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Abstract

The Minimum Description Length (MDL) principle is a general, well-founded
theoretical formalization of statistical modeling. The most important no-
tion of MDL is the stochastic complexity, which can be interpreted as
the shortest description length of a given sample of data relative to a
model class. The exact definition of the stochastic complexity has gone
through several evolutionary steps. The latest instantation is based on the
so-called Normalized Maximum Likelihood (NML) distribution which has
been shown to possess several important theoretical properties. However,
the applications of this modern version of the MDL have been quite rare
because of computational complexity problems, i.e., for discrete data, the
definition of NML involves an exponential sum, and in the case of continu-
ous data, a multi-dimensional integral usually infeasible to evaluate or even
approximate accurately. In this doctoral dissertation, we present mathe-
matical techniques for computing NML efficiently for some model families
involving discrete data. We also show how these techniques can be used
to apply MDL in two practical applications: histogram density estimation
and clustering of multi-dimensional data.
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Preface

This doctoral dissertation consists of an introductory part and six origi-
nal research papers on the Minimum Description Length (MDL) principle.
The focus of the papers is on the practical aspects of the MDL, not the
theoretical properties of it. More precisely, the research papers present
mathematical techniques that allow the efficient use of MDL in practical
model class selection tasks. The papers also discuss how these techniques
can be applied in real-world applications.

To give the reader preliminaries and motivation for easier understanding
of the six research papers, the thesis starts with an introductory text. This
part is intuitive in nature, all the technical details can be found in the
respective research papers. The introductory part starts with a short review
of the MDL principle and the NML distribution, which formally defines
the MDL model class selection criterion (the stochastic complexity). Next,
an overview of the mathematical techniques and algorithms for efficient
computation of the NML is presented. These algorithms are then used in
two practical applications: histogram density estimation and clustering of
multi-dimensional data.

The final part of the introduction consists of two appendices. The first
one provides the reader background to the mathematical tools used in var-
ious parts of the thesis. The topics of this appendix are complex analysis,
formal power series, generating functions and asymptotic analysis of gener-
ating functions. Together these techniques provide a powerful toolbox for
efficient NML computation for several interesting model families. The topic
of the second appendix is the derivation of a novel, very accurate multi-
nomial NML approximation. The derivation is based on the mathematical
techniques described in the first appendix.
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In Papers I-III we develop algorithms for efficient computation of the
NML in the case of the multinomial and Naive Bayes model family. The
topic of Papers IV–VI is to show how NML can be applied to practical
problems. The main contributions and short descriptions of the six papers
are listed here:

Paper I: We introduce the first polynomial-time algorithm for com-
puting the stochastic complexity (NML) for the multinomial and Naive
Bayes model families. The running time of the algorithm is quadratic with
respect to the sample size. We also present three stochastic complexity
approximation algorithms and study their accuracy empirically.

Paper II: We improve the time complexity of the algorithm presented
in Paper I to O (n log n), where n is the sample size. The new algorithm is
based on the convolution theorem and the Fast Fourier Transform (FFT)
algorithm.

Paper III: We derive a recursion formula that can be used straight-
forwardly to compute the multinomial stochastic complexity in linear time.
The mathematical technique applied here is generating functions.

Paper IV: We regard histogram density estimation as a model class
selection problem and apply the minimum description length (MDL) prin-
ciple to it. Using the results from Paper III, we show how to efficiently
compute the stochastic complexity for the histogram densities. Further-
more, we derive a dynamic programming algorithm that can be used to
find the globally optimal histogram in polynomial time.

Paper V: Clustering is one of the central concepts in the field of unsu-
pervised data analysis. We regard clustering as a problem of partitioning
the data into mutually exclusive clusters so that similar data vectors are
grouped together. The number of clusters is unknown, and determining the
optimal number is part of the clustering problem. For solving this problem,
we suggest an information-theoretic framework based on the MDL princi-
ple. For computing the NML for the clustering model class, we use the
algorithms of Papers I and II.

Paper VI: We compare empirically various algorithms for finding can-
didate solutions to the clustering problem discussed in Paper V. We present
five algorithms for the task and use several real-world data sets to test the
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algorithms. The results show that the traditional EM and K-means algo-
rithms perform poorly. Furthermore, our novel hybrid clustering algorithm
turns out to produce the best results.

In all six papers, the contribution of the current author is significant. In
Paper I, the quadratic-time algorithm for the multinomial model family is
due to Wray Buntine. The idea of applying MDL to the clustering problem
in Paper V is by Petri Myllymäki.
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Chapter 1

Introduction

Many problems in science can be cast as model class selection tasks, i.e., as
tasks of selecting among a set of competing mathematical explanations the
one that describes a given sample of data best. The Minimum description
length (MDL) principle developed in the series of papers [53, 54, 56] is a
well-founded, general framework for performing model class selection and
other types of statistical inference. The fundamental idea behind the MDL
principle is that any regularity in data can be used to compress the data, i.e.,
to find a description or code of it, such that this description uses less symbols
than it takes to describe the data literally. The more regularities there are,
the more the data can be compressed. According to the MDL principle,
learning can be equated with finding regularities in data. Consequently, we
can say that the more we are able to compress the data, the more we have
learned about them.

