
Computing the NML for Bayesian Forests via
Matrices and Generating Polynomials

Tommi Mononen, Petri Myllymäki
Helsinki Institute for Information Technology, Finland

Abstract— The Minimum Description Length (MDL) is an
information-theoretic principle that can be used for model selec-
tion and other statistical inference tasks. One way to implement
this principle in practice is to compute theNormalized Maximum
Likelihood (NML) distribution for a given parametric model class.
Unfortunately this is a computationally infeasible task for many
model classes of practical importance. In this paper we present
a fast algorithm for computing the NML for the model class
of Bayesian forests, which are graphical dependency modelsfor
multi-dimensional domains with the constraint that each node
(variable) has at most one predecessor. The resulting algorithm
has the time complexity ofO(n2K+L−3), where n is the number
of data vectors, andK and L are the maximal number of values
(alphabet sizes) of different types of variables in the model.

I. I NTRODUCTION

Let us consider an i.i.d. sample ofn vectors xn =
x1, . . . ,xn, where each vectorxi consists ofs discrete sym-
bols taken from some alphabet (with each of thes components
having its own alphabet). Given a parametric modelM,
the normalized maximum likelihood (NML) distribution (or
code) [7], [9] is defined by

PNML(xn|M) =
P (xn|θ̂(xn,M))

∑

yn P (yn|θ̂(yn,M))
, (1)

where the numerator is the maximum likelihood for the
observed dataxn within M. The normalizing termin the
denominator is the sum over maximum likelihoods of all
possible data sets of sizen, with respect to the model class.
The NML offers a theoretically appealing, minmax optimal
criterion for model selection and other statistical inference
tasks, but is typically hard to compute.

Bayesian forests are tree-structured graphical Bayesian net-
work models [6], [3]: a tree is a connected directed acyclic
graph where each node has at most one parent, and a forest
is a set of trees. In a Bayesian tree, each node corresponds to
a random variable (a column inxn), and the joint probability
distribution of a vectorv = (v1, . . . , vs) factorizes as

P (v) =
s

∏

i=1

P (vi|vf(i)), (2)

wheref(i) is the index of the parent node of nodei. So each
node has a local probability distribution conditioned on its
parent node and the joint distribution is a product of these
local distributions. Trees are independent of each other, so the
joint probability of a forest is a product of joint probabilities
of trees. In this paper we use multinomial local distributions,
and hence the joint distribution is a product of multinomials.

For Bayesian forests, computing the numerator of (1) is
trivial [10], while computing the denominator is computa-
tionally very demanding. In the following we represent a
novel algorithm for computing the normalizing term of (1) in
the case of Bayesian forests. The efficiency of the algorithm
depends on the number of values of the variables (the sizes of
the column alphabets).

II. M ATRIX REPRESENTATION

Computing the NML normalizing term for a Bayesian forest
is quite complicated: the basic task is to take a sum over
all possible data sets of sizen and compute the maximum
likelihood for each data. However, note that this is equivalent
to summing over all possible sufficient statistics related to the
model and computing each maximum likelihood multiplied
by a factor which counts the number of data sets producing
the same sufficient statistics. As we saw earlier, Bayesian
multinomial forests have a nice property that the global
distribution decomposes into local probability distributions.
Now the main idea is to claim that we can use a similar de-
composition for computing our NML normalizing term more
efficiently. For accomplishing this, we define three different
type of local linear components: a root node component,
an inner node component and a leaf node component. We
can represent these components as vectors and matrices. The
normalizing term corresponding to the whole forest can be
then computed using simple matrix operations between the
precomputed components. As we compute over all possible
local sufficient statistics in every component, we get the
wanted result: the value of the normalizing term for an forest.
For further investigations of the sufficient statistics related to
this problem, see [10].

A. General algorithm

Let us first have a look at the two-step matrix algorithm
on a general level without defining exactly the components.
The algorithm needs three different type of linear components:
horizontal vectors for root nodes, matrices for inner nodesand
vertical vectors for leaf nodes. In the first step the algorithm
computes required components. Identical components need to
be computed just once. Only the number of values of a variable
and its parent is essential: if there are identical numbers of
outcomes in several locations in the forest, components are
identical.

