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Abstract— Universal codes/models can be used for data com- In this paper, we introduce thactorized NML (fNML)
pression and model selection by the minimum description legth  yniversal model for Bayesian networks. The rest of the paper
(MDL) principle. For many interesting model classes, such 8 g grganized as follows: In Sections Il and IIl we discuss

Bayesian networks, the minimax regret optimal normalized nax- . . S .
imum likelihood (NML) universal model is computationally very the normalized maximum likelihood (NML) and sequentially

demanding. We suggest a computationally feasible alternae Normalized maximum likelihood (sNML) models, respectyvel
to NML for Bayesian networks, the factorized NML universal In Section IV we review the basics of Bayesian networks. The
model, where the normalization is done locally for each vaable.  factorized NML model is introduced in Section V, where it is
This can be seen as an approximate sum-product algorithm. We 555 shown to be computationally feasible for all Bayesian
show that this new universal model performs extremely welln tworks. Finallv. in Secti Vi ¢ . tal
model selection, compared to the existing state-of-the-greven networks. Finally, 'n ection Vi, we presen experlme_n a
for small sample sizes. results, demonstrating that fNML compares favorably in a
model selection task, relative to the current state-ofette
. INTRODUCTION
Il. NORMALIZED MAXIMUM LIKELIHOOD MODELS

The stochastic complexity of a sequence under a givenB fore d ibing th ial NML and f ized NML
model class is a central concept in the minimum description efore describing the sequentia and factorize

length (MDL) principle [1], [2], [3], [4]. Its interpretatin models, we fix some notation and review some basic properties

as the length of the shortest achievable encoding makesOfitthe well-known NML model. Let

a yardstick for the comparison of different model classes. | Ti1 Ti2 o Tim X1,:
recent formulations of MDL, stochastic complexity is define To1 T2 o Tom X,
using the so called normalized maximum likelihood (NML) "= : :' . : =
universal model, originally introduced by Shtarkov [5] fimta ' ' ' :
compression; for the role of NML in MDL model selection, o1l In2 tt Inm

see [6]1 [7]1 [311 [4]! [8] = ( X 1X:2 Xem ) )

Since the introduction of the NML universal model in th .
context of MDL, there has been significant interest in tr?%e an n x m data mgtrlx where each oW, =
evaluation of NML stochastic complexity for different ptac ‘i1 ¥i:2) - 5 %im), 1 <4 < n, is anm-dimensional ob-
cally relevant model classes, both exactly and asympltyticajew:;'on vector, and columns of are denoted by, ;, 1 <
For discrete models, exact evaluation is often computatipn  — _ I
infeasible since it involves a normalizing coefficient whis ~_  Parametric probabilistic modeM := {p(z" ; 0) :
a sum over all possible data-sets. For continuous cases, Qh% o}, wherc_e@ IS a parameter Space, assigns a prob.ablhty
normalizing coefficient is an integral which can be solved igrass or dgnglty \_/alue to the dataunlvera_al model .for Mis
only a few cases. Under certain conditions on the model ,claﬁsSlngle d'smt_)l_mon that, roughly speaking, assign alnm
different versions of stochastic complexity (which inatuitvo- igh a probability to any data as the the maximum likelihood
part, mixture, and NML forms) have the same asymptotﬁaramemrﬁ(xn)‘ A L . ) )
form, the so called Fisher information approximation. How- Formally, modelp(z") is ‘universal’ (in the point-wise
ever, for small data-sets and for model classes that do #61S€) if and only if it satisfies
satisfy the necessary conditions, the asymptotic form is no 1 plan; é(x”))
accurate [9]. lim —1In ——

Exact and computationally tractable formulas are rare: noeen par)
results for multinomial models are given in [10], and foi.e., the log-likelihood ratio, often called the ‘regrei§ al-
Bayesian networks with structural restrictions in [11]2]1 lowed to grow sublinearly in the sample sizeThe celebrated
[13]; more references can be found in [3] and [4]. normalized maximum likelihood (NML) universal model [5],

=0, 1)



[6] is given by There is also another variant of SNML, which we call here
(o™ é(x”)) sNML-2. It can be defined in analogy with (2) as follows:

