1

1 − u
1−T (z)

=
T (z)− 1

T (z) − 1 + u
. (11)

This function is the bivariate exponential generating
function. Now we have the bivariate formal power se-
ries with two variable coefficients. If we arrange co-
efficients C(L, n)nn into the form of a table, we can
ask, which generating function generates coefficients of
some row or column? We adopt terms and notation
used in [2] and call these marginal generating functions
vertical and horizontal generating functions. Now we
start looking at how to compute the marginal generat-
ing functions of (11). The vertical generating function
family is now our original function BL(z), which we
denote from now on by

f 〈L〉(z) =

∞
∑

n=0

C(L, n)nn zn

n!
=

(

1

1 − T (z)

)L

. (12)

The horizontal generating function family is a previ-
ously unknown function, although (5) applies to its se-
quence of coefficients. However, to derive this function,
we need first the so called Lagrange inversion formula
[13].

Proposition 1 The Lagrange inversion formula is

[zn]G(H(z)) = [zn]G(z)H ′(z)

(

H(z)

z

)−n−1

,

where G(z) is any formal power series and H(z) is any
formal power series with the zero constant term and
H(z) is the compositional inverse of H(z).

Above we denoted the coefficient extraction by stan-
dard notation [zn]. Now we are ready to present the
previously missing marginal generating function family
in a form of theorem.

Theorem 1 The horizontal generating function family
is of the form

fn(u) =

∞
∑

L=0

C(L, n)nnuL

= nnu

(

1 +

(

u

1 − u

) n
∑

L=0

n!n−L

(n − L)!
· (1 − u)−L

)

.

Proof 1 We will utilize the Lagrange inversion, but
first we have to find two functions that form a compos-
ite function:

1

1 − u
1−T (z)

=
1

1 − u

1−H(z)

= G(H(z), u),

thus the functions are

G(z, u) =
1

1 − u
1−z

=
z − 1

z − 1 + u
and

H(z) = T (z) and H(z) =
z

ez
.

Now we are ready to use the Lagrange inversion for-
mula. We do the Lagrange inversion only with respect
to variable z. The dummy variable u is only in the
outer function, so we can write in this case

[zn]
1

1 − u
1−T (z)

= [zn]G(z, u)H ′(z)

(

H(z)

z

)−n−1

= [zn]
z − 1

z − 1 + u
e−z(1 − z)

(

1

ez

)−n−1

= [zn]
(z − 1)2enz

1 − z − u
.

Next we will do series expansion for the last form. We
split the form in two parts:

S(z, u) =
(z − 1)2

1 − z − u
=

z2 − 2z + 1

1 − z − u
and

R(z) = enz.

The series expansions with respect to variable z are

S(z, u) = (u + 1) − z +

∞
∑

k=0

u2

(1 − u)k+1
zk and

R(z) =
∞
∑

k=0

nk zk

k!
.

The final step is just to use the discrete convolution
formula between S(z, u) and R(z):

[zn]S(z, u)R(z) =
nn

n!
(u + 1) −

nn−1

(n − 1)!

+
u2

1 − u

n
∑

L=0

nn−L

(n − L)!(1 − u)L

=
nnu

n!
+

u2nn

1 − u

n
∑

L=0

n−L

(n − L)!
(1 − u)−L,

which is identical to the claim when multiplied by n!
(because the vertical generating function family is of
exponential type). 2

This result can be represented also in another form
using confluent hypergeometric functions:

fn(u) = nnu +

(

nnu2

1 − u

)

2F0

(

1,−n

—

∣

∣

∣

∣

−
1

n(1 − u)

)

.

For further information on 2F0 functions, see [11].

This one-parameter family does not look very nice
at first sight, but if we enter some values, for example
n = 1, 2, 3, we observe that the horizontal generating
functions in the simplified form are

f1(u) =

∞
∑

L=0

C(L, 1)11uL =
u

(1 − u)2
,

f2(u) =
∞
∑

L=0

C(L, 2)22uL =
−2u(u − 2)

(1 − u)3
and

f3(u) =

∞
∑

L=0

C(L, 3)33uL =
3u(3u2 − 10u + 9)

(1 − u)4
.

The formal power series coefficients of these functions
give all the normalizing sums for a fixed amount of
data. These example functions, and the horizontal gen-
erating functions in general, are so called rational gen-
erating functions. This observation enables us to use
the huge mathematical toolbox designed for rational
generating functions, and may be a reason why the
multinomial normalizing sum has such nice properties
with respect to variable L. Next we present direct im-
plications of the redefinition.

2.1. Recurrence Relations over L

There are two known recurrence relations over vari-
able L: the first one is (5) and the second one is actually
a simple sequential convolution. The second method is
based on the observation that if we have a formal power
series raised to some positive integer power, we get ex-
panded coefficients by computing many convolutions
sequentially. This result applies to f 〈L〉(z).