Let us denote theroot node componentwith RX , whereX

is the name of the node. Theinner node componentis denoted

with MY
X , whereX is the name of the inner node andY is

the name of the parent node, and finallyLY
X is the leaf node

component. The operation between siblings (or between trees)
is the entrywise product (Hadamard product) and denoted by
symbol ′⊙′. The operation between a parent and a child is
the ordinary matrix multiplication. In the second step the al-
gorithm executes these matrix computations. Notice that there
is no need to compute matrix-matrix-operations. Computation
proceeds always from leaves to root and the most demanding
operations are therefore matrix-vector-multiplications. We can
write computations using the matrix notation: take for example
the forest (B ← A→ C → D, E → F) with six nodes. Now
it is easy to write the computation using the matrix notation
as (RA(LA

B ⊙ (MA
C LC

D)))⊙ (RELE
F).

Next we proceed by specifying in subsections C, D and
E the individual components in such a manner that the
above algorithm provably computes the desired normalization
term, but first we have to shortly discussk-compositions,k-
partitions and their relations to each other.

B. k-compositions and k-partitions

A single multinomially distributed variable forms themulti-
nomial model. The sufficient statistics for this model is ak-
composition, wherek is the number of values in a variable.
The k-compositionof n can be represented as ak-tuple
x = (x1, . . . , xk), wherex1 + · · ·+ xk = n, xi ∈ N andn is
the number of data points [8]. For brevity, let us in the sequel
denote the multinomial probability with maximum likelihood
parameters for the observed counts byc((x1, . . . , xk)):

c((x1, . . . , xk)) =
(
∑k

i=1 xi)!
∏k

i=1(xi!)

k
∏

j=1

(

xj
∑k

i=1 xi

)xj

, (3)

and hence the NML normalizing term for the multinomial
model class is

CMN (k, n) =
∑

x1+···+xk=n

c((x1, . . . , xk)), (4)

where the sum goes over the set of allk-compositions of the
data sizen [5]. But note that we can reduce the number of
terms in the previous sum by usingk-partitions instead of
k-compositions: Ak-partition is an unordered set of counts
defined in a similar way ask-compositions. However, for
simplicity, we represent eachk-partition as ak-tuple with a
standard decreasing order of counts.

We denote allk-partitions of a variableX by qX =
[qX

1 , . . . , qX
p], wherek is the number of values in variableX

andp is the number ofk-partitions. The number of data vectors
is omitted from this notation, because we can determine it from
k andp. To be sure that we multiply right elements with each
other in the second step of the algorithm, we have to select also
an fixed ordering among the set ofk-partitions. We use the
following ordering (the rationale of which becomes apparent
in in section III-D): First order allk-partitions so that the first
one is the one with most zero counts. Then comes the ones
with one zero count less, and so on. After this, order each

of these sub-blocks with a same number of zero counts using
inverse lexicographic ordering.

When twok-compositionsx andy have the same orderedk-
partition, then the maximum likelihoods are also the same, i.e.,
c(x) = c(y). Consequently, if we usek-partitions insteadk-
compositions, we have to use an extra multiplier in the compu-
tations to take into account the fact that manyk-compositions
map to the samek-partition. Formally, themultiplier function
is given by

m(x) =
k!

∏

w∈x
µw(x)!

, (5)

whereµw(x) = |u : xu = w| tells how many times a valuew
appears in ak-partition x.

C. Root node component

Root nodes have no parents, so the sufficient statistics of
each root node goes simply through allk-partitions, wherek is
the number of values of the root node variable. The root node
component is defined as a horizontal vector of multinomial
probabilities with maximum likelihood parameters for all
sufficient statistics of given data sizen:

RX =
[

m(qX
1) · c(qX

1) · · · m(qX
p) · c(qX

p)
]

, (6)

where p is the number ofk-partitions in the root nodeX .
The multipliers collect all identical values into the same vector
element. We naturally could have usedk-compositions instead
of k-partitions, but then the length of the vector would have
increased radically: when the number of data vectors is large,
there arek!-times morek-compositions thank-partitions.

D. Inner node component

The inner node component is a matrix. We define the matrix
here, but all computational issues will be handled in section III.