The MDL principle has several desirable properties. Firstly, it auto-
matically protects against overfitting in the model class selection process.
Secondly, this statistical framework does not – unlike most other frame-
works – assume that there exists some underlying “true” model. The model
class is only used as a technical device for constructing an efficient code for
describing the data. MDL is also closely related to the Bayesian infer-
ence but there are some fundamental differences, the most important being
that MDL does not need any prior distribution; it only uses the data at
hand. For more discussion on the theoretical motivations behind the MDL
principle see, e.g., [56, 5, 72, 57, 21, 58].

MDL model class selection is based on a quantity called stochastic com-
plexity, which is the shortest description length of a given data relative to a
model class. The stochastic complexity is defined via the normalized max-
imum likelihood (NML) distribution [63, 56]. For multinomial (discrete)
data, this definition involves a normalizing sum over all the possible data

1



2 1 Introduction

samples of a fixed size. The logarithm of this sum is called the parametric
complexity or regret, which can be interpreted as the amount of complexity
of the model class. If the data is continuous, the sum is replaced by the
corresponding integral.

The NML distribution has several theoretical optimality properties,
which make it a very attractive candidate for performing model class se-
lection and related tasks. It was originally [56, 5] formulated as the unique
solution to a minimax problem presented in [63], which implied that NML
is the minimax optimal universal model. Later [57], it was shown that
NML is also the solution to a related problem involving expected regret.
See Section 2.2 and [5, 57, 21, 58] for more discussion on the theoretical
properties of the NML.

Many scientific problems involve large data sets. In order to apply NML
for these tasks one needs to develop suitable NML computation methods
since the normalizing sum or integral in the definition of the NML is typ-
ically difficult to compute directly. The introductory part of this thesis
starts by presenting algorithms for efficient computation of the NML for
both one- and multi-dimensional discrete data. The model families used
here are the multinomial and the Naive Bayes, and the discussion is based
on the Papers I–III. In the multinomial case, the most efficient algorithm
based on the technique of generating functions is linear with respect to the
sample size, while the Naive Bayes algorithm is quadratic.

The task of finding efficient NML computation algorithms is a rela-
tively new topic, and there are only few related studies. In [50], NML for
the multinomial model family was written in another form, which resulted
in another linear-time algorithm. The same paper also studied the connec-
tion between the multinomial NML and the so-called birthday problem [15],
which is a classical problem of probability theory. A study of how the multi-
nomial NML can be computed in sub-linear time with a finite precision is
presented in [47]. The algorithm has time complexity O(

√
dn), where d

is the precision in digits and n is the sample size. In [49], new theoreti-
cally interesting recurrence formulas for NML computation are derived. A
new quadratic-time algorithm for computing the parametric complexity in
the case of Naive Bayes is presented in [46]. This algorithm is based on
the so-called Miller formula [25] for computing the powers of formal power
series.

There has also been studies on computing NML for more complex model
families. In [70, 42, 48], algorithms for so-called Bayesian forests are pre-
sented. However, these algorithms are exponential with respect to the
number of values of the domain variables. One solution to this problem
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is suggested in [61], where the NML criterion is modified to a computa-
tionally less demanding form called the factorized NML. Initial empirical
results show that this new criterion can be useful in model class selection
problems.

The second part of the thesis describes how NML can be applied to
practical problems using the techniques of the first part. Due to the com-
putational efficiency problems, there are relatively few applications of NML.
However, the existing applications demonstrate that NML works very well
in practice and provides in many cases superior results when compared to
alternative approaches. The first application discussed in the thesis is the
NML-optimal histogram density estimation suggested in Paper IV. This
framework provides both the optimal number of bins and the location of
the bin borders of the histogram in polynomial time. The second applica-
tion is the NML clustering of multi-dimensional discrete data introduced in
Paper V. The optimization aspect of the clustering problem was studied in
Paper VI, where five algorithms for efficiently searching the exponentially-
sized clustering space were compared. See Chapter 4 for related work and
more discussion on NML applications in general.

This thesis is structured as follows. In Chapter 2 we discuss the basic
properties of the MDL principle and the NML distribution. We also in-
stantiate NML for the two model families. In Chapter 3 we present both
exact and approximative computation algorithms for NML. The chapter
also includes an empirical comparison of three NML approximations for
the multinomial model family. The topic of Chapter 4 is to show how
NML can be applied in two practical tasks: density estimation and data
clustering. Chapter 5 gives some concluding remarks and ideas for future
work. The thesis then continues with two appendices: Appendix A pro-
vides mathematical background to the techniques used in the thesis and
Appendix B gives a full derivation of the accurate multinomial NML ap-
proximation called the Szpankowski approximation. Finally, the six original
research papers are re-printed at the end of the thesis.
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Chapter 2

Stochastic Complexity

The MDL model class selection is based on minimization of the stochastic
complexity. In the following, we first define the model class selection prob-
lem. Then we proceed by giving the definition of the stochastic complexity
based on the normalized maximum likehood distribution and discuss its
theoretical properties. Finally, we instantiate the NML for the multino-
mial and Naive Bayes model families.

