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Abstract— The Minimum Description Length (MDL) is an For Bayesian forests, computing the numerator of (1) is
information-theoretic principle that can be used for modelselec- trivial [10], while computing the denominator is computa-
tion and other statistical inference tasks. One way to implment tionally very demanding. In the following we represent a

this principle in practice is to compute the Normalized Maximum | algorithm f ting th lizing t (1)
Likelihood (NML) distribution for a given parametric model class. novel algorithm for computing the normalizing term of (1) in

Unfortunately this is a computationally infeasible task fa many the case of Bayesian forests. The efficiency of the algorithm
model classes of practical importance. In this paper we prent depends on the number of values of the variables (the sizes of
a fast algorithm for computing the NML for the model class the column alphabets).

of Bayesian forests, which are graphical dependency modefer

multi-dimensional domains with the constraint that each nale II. MATRIX REPRESENTATION

(variable) has at most one predecessor. The resulting algitihm . . .
has the time complexity ofO(n?*+£~3), where n is the number Computing the NML normalizing term for a Bayesian forest

of data vectors, andk and £ are the maximal number of values is quite complicated: the basic task is to take a sum over
(alphabet sizes) of different types of variables in the mode all possible data sets of size and compute the maximum
l. INTRODUCTION likelihood for each data. However, note that this is eqenal
to summing over all possible sufficient statistics relatedhe
model and computing each maximum likelihood multiplied
by a factor which counts the number of data sets producing
the same sufficient statistics. As we saw earlier, Bayesian
multinomial forests have a nice property that the global
distribution decomposes into local probability distriloums.
Now the main idea is to claim that we can use a similar de-
n P(x™|f(x", M)) composition for computing our NML normalizing term more
Pyyp(x"|M) = > P(ynw“(yn M))’ @) efficiently. For accomplishing this, we define three diffare
" ’ type of local linear componentsa root node component,
where the numerator is the maximum likelihood for then inner node component and a leaf node component. We
observed datac" within M. The normalizing termin the  cap represent these components as vectors and matrices. The
denominator is the sum over maximum likelihoods of aormalizing term corresponding to the whole forest can be
possible data sets of sizg with respect to the model class.ihen computed using simple matrix operations between the
The NML offers a theoretically appealing, minmax optimahrecomputed components. As we compute over all possible
criterion for model selection and other statistical infexe |5cq1 sufficient statistics in every component, we get the
tasks, but is typically hard to compute. wanted result: the value of the normalizing term for an fares

Bayesian forests are tree-structured graphical Bayes&n n=qr fyrther investigations of the sufficient statisticsated to
work models [6], [3]: a tree is a connected directed acyclig,ig problem, see [10]

graph where each node has at most one parent, and a forest
is a set of trees. In a Bayesian tree, each node correspondétdseneral algorithm

a random variable (a column "), and the joint probability | et ys first have a look at the two-step matrix algorithm

Let us consider an i.i.d. sample of vectors x" =
X1,...,Xpn, Where each vectax; consists ofs discrete sym-
bols taken from some alphabet (with each of trmmponents
having its own alphabet). Given a parametric modet,
the normalized maximum likelihood (NML) distribution (or
code) [7], [9] is defined by

distribution of a vectow = (vy,.. ., v;) factorizes as on a general level without defining exactly the components.
s The algorithm needs three different type of linear compdsten
P(v) =[] Pwilvse), (2)  horizontal vectors for root nodes, matrices for inner noates
i=1 vertical vectors for leaf nodes. In the first step the aldnnit

where f (i) is the index of the parent node of nodeSo each computes required components. Identical components meed t
node has a local probability distribution conditioned os itbe computed just once. Only the number of values of a variable
parent node and the joint distribution is a product of thesd its parent is essential: if there are identical numbérs o

local distributions. Trees are independent of each otleethe outcomes in several locations in the forest, components are
joint probability of a forest is a product of joint probaliidis identical.

of trees. In this paper we use multinomial local distribndp  Let us denote theoot node componemith Ry, where X

and hence the joint distribution is a product of multinorsial is the name of the node. Thener node componeiig denoted



with MY, where X is the name of the inner node andis of these sub-blocks with a same number of zero counts using
the name of the parent node, and finally; is theleaf node inverse lexicographic ordering.