Unlike in the case of root nodes, with an inner node we
have to take into account the sufficient statistics of the parent
node, and for that we introduce theconditional termc(qX

i |q
Y
i),

whereqX
i is the sufficient statistics of a node andqY

i is the
sufficient statistics of the parent node. In the root node case
we can think that the missing parent node is a one valued
node (a constant). The conditional term has in this case the
form c(qX

i |(n)) = c(qX
i). Hence we can split the data between

different outcomes of the root node and get the correct result.
In the inner node case we can to think that the data is

originally in l separate bins (we use the ball analogy here),
where l is a number of possible outcomes of the parent
node. We spread the data from each parent bin to the inner
node’s bins, but unfortunately we cannot do this independently,
because we have to achieve the givenk-partition, wherek

is the number of the inner node’s possible values. As there
are many different valid paths to get the rightk-partition, our
conditional term gets the form

c((x1, . . . , xk)|(y1, . . . , yl)) =
∑

Z∈Z

l
∏

i=1

c(z1i, . . . , zki), (7)

where Z is a matrix with marginals(x1, . . . , xk) and
(y1, . . . , yl), and the termszij are elements of the matrix
Z. All elements are positive integer values. An alternative
representation for the matrixZ and its marginal sums is given
by

Z =







z11 · · · z1l

...
. . .

...
zk1 · · · zkl







x1

...
xk

y1 · · · yl .

(8)

SetZ is the set of those matricesZ which satisfy the given
marginals:

Z = {Z|z11 + · · ·+ zk1 = y1, . . . , z1l + · · ·+ zkl = yl,

z11 + · · ·+ z1l = x1, . . . , zk1 + · · ·+ zkl = xk}.
(9)

To compute the conditional term, we have to form all the
matrices which satisfy the given marginals. This is a tremen-
dously heavy operation. Given the defined conditional terms,
the general form of the inner node matrix is

MY
X =







m(qX
1) · c(qX

1 |q
Y
1) · · · m(qX

p) · c(qX
p |q

Y
1)

...
. . .

...
m(qX

1) · c(qX
1 |q

Y
d) · · · m(qX

p) · c(qX
p |q

Y
d)






,

(10)
whereX is a node andY is its parent node. Dimensions of
this matrix are defined by the number ofl-partitions and the
number ofk-partitions (d× p). As before, multipliers exist as
we are usingk-partitions, notk-compositions.

E. Leaf node component

Leaf nodes are easier to handle than inner nodes, although
they also have parent nodes. In the inner node case we have the
targetk-partition, but in the case of leaf nodes, anyk-partition
is valid. As we do not have a fixed target partition, we can
just marginalize over all individual targets and the resultis a
product of ordinary multinomial normalizing terms defined in
the formula (4). So we can separately compute each parent
node bin, without any restrictions:

p
∑

i=1

m(qX
i) · c(qX

i |q
Y
j)

=

p
∑

i=1

m((x1, . . . , xk)i) · c((x1, . . . , xk)i|(y1, . . . , yl)j)

= CMN (k, y1) · · · CMN (k, yl), (11)

where(x1, . . . , xl)i is the ith k-partition and(y1, . . . , yl)j is
somel-partition. Efficient computation of the termCMN (k, yj)
is not trivial, but fortunately there is a recent result showing
how to use a simple recurrence formula to compute the term
in linear time with respect ton [4].

The leaf node component is a vertical vector

LY
X =







∑p

i=1 m(qX
i) · c(qX

i |q
Y
1)

...
∑p

i=1 m(qX
i) · c(qX

i |q
Y
d)






. (12)

The vector hasd elements, whered is the number ofl-
partitions. Although the leaf vector can also be seen as an inner
node matrix where we take a sum over the other dimension,
luckily it is much easier to compute than the inner node
matrix.

III. EFFICIENT COMPUTATION OF INNER NODE MATRICES

In the previous section we defined the inner node compo-
nent, but we did not yet give an algorithm for computing it.
One could of course make the obvious brute-force algorithm
for finding the set of all matricesZ, and then compute each
of the c(qX

i |q
Y
j) terms. However, this approach is clearly

infeasible, as the number of matricesZ grows very fast when
the number of data vectors increases. Also the size of the inner
node component is growing at the same time.