X Cn psnmL2(2") = Hp([x;,T?(:f;)) ; (4)
C":/ p(a” B(a")) da =1

1(ad—1y . it
It is the unique minimax optimal universal model in the sense K@) = /p(x  0(a)) dxi
that the worst-case regret is minimal. In fact, it directjléws Using the sNML-2 model is equivalent to predicting the
from the definition that the regret is a constant dependelyt onty opservation using the standard NML model defined for
on the sample size: sequences of length Formally we have

(2" ; O(a"))

In 2 D)
€T . .
PNML o ~Note that the standard NML model is not in general a
For some model classes, the normalizing factor is finite énly stochastic process, which makes it possible that

the rangeX™ of the data is restricted, see e.g. [6], [14], [15]. , ‘
For discrete models, the normalizing constaft, is given by~ PNuL(Xi: | 2771) # > pawwn (i Xig1: [ 277, ()
a sum over all data matrices of sizex m: Xit1,:

Cco— Z P é(x”)) and hence, typically two NML models, defined for sequences

" ’ ' of different lengths, give different predictions. In caamdt, both
sNML-1 and sNML-2 are by definition stochastic processes,
The practical problem arising in applications of the NMLgq that for them we always have an equality in (5).

universal model is then to evaluate the normalizing cornstan Regrets Visualized.Figure 1 gives a visualization of the
For continuous models the integral can be solved in closggyrets of four universal models in the Bernoulli case: the
form for only a few specific models. For discrete modelq_,amace predictor (“add-one”), the Krichevsky—Trofimovepr
the time complexity of the naive solution, i.e., summing PV&yjctor (“add-half"), SNML-2, and NML. For NML, the initial
all possible data matrices, grows exponentially in bothnd  sequence probabilitieg(!), are obtained from a fixed NML
m, and quickly becomes intractable. Even the second-megbdel, defined forn = 5, by summing over the possible

naive solution, summing over equivalence classes of nestficcontinuations of length — ¢. For the Bernoulli model, SNML-
sharing the same likelihood value, is usually intractalMere 1 s equivalent to the Laplace predictor.

paumn(z™) =

=G, . pNML (X, | 1) = psnmr2(Xi,: | 27y

TneX™

though often polynomial im. o Related Work. The sNML-2 model has been analysed
The usual Fisher information approximation [6] earlier in conjuction with discrete Markov models, inclngi

k. n as a special case the Bernoulli model, by Shtarkov [5] (sge hi

InG, = ) In o hl/@ Vdet I(6)d6 +o(1) , Eqg. 45). Also, Takimoto and Warmuth [18] analyze a slightly

here I is the di . t th . Imore restricted minimax problem, the solution of which @&gre
where k Is the dimension of the parameter space, IS aigfy, sNmL-2 for Markov models. Grinwald [4] uses the term

nc;n-tnwtfcll t? g\p%ly_due tlo ttEe Ilntz_gralt mvolw_r;g the _tFr'ISh?“conditional NML” (CNML) for a family of universal models,
information! (6). Using only the leading term (with or withou conditioned on an initial sequence without considering the

2m), I.e., the BIC criterion [16], gives a rough approximatiorjnoim model obtained as a product of such conditional desssit

which, as a rule, performs worse in model selection tasks thg) | <\vp-1 corresponds to his CNML-3, and our SNML-2
more refined approximations or, ideally, the exact solytiee corresponds to his CNML-2. The conditi(’)nal mixture codes

e.g. [3, Chap. 9]. studied by Liang and Barron [19] are also closely related to

[1l. SEQUENTIALLY NORMALIZED ML M ODELS SNML, and have similar minimax properties.
A recent family of variants of NML, called thsequentially IV. BAYESIAN NETWORKS
(or conditional) normalized maximum likelihood (SNML) [17], We will next, in Sec. V, describe a new NML variant,
[4] has similar minimax properties like NML but is oftengimijar to the SNML models discussed in the previous section
significantly easier to use in practice. This new variant gives a computationally feasible universa
For data matrixz™ = (x1,:,Xa,:,---,Xn,:)', the SNML-1 046l and a corresponding model selection criterion, for
model is defined as general Bayesian network models. This section presents the
N Cop(x. | 2T é(a;i)) necessary background in Bayesian networks.
ponmar (") = H Kz 1) ; ) First, let us associate with the columns,, ..., x.,, &
=1 directed acyclic graph (DAG)gG, so that each column is
Ki(z"™h) = /p(xi,: | 271 é(xi))dxiﬁ , (3) represented by a node. Each nodg;, 1 < j < m, has a