However, our new horizontal generating function
family gives the third recurrence relation. There is
also a standard way to construct a recurrence relation
for rational functions using Taylor series. One can say
loosely that the numerator of a rational function gives
initial conditions and the denominator gives the recur-
rence equation. Hence, in this case we get for fn(u) the
recurrence equation

n+1
∑

j=0

(

n + 1

j

)

(−1)jC(L − j, n) = 0, (13)

which we can write in a simpler operator form

(∇L)n+1C(L, n) = 0, (14)

where ∇L is the backward difference operator with re-
spect to variable L. We can write ∇L = I−E−1

L , where
I is the identity operator and E is the shift operator.
If we apply the operator to C(L, n), the identity opera-
tor gives the same C(L, n), and the shift operator E−1

L

gives C(L − 1, n). For example, if n = 2, we have

(∇L)3C(L, 2) =(I − E−1
L)3C(L, 2)

=(I − 3E−1
L + 3E−2

L − E−3
L) C(L, 2)

=C(L, 2)− 3C(L − 1, 2)

+ 3C(L − 2, 2) − C(L − 3, 2)

=0.

The recurrence is valid for f2(u). In fact, also the gen-
eral form of the backward difference operator is work-
ing. This means that we can skip coefficients and for
example take every third one. So the general form of
the operator is ∇b

L = I − E−b
L . This leads to a fast

algorithm for computing normalizing sums with huge
values of L and a small fixed value of n. For exam-
ple, for L = n · 2m, where m ∈ N, we can compute
the normalizing sums in following way: First compute
the initial n values, then use the above recurrence with
b = 1. After 2n values, use the recurrence with b = 2
and after 4n values use the recurrence with b = 3 etc.
So we always make bigger and bigger leaps until we
reach the desired target L. Of course we can modify
the scheme so that we can reach any desired value of L

using a similar approach.

This recurrence is not very useful in our framework:
it starts to work after the number of values in a variable
exceeds the number of data points. So it actually tells
us how the value of the normalizing sum changes, if we
add excess bins (values). What is more important is
that the same recurrence applies also to more complex
cases, like the Naive Bayes model discussed below.

2.2. Recurrence Relations over n

There are many different recurrence relations over
L. For single horizontal generating functions we have
the convolution recurrence and (13). For the whole
horizontal family we have (5). However, there does not
exist a single efficient recurrence formula over n. The
existence of a simple recurrence formula over n would
lead to efficient dynamic programming methods. Un-
fortunately we are not going to present any recurrence
formulas over n; actually, in the following we prove that
in this case, it is impossible to have a homogeneous lin-
ear recurrence relation for the family of vertical gener-
ating functions.

We start by definitions. We define the basic con-
cepts first in the single variable case and later expand
definitions to the multivariate case. A sequence is called
holonomic if it satisfies a homogeneous linear recur-
rence equation

p0(i)a(i) + p1(i)a(i + 1) + · · ·

+ pd(i)a(i + r) = 0 n ≥ 0, r ∈ N, (15)

where the terms pk(i) are polynomials, which are not
all zero. Respectively, a formal power series is holo-
nomic (D-finite) if and only if its coefficient sequence
is holonomic (P-recursive). The following proposition
defines holonomicity condition between ordinary and
exponential generating functions [1].

Proposition 2 The ordinary generating function
∑∞

n=0 gnzn is holonomic if and only if the exponential

generating function
∑∞

n=0 gn
zn

n! is holonomic.

Now we are ready to give the proposition that is con-
nected to our specific problem [3]:

Proposition 3 Generating function
∑∞

n=0 nnzn is not
holonomic.

The two previous propositions together imply that also
f 〈1〉(z) is non-holonomic. So there is no homogeneous
linear recurrence relation, which gives the next coeffi-
cient given a fixed number of previous coefficients.

Until this point, we had a formal power series only
with one variable. Now we need bivariate power series,
because we want to prove that the bivariate generating

function is non-holonomic. In general we have a formal
multivariate power series

g(x1, . . . , x2) =
∑

i1,··· ,im

a(i1, . . . , im)xi1
1 · · ·xim

m .

The section of g(x1, . . . , xm) is a lower dimensional for-
mal power series, where some variables have been as-
signed to certain values:

g
1,...,s
is+1,...,im

(x1, . . . , xm) =
∑

i1,...,is

a(i1, . . . , im)xi1
1 · · ·xis

s ,

where (is+1, . . . , im) are the assigned values. Now the
definition of holonomicity for multivariate formal power
series says that if g(x1, . . . , xm) is holonomic then all
the sections must be holonomic [7]. This leads to the
following theorem:

Theorem 2 The bivariate generation function f(z,u)
is non-holonomic.