Fortunately it is possible to use generating functions [2] and
other computational simplifications for calculating the inner
node components, as we will shortly see. These modifications
make the computations feasible for small data sets, if the
maximum number of values of the variables is relatively small.
First we introduce generating polynomials, which form the
very basis of our efficient computation.

A. Generating polynomials

A multivariate generating polynomialis a finite multivariate
series of the form

∑

x∈X

a(x1, . . . , xk)zx1

1 zx2

2 · · · z
xk

k , (13)

where x = (x1, . . . , xk) are vectors in a set of integer-
valued vectorsX and each variablezi ∈ C. The coefficients
a(x1, . . . , xk) encode some relevant information. When we
take a product of these generating polynomials, the coefficients
of the resulting polynomial then correspond to higher level
convolution operations. In the following we define our gener-
ating polynomials in such a manner that the result corresponds
to the convolution operations we need.

Let us now have a polynomial of the form (13) with the
sum going over allk-compositions of sizeu. A natural choice
for the coefficients is the functionc((x1, . . . , xk)), in which
case the resulting generating polynomial is

P 0
k = 1, and (14)

Pu
k =

∑

x1+x2+···+xk=u

c((x1, . . . , xk))zx1

1 zx2

2 · · · z
xk

k . (15)

The coefficients of this polynomial describe the value of
c((x1, . . . , xk)|(u)), which is a root vector element without the
multiplier. Now the trick is just to multiply these generating
polynomials with respect to a parent nodel-partition:

T
(y1,...,yl)
k = P

y1

k P
y2

k · · ·P
yl

k . (16)

The coefficients of this polynomial now correspond to the
needed conditional termsc((x1, . . . , xk)|(y1, ..., yl)). In fact
one can read all thek-partitions (x1, . . . , xk) for a given
parent nodel-partition from this new generating polynomial.
So each product polynomial gives us a whole row of the inner

node matrix. Denoting the coefficient extraction by standard
notation, we can write this as

c((x1, . . . , xk)|(y1, ..., yl)) = [zx1

1 · · · z
xk

k]T
(y1,...,yl)
k . (17)

The above scheme gives us a concrete way to compute the
conditional terms. The only remaining question is how to do
the multiplication of these multivariate polynomials efficiently.
For this we will not use normal multiplication methods for
computing all the terms of theT (y1,...,yl)

k -polynomial: as we
only need the coefficients of those terms which correspond to
k-partitions, we can use the concept of a polytope to bound
the set of computationally relevant terms.

B. Convex polytopes

As polygon is the name for a figure on a plane bounded
by a finite number of line segments that form a closed
path, a polytope is the name for a similar object in any
dimension. The bounding line segments are calledfacets:
facets of ak-dimensional polytope are(k − 1)-dimensional
and are itself polytopes. We can represent aconvex polytope
as an intersection of half spaces.Integer lattice pointsof a
convex polytope are all the points(x1, . . . , xk) which belong
to the polytope and havexi ∈ Z for all i [1].

Now we define the set of all terms that we need for
computing T

(y1,...,yl)
k . First we need all those terms that

correspond to ourk-partitions ofn. Second, because we are
taking a product of polynomials, we need also all those terms
that can produce ak-partition of n -terms via multiplication
process. For example,x2y2z0 timesx2y0x2 gives us the term
x4y2z2 which corresponds to a 3-partition(4, 2, 2) of 8. These
two sets of terms are all we need. We could map these points
to ak-dimensional space, but we can in fact map these points
also into a(k − 1)-dimensional space, because one of the
parameters is redundant. The redundancy is caused by the fact
that the total degree of all the terms is the same in our case,
as the polynomials we multiply are homogeneous. When we
map our terms into a(k− 1)-dimensional space, we drop the
first count and say that eachk-composition(x1, x2, . . . , xk)
corresponds to the point(x2, . . . , xk). It is most useful to drop
the first count with the biggest value, because then we need
to compute the least number of terms during the polynomial
multiplications.