componentThe operation between siblings (or between trees) When twok-compositionsx andy have the same orderéd

is the entrywise product (Hadamard product) and denoted partition, then the maximum likelihoods are also the samae, i
symbol’®’. The operation between a parent and a child i§x) = ¢(y). Consequently, if we usg-partitions insteadk-

the ordinary matrix multiplication. In the second step tite acompositions, we have to use an extra multiplier in the compu
gorithm executes these matrix computations. Notice thereth tations to take into account the fact that mangompositions

is no need to compute matrix-matrix-operations. Compaoitati map to the samé-partition. Formally, themultiplier function
proceeds always from leaves to root and the most demandia@jiven by

operations are therefore matrix-vector-multiplicationge can k!

write computations using the matrix notation: take for epéan m(x) = [T ex tow(x)!
the forest B — A — C' — D, F — F) with six nodes. Now ]
it is easy to write the computation using the matrix notatiofn€re i (x) = |u : z, = w| tells how many times a value
as(Ra(Lp © (MELE))) © (ReLE). appears in a-partition x.

Next we proceed by specifying in subsections C, D an
E the individual components in such a manner that t
above algorithm provably computes the desired normatinati Root nodes have no parents, so the sufficient statistics of
term, but first we have to shortly discuéscompositionsk- each root node goes simply through/alpartitions, where: is

®)

. Root node component

partitions and their relations to each other. the number of values of the root node variable. The root node
N N component is defined as a horizontal vector of multinomial
B. k-compositions and k-partitions probabilities with maximum likelihood parameters for all
A single multinomially distributed variable forms tmaulti- ~ sufficient statistics of given data size
nomial model The sufficient statistics for this model iska
— X\ . X X\ . X
composition, where; is the number of values in a variable. Rx = [m(ai") - e(ai’) m(qy )-clay )], (6)
The k-compositionof n can be represented as /atuple \\herey is the number ofk-partitions in the root nodeX.
x = (1,...,xp), wherew; +--- + 2y =n, z; c Nandn is  the muyltipliers collect all identical values into the saneztor

the number of d_ata p_oints [8]. I_:(_)r brgvity, Ie'F us in Fhe_Séquglement. We naturally could have usegompositions instead
denote the multinomial probability with maximum likelihdo ¢ k-partitions, but then the length of the vector would have

parameters for the observed countsddyr, ..., zx)): increased radically: when the number of data vectors iselarg
N ©; there arek!-times morek-compositions thark-partitions.
_ Qi m)! xj "3
c((z1,.. ., 1)) = =5 H Z )
[Tici (@) o\ @i D. Inner node component
and hence the NML normalizing term for the multinomial The inner node componentis a matrix. We define the matrix
model class is here, but all computational issues will be handled in sedtio
Unlike in the case of root nodes, with an inner node we
Cun(kn) = D> el(@1,.. @), (4) have to take into account the sufficient statistics of thepar
w1ttag=n node, and for that we introduce thenditional terme(g;* |¢) ),

where the sum goes over the set of Jaompositions of the Whereg;™ is the sufficient statistics of a node anfi is the
data sizen [5]. But note that we can reduce the number opufficient statistics of the parent node. In the root nodes cas
terms in the previous sum by usingpartitions instead of W€ can think that the missin_g parent node i§ a one valued
k-compositions: Ak-partition is an unordered set of countshode (aXconstant). ‘I}'{he conditional term has in this case the
defined in a similar way agk-compositions. However, for formc(q;" |(n)) = c(q;" ). Hence we can split the data between
simplicity, we represent each-partition as ak-tuple with a different outcomes of the root node and get the correct tesul

standard decreasing order of counts. In the inner node case we can to think that the data is
We denote allk-partitions of a variableX by ¢X — originally in I separate bins (we use the ball analogy here),
[4i,....q)], wherek is the number of values in variabl& where [ is a number of possible outcomes of the parent

andp is the number of-partitions. The number of data vectordode. We spread the data from each parent bin to the inner
is omitted from this notation, because we can determineinfr Node’s bins, but unfortunately we cannot do this indepetigien

k andp. To be sure that we multiply right elements with eacRecause we have to achieve the givepartition, wherek
other in the second step of the algorithm, we have to selsat alS the number of the inner node’s possible values. As there
an fixed ordering among the set &fpartitions. We use the are many different valid paths to get the righpartition, our
following ordering (the rationale of which becomes apparefonditional term gets the form

in in section I11-D): First order alk-partitions so that the first )

one is the one with most zero counts. Then comes the oneg((zy, ... a)|(y1,...,0)) = Z Hc(zu,. S 2ki), (7)

with one zero count less, and so on. After this, order each Zez il



where Z is a matrix with marginals(z,...,2x) and The vector hasd elements, wherel is the number ofi-
(y1,--.,y), and the termsz;; are elements of the matrix partitions. Although the leaf vector can also be seen asrerin
Z. All elements are positive integer values. An alternativeode matrix where we take a sum over the other dimension,
representation for the matri¥ and its marginal sums is givenluckily it is much easier to compute than the inner node

by matrix.