(possibly empty) set oparents, Pa;, defined as the set of
where normalization ensures that each factor in the producnodes with an outgoing edge to nodg;. Without loss of
a proper density function. generality, we require that all the edges are directed tdsvar



DO

Laplace/sNML-1 Krichevsky—Trofimov SNML-2

Fig. 1. Regrets of four universal models in the BernoulliecaBach path from the origin (center) to the boundary remtssa binary sequence of length
n = 5. Red edges correspond 1, black edges t0s. The path for sequend®1111 is emphasized. The distances from the origin of the bragchimints
are given by the regretsi[p(x? ; 6(x?))/q(x?)] for each prefixzt. The blue circle shows the regret of NML. For the Bernoullideb Laplace and sSNML-1
coincide. Note the similarity between sNML-2 and NML.

increasing node index, i.eRa; C {1,...,5 — 1}. Figure 2 parents, generalizing the familiar Markov property of Mavk
gives an example. chains.
The idea is to model dependencies among the nodes (i.elt is now possible to define the NML model based on (6)
columns) by defining the joint probability distribution owbe and a fixed graph structui@:
nodes in terms ofocal distributions. each local distribution m Arn
Hj:l p(x.; | Paj; 0(z"))

specifies the conditional qlistributioq of each node giv_em it paun (2" 5 G) = 5 ) (7
parents,p(X; | Pa;),1 < j < m. It is important to notice n

that these areot dependencies among the subsequent rows _ N CArom

of the data matrixz™, but dependencies ‘inside’ each row, Cn = Z Hp x.j | Pag; ") - (8)

x;,:, 1 <14 < n.Indeed, in all of the following, we assume that o=l

the rows are independent realizations of a fixed (memoryledd'e required maximum likelihood parameters are easily-eval
source. uated since it is well known that the ML parameters are equal
The local distributions can be modeled in various way!0 the relative frequencies:
but here we focus on the discrete case. The probability of . |{i D my; =T,pa; ;= S}|
a child node taking value; ; = r given the parent nodes’ 0jipa, (1,8) = (i pa; _VSH
. Z,,j -

configuration,pa, ; = s, is determined by the parameter
‘ where|S| denotes the cardinality of s8t However, as pointed
0jipa, (r,8) = p(xij =7 [ Dpa; ; =85 Opa;) » out in Sec. I, summing over all possible data matrices is not
tractable except in toy problems wheteandm are both very
small. Efficient algorithms have been discovered only rdgen
for restricted graph structures [11], [12], [13].

: 9)

forall 1 <i <n,1<j <m, where the notatiod;p,, (r,s)

refers to the component of the parameter vegar,, indexed
by the valuer and the configuratiors of the parents of
X;. For empty parent sets, we Igh, ; = 0. For instance, V. FACTORIZED NML M ODELS

consider the graph of Fig. 2; on each rol,< i < n,  Ag a computationally less demanding alternative to NML

the parent configuration of colump = 8 is the vector i the context of Bayesian networks, we define theiorized
pa; g = (i1, i5,i7); the parent configuration of columnnmL (fNML) in a similar spirit as SNML. We let the joint

Jj=1lispa;; =0, etc. probability distribution be given by a product dbcally

The joint distribution is obtained as a product of locahgrmalized maximum likelihood distributions:
distributions: .

. Px7|PaJ§9(x))

m pwme (2" H Pay) (10)

p(z"; 0) = Hp(xz.,j | Paj ; 0jipa,) - (6) J
=t 3 szl p(x.; | Pa; 5 0(z")) 11
This type of probabilistic graphical models are called Bage - Z(xm) ’ (11)

networks [20]. Factorization (6) entails a set of condiéibn
independencies, characterized by so called Markov prigsert
see [21]. For instance, tHecal Markov property asserts that Z;(Pay) Z p(X] | Pa; ; ( -, Pa;)) (12)
each node is independent of its non-descendants given its

where



Z(z™) = C,, which by (7) and (11) implies that for empty

@ @ graphspnyr andpenvr, are equivalent.