As we have now defined the set of all relevant terms, we
want a compact representation for the set. This set happens to
be a(k − 1)-dimensional convex polytope, which we callk-
multiplication polytope. We define the convexk-multiplication
polytope using half spaces. There are two different kind of
inequalities which define our polytope. First inequalitiesare
of type

0 ≤ xi ≤
⌊n

i

⌋

, (18)

where xi is value in theith bin. There is one inequality
for every bin except the first one, because it is redundant.
Inequalities give the lowest and the highest count for every
bin. These inequalities form a hyper rectangle. But there are
still unnecessary terms inside this polytope, corresponding to

invalid counts that are already too big to produce any validk-
partition ofn. Therefore we need a second type of inequalities
in addition.

To achieve the second type of inequalities, we make splits
between the bins of ak-partition while preserving the order
of bins. Notice that as the countx1 is redundant, there cannot
be a split betweenx1 andx2, so x1 and x2 are in the same
group. For example, 4-partitions have three different splittings
{x1x2|x3x4, x1x2|x3|x4, x1x2x3|x4}, where the vertical bar
means the border of two groups. Now the new set of inequal-
ities can be written using these formed groups. We name each
group using the name of the last count in that group, and a
group is then multiplied by the number of members in that
group. We get three inequalities:

2x2 + 2x4 ≤ n, 2x2 + x3 + x4 ≤ n, 3x3 + x4 ≤ n. (19)

These inequalities describe situations where there are several
bins with a same value. In general we get the second type of
inequalities by finding all possible splittings and writingthe
inequalities in a similar manner.

Our polytope is now kind of a cage: we must compute all
the terms that are inside the cage, but none of the outside ones.
Next we will define how to do the polynomial multiplications.

C. Restricted multiplication of multivariate polynomials

We start by computing all those terms of a polynomialPu
k

that correspond to lattice points of ak-multiplication polytope.
Notice that the polytope is defined by the data sizen, not by
the number of data pointsu in some parent bin. We assign
coefficientsc((x1, . . . , xk)) to lattice point(x2, . . . , xk). This
means that there will be many lattice points which will remain
zero, as the polynomialPu

k does not have the corresponding
terms.

As we take a product of several multivariate polynomials,
it is wise to multiply first the smaller ones, because then the
number of resulting polynomial terms is minimized, as well
as is the number of multiplications. This means that the mul-
tiplication order must beP yl

k P
yl−1

k · · ·P y1

k when computing
the T

(y1,...,yl)
k polynomial.

Now we can define the actual operation between the values
of lattice points of polytopes, so that the operation corresponds
to the multiplication of multivariate polynomials. The value of
the resulting polytope lattice point(v1, . . . , vr) is computed by

P(v1, . . . , vr) =
v1
∑

w1=0

· · ·

vr
∑

wr=0

P1(w1, . . . , wr) · P2(v1 − w1, . . . , vr − wr),

(20)

whereP1 andP2 are the polytopes to be multiplied andr =
k − 1. We set previously the coefficients of a multivariate
polynomial to lattice points of the polytope. Therefore, when
we do the above operation for lattice points of the first two

polytopes, we see that the computed value of a lattice point is

c((h1, . . . , hk)|(y1, y2)) =
∑

Z∈W

c(z11, . . . , z1k) · c(z21, . . . , z2k), (21)

where W is the set of all matricesZ with marginals
(h1, . . . , hk) and (y1, y2). From this we can see directly
that when we do several multiplications, we get the term
c((x1, . . . , xk)|(y1, . . . , yl)) defined in formula (7).

We explained how to compute the termT (y1,...,yl)
k effi-

ciently. Next we show that there is no need to compute the
inner node matrices separately, as they all have common terms,
which is a property we can utilize to make the computation
even more efficient.

D. Core inner node matrix

Computation of the inner node matrices is still a very slow
operation, but we can avoid unnecessary computational work
by exploiting the particular order of partitions we earlierchose.
Namely, if we use the given order, we can first compute a
matrix, which we will name acore inner node matrix, as
follows:

CM =









c(q
max(X)
1 |q

max(Y)
1) · · · c(q

max(X)
P |q

max(Y)
1)

...
. . .