Proof 2 All sections of a holonomic function must be
holonomic. Now take the section

fn
1 (z, u) =

∞
∑

n=0

C(1, n)nn zn

n!

=

∞
∑

n=0

nn zn

n!
= f 〈1〉(z),

which is non-holonomic. Therefore the bivariate gen-
erating function is also non-holonomic. 2

If the bivariate generating function would have been
holonomic, it would have implied that there is also a
homogeneous linear recurrence over n. However now
the situation is a bit more complicated. We cannot
infer converse, meaning that there is no linear homoge-
neous recurrence, but we need a proposition that says
how to end up to multivariate holonomic sequences [7]:

Proposition 4 Let the sequence a(i1, . . . , im) satisfy a
system of recurrences, one for each j = 1 . . .m, of the
form

p
(j)
0 (ij)a(i1, . . . , im) +

rj
∑

l=1

p
(j)
l (i1, . . . , im)a(i1, . . . , ij−1,

ij − l, ij+1, . . . , im) = 0,

where p
(j)
0 are nonzero polynomials of one variable. Then

the sequence a(i1, . . . , im) is holonomic.

Intuitively this means that if there exists the above
recurrence equations with respect to each variable, then
we have a multivariate holonomic function. This leads
to the following theorem:

Theorem 3 For the family of vertical generating func-
tions of f(z, u) there is no recurrence equation of the
form

r2
∑

l=0

pl(L, n)C(L, n− l) = 0,

where r2 is some non-negative integer and p0(L, n) is
non-zero.

Proof 3 We can use Proposition 4. First we notice
that (5) can be written in form

(L − 2)C(L, n) + (2 − L)C(L − 1, n)

+ (−n)C(L − 2, n) = 0,

which means that the first recurrence equation exists.
Now suppose that also the second recurrence exists. This
implies that the sequence C(L, n)nn is holonomic. How-
ever, this is a contradiction because we know that the
sequence is not holonomic. So, the second recurrence
must be false.

Our only concern is now that by Proposition 4 we
have p0(n) instead of p0(L, n). However, if there would
be such a recurrence, then by setting L = 1 in the re-
currence equation we would get a homogeneous linear
recurrence for the non-holonomic f 〈1〉(z), which is of
course a contradiction. 2

This result could have been proved without the bivari-
ate holonomicity, but we wanted to bring insight to the
problem setting. There still may be some other type
of recurrence formulas, but finding one can be a rather
difficult task as a general methodological foundation is
mostly missing.

3. Recurrences in the Naive Bayes Case

The Naive Bayes classifier is a probabilistic model
used widely in classification and clustering tasks. The
model has m predictor variables with Ki outcomes for
the ith variable, and one class variable with L out-
comes. The predictor variables are assumed to be in-
dependent given the value of the class variable.

We already know that the convolution type recur-
rence works for the normalizing sums also in the Naive
Bayes case [8]. Validity is easy to see from the fact that
we can write the ’vertical’ generating function family
in the form

(

∞
∑

n=0

C(K1, n)C(K2, n) · · · C(Km, n)nn zn

n!

)L

=

∞
∑

n=0

CNB(L, K1, . . . , Km, n)nn zn

n!
. (16)

We just expand the power L sequentially and compute
convolutions as we did in the multinomial case. A far
more interesting fact is that our new recurrence formula
seems to be valid also in the Naive Bayes case. In the
following, we list some consequences of this conjecture.

It is hardly surprising that the operator equation
works also over L. In this case the equation is

(∇L)n+1CNB(L, K1, . . . , Km, n) = 0. (17)

An astonishing fact is that the same equation works
also over the number of outcomes of the predictor vari-
ables. This is the first recurrence equation of this kind.
The equation in this case is

(∇Ki
)n+1CNB(L, K1, . . . , Ki, . . . , Km, n) = 0. (18)

Using the conjecture we can construct ’horizontal’ gen-
erating functions also for Naive Bayes models. We just
need to compute some initial values and expect valid-
ity of recurrence equations to get the sought generating
functions. We used Maple command rectodiffeq and
solved the generating function from the result. In em-
pirical tests we did not found any flaws. The generating
functions seem to be the correct ones.

We give an example. Let us take a Naive Bayes
model whose root node has 5 values and the three leaf
nodes 3, 3 and K3 values. For values n = 1, 2, 3, the
generating functions are

f1(u) = 45
u

(1 − u)2
,

f2(u) =
405

2

u(7u + 10)

(1 − u)3
and

f3(u) =
5

27

u(126525u2 + 1152890u + 497673)

(1 − u)4
.

We can see that the denominators are of course same as
in the multinomial case for these few instances. More-
over, also the horizontal generating functions are quite
similar, only the coefficients of the numerators are dif-
ferent.