Z11 ot 2| T

P I1l. EFFICIENT COMPUTATION OF INNER NODE MATRICES
(8) In the previous section we defined the inner node compo-

Pkl ZkL] Tk nent, but we did not yet give an algorithm for computing it.

oW ‘ One could of course make the obvious brute-force algorithm
Set Z is the set of those matrices which satisfy the given for finding the set of all matriceg, and then compute each
marginals: of the c(qf‘|qu) terms. However, this approach is clearly

infeasible, as the number of matricgsgrows very fast when
the number of data vectors increases. Also the size of therinn
zinte+2u=a1,...,20+ -+ 20 =2k} node component is growing at the same time.
9) Fortunately it is possible to use generating functions [&] a
To compute the conditional term, we have to form all thether computational simplifications for calculating thenén
matrices which satisfy the given marginals. This is a tremeAode components, as we will shortly see. These modifications
dously heavy operation. Given the defined conditional termi®ake the computations feasible for small data sets, if the

Z={Zzu+ - +zm=y1,-.,z2u+- -+ 2 =y,

the genera| form of the inner node matrix is maximum number of values of the variables is relatively $mal
First we introduce generating polynomials, which form the
X\ . XY .. X\ . X|,Y . s X !
m(qi ) - cgi lai) m(gy ) - gy lai) very basis of our efficient computation.
My = : : ' A Generating polynomial
' ' . Generating polynomials
m(gi’) - elailay) - mlg))-clgy lay) o . L o
(10) A multivariate generating polynomids a finite multivariate
where X is a node and’ is its parent node. Dimensions ofsSeries of the form
this matrix are dgfmed by the numberbbart[tpns anq the Z a(wy, ..., w) 2 28R g (13)
number ofk-partitions ¢ x p). As before, multipliers exist as =
we are usingk-partitions, notk-compositions. i ]
where x = (x1,...,x;) are vectors in a set of integer-
E. Leaf node component valued vectorst and each variable; € C. The coefficients
Leaf nodes are easier to handle than inner nodes, althoudhi1, - ..,zx) encode some relevant information. When we

they also have parent nodes. In the inner node case we havel@ie a product of these generating polynomials, the coeffisi
targetk-partition, but in the case of leaf nodes, @mypartition Of the resulting polynomial then correspond to higher level
is valid. As we do not have a fixed target partition, we cagonvolution operations. In the following we define our gener
just marginalize over all individual targets and the ressila  ating polynomials in such a manner that the result corredpon
product of ordinary multinomial normalizing terms defined i to the convolution operations we need.

the formula (4). So we can separately compute each parentet us now have a polynomial of the form (13) with the

node bin, without any restrictions: sum going over alk-compositions of size.. A natural choice
» for the coefficients is the functiona((x1,...,zx)), in which
Zm(%x) . c(in|qu) case the resulting generating polynomial is
= PY =1, and (14)
sz((xb---,ﬂ?k)i)'C((ﬂfl,---,ﬂ?k)v:|(y1,---,yl)j) Pl = Z c((x1, ..., ap))27 257 - 2% (15)
=1 r14+To+Fxr=u
=Cun(k,y1) -+ Cun (K, m), (11) The coefficients of this polynomial describe the value of
where (z1,. .., z;); is theith k-partition and(y, ..., y); is c((z1, ..., zr)|(w)), which is a root vector element without the

somel-partition. Efficient computation of the ter@, v (k,y;) Multiplier. Now the trick is just to multiply these generagi
is not trivial, but fortunately there is a recent result sirggy POlynomials with respect to a parent nodpartition:

hovy to use a si'mple recurrence formula to compute the term Tlgyl,...,m) = pypy...pY. (16)
in linear time with respect ta [4].
The leaf node component is a vertical vector The coefficients of this polynomial now correspond to the
p X Xy needed conditional terma&((z1, ..., zx)|(y1,...,y1)). In fact
=1 U4 - elailar) one can read all the:-partitions ( f i
v _ p z1,...,x) for a given
Ly = : ‘ (12) parent nodd-partition from this new generating polynomial.

P om(g) - e laY) So each product polynomial gives us a whole row of the inner



node matrix. Denoting the coefficient extraction by staddamvalid counts that are already too big to produce any vaiid
notation, we can write this as partition ofn. Therefore we need a second type of inequalities
- er 1 (Y1 in addition.