...

c(q
max(X)
1 |q

max(Y)
D) · · · c(q

max(X)
P |q

max(Y)
D)









,

(22)
where q

max(X)
i and q

max(Y)
j are K- and L-partitions. Value

D is the number ofL-partitions, whereL is the maximum
number of values that any inner node’s parent has in the forest
andP is the number ofK-partitions, whereK is the maximum
number of values any inner node has in the forest. Ignoring
the multipliers, we notice that every inner node matrix is just
a section from the core matrix. As we ordered the partitions
so that we first have embedded 1-partitions, then embedded 2-
partitions and so on, we can just make the following operation
to the core matrix to get an inner matrix: If the number of
values of a node is less thanK, we drop the last invalid
columns from the right, and if the number of values of a parent
is less thanL, we drop the last invalid rows from the bottom
of the core matrix.

The reason why all inner node matrices have the same
c(qX

i |q
Y
j) elements is easy to see: the bins with zero counts

do not affect the value of the conditional term, so we can add
as many zero counts as we want and the terms still remain
same.

E. Efficiency and the time complexity

The time complexity of the whole algorithm reduces to one
question: how much time does it take to compute the core
matrix? We get a rough approximation for the time complexity
in the following way: A size of aK-multiplication polytope
with givenn is O(nK−1). The maximum time that a polytope
element multiplication takes is alsoO(nK−1). We have to
computeD-times these polytopes, whereD is the number
of L-partitions ofn. The complexity of this term isO(nL−1).

Therefore the time complexity of the whole algorithm is
O(n2K+L−3). However, if we have precomputed the core
matrix, then the time complexity of computing the NML for
any forest (compatible to the core matrix) isO(HnK+L−2),
where H is the number of inner nodes in the forest. This
means that for example with two-valued nodes, the time
complexity is O(n3), but if we have precomputed the core
matrix, we can compute the NML in timeO(Hn2) for any
forest structure. Note that this time complexity applies for all
structures with any number of values in the leaf nodes, because
the number of values in a leaf node does not affect the inner
node computation.

We have run some tests for examining how largen is still
computationally feasible in practice. The algorithm is coded
using Perl and it utilizes some additional tricks. With 3-valued
nodes, computing the core matrix forn = 200 took about 14
hours using a 3GHz computer, while with 4-valued nodes it
took 34 hours to compute the core matrix forn = 75. Note
also that the core matrix can be efficiently computed in parallel
using multiple processors, as the rows of the core inner node
matrix can be computed separately using different processor
for each row. Core matrices can also be stored for later use.

IV. CONCLUSION

We presented an algorithm for computing the normalized
maximum likelihood (NML) for tree structured Bayesian net-
work models. The efficiency of the algorithm depends on
the sizes of the alphabets used, and it is significantly more
efficient than the only existing alternative reported in [10].
The algorithm offers us an opportunity to empirically compare
the behavior of the NML approach to other graphical model
selection methods in many non-trivial cases. Furthermore,as
the algorithm computes exact results, this gives us also an
opportunity to empirically validate approximative methods for
computing the NML.

REFERENCES

[1] M. Beck and S. Robins.Computing the Continuous Discretely: Integer-
point Enumeration in Polyhedra. Springer, 2007.

[2] P. Flajolet and R. Sedgewick.Analytic Combinatorics. In preparation.
[3] D. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian

networks: The combination of knowledge and statistical data. Machine
Learning, 20(3):197–243, September 1995.

[4] P. Kontkanen and P. Myllymäki. A linear-time algorithmfor computing
the multinomial stochastic complexity.Information Processing Letters,
103(6):227–233, 2007.

[5] P. Kontkanen, P. Myllymäki, W. Buntine, J. Rissanen, and H. Tirri. An
MDL framework for data clustering. In P. Grünwald, I.J. Myung, and
M. Pitt, editors,Advances in Minimum Description Length: Theory and
Applications. The MIT Press, 2006.

[6] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networksof
Plausible Inference. Morgan Kaufmann Publishers, San Mateo, CA,
1988.

[7] J. Rissanen. Fisher information and stochastic complexity. IEEE
Transactions on Information Theory, 42(1):40–47, January 1996.

[8] F. Ruskey.Combinatorial Generation. In preparation.
[9] Yu.M. Shtarkov. Universal sequential coding of single messages.

Problems of Information Transmission, 23:3–17, 1987.
[10] H. Wettig, P. Kontkanen, and P. Myllymäki. Calculating the normalized

maximum likelihood distribution for Bayesian forests. InProc. IADIS
International Conference on Intelligent Systems and Agents, Lisbon,
Portugal, July 2007.