4. Using Horizontal Generating Functions

Let us suppose that we have precomputed the ex-
panded form of a horizontal generating function for
some model and fixed n. Now we can compute the
normalizing values using convolution. The series ex-
pansion of the denominators of horizontal generating
functions is

1

(1 − u)n+1
=

∞
∑

j=0

(

j + n

j

)

uj =

∞
∑

j=0

hju
j. (19)

and the coefficients of the series can be computed effi-
ciently using the ratio

hj

hj−1
=

j + n

j
. (20)

We just have to do the discrete convolution for coeffi-
cient sequences of (19) and the numerator. This way
we can test different number of values in a single leaf
(predictor) variable of a Naive Bayes model very fast.
We have also noticed that leaf nodes of Bayesian trees
have similar kind of horizontal generating functions.
This may generalize also to inner and root nodes, but
our present tree computation algorithm does not allow
us to test this hypothesis.

However, as the computation has been previously
shown to involve higher level convolutions with respect
to sequences of length n [8, 10], we expect there to
be hidden costs. We are still hoping that there could
be efficient shortcuts with respect to a tree structure,
which would allow us to construct the horizontal gen-
erating functions efficiently. However, it is most likely
that bivariate generating functions are not descriptive
enough for more complex models, but in this case we
need multivariate generating functions.

5. Conclusions

We redefined the generating function for the multi-
nomial normalizing sum of NML. The previously un-
known marginal generating function family has inter-
esting properties and it may eventually lead to develop-
ment of efficient algorithms for computing the stochas-
tic complexity of Bayesian trees and more general Bayes-
ian models. We also proved that for computing the
multinomial normalizing sum, there does not exist a
generic homogeneous linear recurrence formula over the
data size.

Acknowledgments

Authors thanks Alessandro Di Bucchianico and Petri
Kontkanen for fruitful discussions. This work was sup-
ported in part by the Academy of Finland under the
project Civi and by the Finnish Funding Agency for
Technology and Innovation under the projects Kukot
and PMMA. In addition, this work was supported in
part by the IST Programme of the European Commu-
nity, under the PASCAL Network of Excellence.

References

[1] C. Banderier, M. Bousquet-Mélou, A. Denise,
P. Flajolet, D. Gardy, and D. Gouyou-
Beauchamps. Generating functions for generating

trees. Discrete Mathematics, 246(1-3):29–55,
March 2002.

[2] P. Flajolet and R. Sedgewick. Analytic Combina-
torics. Unpublished, 2005.

[3] S. Gerhold. Combinatorial Sequences: Non-
Holonomicity and Inequalities. PhD thesis, Jo-
hannes Kepler University, Linz, 2005.

[4] P. Jacquet and W. Szpankowski. Markov
types and minimax redundancy for Markov
sources. IEEE Transactions on Information The-
ory, 50(7):1393–1402, 2004.

[5] D.E. Knuth. Convolution polynomials. Mathemat-
ica Journal, 2(4):67–78, Fall 1992.

[6] P. Kontkanen and P. Myllymäki. A linear-time
algorithm for computing the multinomial stochas-
tic complexity. Information Processing Letters,
103(6):227–233, 2007.

[7] L. Lipshitz. D-finite power series. Journal of Al-
gebra, 122:353–373, 1989.

[8] T. Mononen and P. Myllymäki. Fast NML com-
putation for Naive Bayes models. In V. Corruble,
M. Takeda, and E. Suzuki, editors, Proceedings
of the 10th International Conference on Discovery
Science, October 2007.

[9] T. Mononen and P. Myllymäki. Computing the
multinomial stochastic complexity in sub-linear
time. In Proceedings of the 4th European Work-
shop on Probabilistic Graphical Models, 2008.

[10] T. Mononen and P. Myllymäki. Computing the
NML for Bayesian forests via matrices and gen-
erating polynomials. In Proceedings of the IEEE
Information Theory Workshop, Porto, Portugal,
May 2008.

[11] T. Mononen and P. Myllymäki. On the multino-
mial stochastic complexity and its connection to
the birthday problem. In Proceedings of the Inter-
national Conference on Information Theory and
Statistical Learning, Las Vegas, NV, July 2008.

[12] J. Rissanen. Information and Complexity in Sta-
tistical Modeling. Springer, 2007.

[13] S. Roman. The Umbral Calculus. Dover, 2005.

[14] Yu.M. Shtarkov. Universal sequential coding of
single messages. Problems of Information Trans-
mission, 23:3–17, 1987.

	NextPage1: 281
	NextPage2: 282
	NextPage3: 283
	NextPage4: 284
	NextPage5: 285
	NextPage6: 286
	copyright: 978-1-4244-2069-8/08/$25.00 ©2008 IEEE