The regrets of the two models are easily seen tdrh@,
andlIn Z(z™), for NML and fNML respectively. Notice also

@&@ @ that the regret of fNML,ln Z(2"), depends on the data

only through the parentsPa;,1 < j < m, and hence, is
independent of all the leaf nodes, i.e., nodes that have no
@ descendants. Again, if the graph is empty, all nodes are leaf
and Z(z") = C, for all 2" so that the NML and fNML
models are equivalent.
Fig. 2. An example of a directed acyclic graph (DAG). The pisef node Finally, we observe that for fNML the two variants of

Xg are{X1, X5, X7}. The descendants of4 are {X5, Xs}. sNML, sNML-1 and sNML-2, coincide. Lettinge(j) :=
(x:1,%:2,...,X. ;) denote the firs§ columns, we obtain
is a sum over all possible instantiations of colusary, and L J
- p(z(j) ; O(z Hp X1 | Pay 5 0(x. 1, Pay))
N =1
= [ID_p(X) | Paj s 6(x].Pay))  (13) o1
=X =p(x.; | Paj ; 0(z™) [[ p(x.s | Par ; O(x.0,Par))
is the product of the local normalizing factors. The local =1

normalizing factorsZ;(Pa;) can be decomposed further intowhere both equalities depend on (14). The last factor on the

simple multinomial NML normalization constants, one fofight-hand side is independent of column;. When the above

each parent configuration iRa;. Using the recently discov- is normalized with respect t&. ;, this factor cancels and we

ered linear-time algorithm [10] for the multinomial casket are left with p(x.; | Pa; ; é(xn)), which exactly what is

total computation time becomes feasible even for large &ampormalized in (10). Hence, it doesn’t matter whether we @efin

sizes and for many variables (columns). fNML as in (10) or as the product over < j < m of the
Note that, as can be seen from (9), the maximum likelihoamrmalized versions of(z(j) ; 8(z(j))).

parameters of each local distributiofyp,,, depend only on

columnx. ; and column(sPa;. In particular, since we require V1. EXPERIMENT

Pa; C{1,...,j — 1}, we have - Lo
To empirically test performance of the fNML-criterion in

p(x.; | Paj; é(xn)) =p(x.; | Paj ; é(X:,h X)) Bayesian network structure learning task, we generategtakv
o Bayesian networks, and then studied how different model
= p(xe; | Pag 5 00x.5,Pay)) (14) " selection criteria succeeded in learning the model stractu
of which the second form, where only the firgtcolumns from data. The most often used selection criterion for tisé ta
appear, is the one that should be used in (10) by analoigythe Bayesian Dirichlet Equivalence score [23], but due to

with (2). Due to the above identity, the expressions can [é sensitivity to the choice of prior hyperparameter, wesh
used interchangeably two different versions of it'BDeO5 and BDel 0. We also

NML and fNML models Consider Egs. (7) and (11): thécores can be interpreted to implement some version of the
constant normalizer of NML,C,,, an exponentialsum of ~MDL-criterion.

products, is replaced in fNML byZ(z™), a product of sums In the following, we present the results for an experimentin

that depends on the data. The fNML model can therefore Béich we generated 1800 different Bayesian network models,

seen as ‘Cheating’ by using a Sum-product a|gorithm, Whe‘f‘éﬂCh we tried to learn back USing the data generated from
the distributive law (see [22]) these models. We generated the networks using 5, 10 and

15 variables, and also varied the number of arcs and the

f(z1,m2) = f(x1) parameters of the networks. We then generated 1000, 10000
o, 0) = g(2) = Y flar, w)g(wr, v2) and 10000 data vectors from each network, and tried to
’ n *1,%2 learn the models back using these data samples and different

with these sample sizes was practically possible only for
smallest networks containing 5 nodes. Varying the number
is applied to compute the sum ifi,, even though the terms of arcs and the parameters did not seem to have a strong
do not actually factor column-wise into independent pa\iis. effect on the outcome. This made it possible to concentrate
cheating is necessary when the graph is empty, i.e., whamcomparing the performance of different scoring critéoia
Pa; = § for all 1 < j < m. This means that we havedifferent sample sizes (Figure 3).

scoring criteria. It turned out that learning the modelskbac
= <Z f(a:l)) <Zg<x1>> (15) - : |
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Fig. 3.

The results clearly show that fNML excels with small[9]
sample sizes. With large sample sizes, the difference is Tloot]
that big, which is hardly surprising, since asymptoticaihey
all converge to the data generating model. This result isifsig
icant, since BDe score(s) can be regarded as the curreet stdl
of-the-art. Furthermore, the fNML score is computatiopaid

more demanding than the BDe score. [12]
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