(sl ) = 37 2T (D) To achieve the second type of inequalities, we make splits

The above scheme gives us a concrete way to compute ligéween the bins of &-partition while preserving the order
conditional terms. The only remaining question is how to def bins. Notice that as the count is redundant, there cannot
the multiplication of these multivariate polynomials eiffiatly. be a split betweem; andx;, sox; andz, are in the same
For this we will not use normal multiplication methods foigroup. For example, 4-partitions have three differenttsptis
computing all the terms of th&¥"¥)-polynomial: as we {z122|z324, z125|23|2s, 212223]24}, Where the vertical bar
only need the coefficients of those terms which correspondfgans the border of two groups. Now the new set of inequal-
k-partitions, we can use the concept of a polytope to bouffies can be written using these formed groups. We name each

the set of computationally relevant terms. group using the name of the last count in that group, and a
group is then multiplied by the number of members in that
B. Convex polytopes group. We get three inequalities:

As polygon is the name for a figure on a plane bounded
by a finite number of line segments that form a closed 2z2 + 224 < n, 222 + 3 + x4 <n, 3z3+ x4 <n. (19)
path, apolytopeis the name for a similar object in any
dimension. The bounding line segments are calladets These inequalities describe situations where there areralev
facets of ak-dimensional polytope arék — 1)-dimensional bins with a same value. In general we get the second type of
and are itself polytopes. We can represemoavex polytope inequalities by finding all possible splittings and writitige
as an intersection of half spacdateger lattice pointsof a inequalities in a similar manner.
convex polytope are all the poinfsy,...,z;) which belong  Our polytope is now kind of a cage: we must compute all
to the polytope and have; € Z for all i [1]. the terms that are inside the cage, but none of the outside one

Now we define the set of all terms that we need fdxext we will define how to do the polynomial multiplications.
computing Tkiyl""’y‘). First we need all those terms that
cor_respond to ouk—partmons_ ofn. Second, because we arec . Restricted multiplication of multivariate polynomials
taking a product of polynomials, we need also all those terms
that can produce &-partition of n -terms via multiplication =~ We start by computing all those terms of a polynom
process. For example?y?2° timesz2yz? gives us the term that correspond to lattice points ofcamultiplication polytope.
x*y%22% which corresponds to a 3-partitign, 2, 2) of 8. These Notice that the polytope is defined by the data sizenot by
two sets of terms are all we need. We could map these poithe number of data pointg in some parent bin. We assign
to a k-dimensional space, but we can in fact map these poimsefficientse((x1, ..., zx)) to lattice point(zs, ..., z). This
also into a(k — 1)-dimensional space, because one of thmeans that there will be many lattice points which will remai
parameters is redundant. The redundancy is caused by the f&co, as the polynomiaP does not have the corresponding
that the total degree of all the terms is the same in our caserms.
as the polynomials we multiply are homogeneous. When weAs we take a product of several multivariate polynomials,
map our terms into &k — 1)-dimensional space, we drop theit is wise to multiply first the smaller ones, because then the
first count and say that eadhcomposition(zy,z2,...,2x) number of resulting polynomial terms is minimized, as well
corresponds to the poifts, . .., zx). It is most useful to drop as is the number of multiplications. This means that the mul-
the first count with the biggest value, because then we negglication order must beP? P/~ --- P!* when computing
to compute the least number of terms during the polynomigje Tlgyl,...,yz) polynomial.

multiplications. _ Now we can define the actual operation between the values
As we have now defined the set of all relevant terms, Wg jattice points of polytopes, so that the operation cqroesls
want a compact representation for the set. This set happengyihe multiplication of multivariate polynomials. The uel of

be a(k — 1)-dimensional convex polytope, which we c&l e resulting polytope lattice poifit: . . ., v,) is computed by
multiplication polytopeWe define the convek-multiplication

polytope using half spaces. There are two different kind oﬁ(vh ) =

inequalities which define our polytope. First inequalite® vy oy

of type n Z---ZPl(wl,...,wr)-Pg(vl—wl,...,vr—wr),
O S xX; S L—J s (18) wi1=0 wyr=0

! (20)

where z; is value in theith bin. There is one inequality

for every bin except the first one, because it is redundamthere’?; and P, are the polytopes to be multiplied amd=

Inequalities give the lowest and the highest count for eveky— 1. We set previously the coefficients of a multivariate

bin. These inequalities form a hyper rectangle. But theee goolynomial to lattice points of the polytope. Therefore,emh

still unnecessary terms inside this polytope, correspogndtdo we do the above operation for lattice points of the first two



polytopes, we see that the computed value of a lattice pgintliherefore the time complexity of the whole algorithm is
O(n?+£-3). However, if we have precomputed the core
o((hy, s )l (yr, v2)) = matrix, then the time complexity of computing the NML for
Z c(z11y -+, 218) - c(221, ..., 226), (21) any forest (compatible to the core matrix) @ Hn*++2),
Zew where H is the number of inner nodes in the forest. This
where W is the set of all matricesZ with marginals means that for example with two-valued nodes, the time

(h1,...,hy) and (y1,12). From this we can see directlycomplexity is O(n?), but if we have precomputed the core

that when we do several multiplications, we get the terfatrix, we can compute the NML in im@(Hn?) for any
c((w1,...,21)|(y1,- .., m)) defined in formula (7). forest structure. Note that this time complexity appliesdt

We explained how to compute the termgyl,..-,m) effi- Structures with any number of values in the leaf nodes, tsecau

ciently. Next we show that there is no need to compute thige number of values in a leaf node does not affect the inner
inner node matrices separately, as they all have commorsterfPde computation.

which is a property we can utilize to make the computation W& have run some tests for examining how largés still
even more efficient. computationally feasible in practice. The algorithm is edd

using Perl and it utilizes some additional tricks. With Jued
D. Core inner node matrix nodes, computing the core matrix fer= 200 took about 14
Computation of the inner node matrices is still a very slofours using a 3GHz computer, while with 4-valued nodes it
operation, but we can avoid unnecessary computational wdgiok 34 hours to compute the core matrix fer= 75. Note
by exploiting the particular order of partitions we earlose. also that the core matrix can be efficiently computed in pelral
Namely, if we use the given order, we can first compute @sing multiple processors, as the rows of the core inner node
matrix, which we will name acore inner node matrixas matrix can be computed separately using different proecesso

follows: for each row. Core matrices can also be stored for later use.
c(g gy e(gp™ gy IV. CONCLUSION
CM = : : , We presented an algorithm for computing the normalized
o max(X)| max(Y)) o max(X)| max(Y)) maximum likelihood (NML) for tree structured Bayesian net-
@ o ap o 2) work models. The efficiency of the algorithm depends on
where q;nax(X) and q;ﬂax(Y) are K- and £-partitions. Value the sizes of the alphabets used, and it is significantly more

D is the number ofC-partitions, whereZ is the maximum efficient than the only existing alternative reported in][10

number of values that any inner node’s parent has in thetforé@1e algorlt.hm offers us an opportunity to emp'”ca”Y corrpa
andP is the number ofC-partitions, whereK is the maximum the behavior of the NML approach to other graphical model

number of values any inner node has in the forest. Ignorir:f Iectllon_mhethods In many non-tnwfll ca;,_es. _Furtherrmlme,
the multipliers, we notice that every inner node matrix istju ¢ &/gorithm computes exact results, this gives us also an
a section from the core matrix. As we ordered the partitiorf?POTtunity to empirically validate approximative metisdor

so that we first have embedded 1-partitions, then embedded9MPuting the NML.
partitions and so on, we can just make the following openatio

to the core matrix .tO get an inner matrix: If the nu,mbe,r Of[1] M. Beck and S. RobinsComputing the Continuous Discretely: Integer-
values of a node is less thaf, we drop the last invalid point Enumeration in PolyhedraSpringer, 2007.

columns from the right, and if the number of values of a paren®] P. Flajolet and R. SedgewickAnalytic Combinatorics In preparation.

is less thanC, we drop the last invalid rows from the bottom [3] D- Heckerman, D. Geiger, and D.M. Chickering. LearningyBsian
T networks: The combination of knowledge and statisticabd®tachine

of the core matrix. Learning 20(3):197—243, September 1995.

The reason why all inner node matrices have the sani@] P. Kontkanen and P. Myllyméaki. A linear-time algorithfor computing

X|,Y ; . ; ; the multinomial stochastic complexitynformation Processing Letters
c(q; |gj ) elements is easy to see: the bins with zero counts 103(6):227-233, 2007,

do not affect the value of the conditional term, so we can adg) p, Kontkanen, P. Myllymaki, W. Buntine, J. Rissanend &h Tirri. An
as many zero counts as we want and the terms still remain MDL framework for data clustering. In P. Grinwald, 1.J. My and
same M. Pitt, editors,Advances in Minimum Description Length: Theory and
’ Applications The MIT Press, 2006.
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