2.1 Model Classes and Families

Let xn = (x1, . . . , xn) be a data sample of n outcomes, where each outcome
xj is an element of some space of observations X . The n-fold Cartesian
product X × · · · × X is denoted by X n, so that xn ∈ X n. Consider a
set Θ ⊆ Rd, where d is a positive integer. A class of parametric distributions
indexed by the elements of Θ is called a model class. That is, a model
class M is defined as

M = {P (· | θ) : θ ∈ Θ}, (2.1)

and the set Θ is called the parameter space.
Consider now a set Φ ⊆ Re, where e is a positive integer. Define a set F

by
F = {M(φ) : φ ∈ Φ}. (2.2)

The set F is called a model family, and each of the elements M(φ) is
a model class. The associated parameter space is denoted by Θφ. The
model class selection problem can now be defined as a process of finding
the parameter vector φ, which is optimal according to some pre-determined
criteria. In Sections 2.3− 2.4 we discuss two specific model families, which
will make these definitions more concrete.

5



6 2 Stochastic Complexity

2.2 The Normalized Maximum Likelihood (NML)
Distribution

One of the most theoretically and intuitively appealing model class selection
criteria is the stochastic complexity. Denote first the maximum likelihood
estimate of data xn for a given model class M(φ) by θ̂(xn,M(φ)), i.e.,
θ̂(xn,M(φ)) = arg max

θ∈Θφ

{P (xn | θ)}. The normalized maximum likelihood

(NML) distribution [63] is now defined as

PNML(xn | M(φ)) =
P (xn | θ̂(xn,M(φ)))

C(M(φ), n)
, (2.3)

where the normalizing term C(M(φ), n) in the case of discrete data is given
by

C(M(φ), n) =
∑

yn∈Xn

P (yn | θ̂(yn,M(φ))), (2.4)

and the sum goes over the space of data samples of size n. If the data is
continuous, the sum is replaced by the corresponding integral.

The stochastic complexity of the data xn, given a model class M(φ),
is defined via the NML distribution as

SC(xn | M(φ)) = − log PNML(xn | M(φ)) (2.5)

= − log P (xn | θ̂(xn,M(φ))) + log C(M(φ), n), (2.6)

and the term log C(M(φ), n) is called the (minimax) regret or parametric
complexity. The regret can be interpreted as measuring the logarithm of the
number of essentially different (distinguishable) distributions in the model
class. Intuitively, if two distributions assign high likelihood to the same
data samples, they do not contribute much to the overall complexity of the
model class, and the distributions should not be counted as different for the
purposes of statistical inference. See [4] for more discussion on this topic.

The NML distribution (2.3) has several important theoretical optimality
properties. The most important one is that NML provides a unique solution
to the minimax problem posed in [63]:

min
P̂

max
xn

log
P (xn | θ̂(xn,M(φ)))

P̂ (xn | M(φ))
, (2.7)

where P̂ can be any distribution over the data xn. The minimizing P̂ is
the NML distribution, and the minimax regret

log P (xn | θ̂(xn,M(φ))) − log P̂ (xn | M(φ)) (2.8)
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is given by the parametric complexity log C(M(φ), n). This means that
the NML distribution is the minimax optimal universal model. The term
universal model in this context means that the NML distribution represents
(or mimics) the behaviour of all the distributions in the model class M(φ).
Note that the NML distribution itself does not have to belong to the model
class, and typically it does not. For more discussion on the theoretical
properties of NML, see [5, 57, 21, 58].

2.3 NML for the Multinomial Model Family

In the case of discrete data, the simplest model family is the multinomial.
The data is assumed to be one-dimensional and have only a finite set of
possible values. Although simple, the multinomial model family has prac-
tical applications. In Paper IV, multinomial NML was used for histogram
density estimation, and the problem was regarded as a model class selec-
tion task. The NML-optimal histograms were later [12] used as attribute
models for Naive Bayes classifier.

Assume that our problem domain consists of a single discrete random
variable X with K values, and that our data xn = (x1, . . . , xn) is multino-
mially distributed. The space of observations X is now the set {1, 2, . . . ,K}.
The corresponding model family FMN is defined by

FMN = {M(φ) : φ ∈ ΦMN}, (2.9)

where ΦMN = {1, 2, 3, . . .}. Since the parameter vector φ is in this case a
single integer K, we denote the multinomial model classes by M(K) for
simplicity and define

M(K) = {P (· | θ) : θ ∈ ΘK}, (2.10)

where ΘK is the simplex-shaped parameter space

ΘK = {(π1, . . . , πK) : πk ≥ 0, π1 + · · · + πK = 1}, (2.11)

with πk = P (X = k), k = 1, . . . ,K.
Assume the data points xj are independent and identically distributed

(i.i.d.). The NML distribution (2.3) for the model class M(K) is now given
by (see Papers I and V)

PNML(xn | M(K)) =

∏K
k=1

(

hk

n

)hk

C(M(K), n)
, (2.12)
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where hk is the frequency (number of occurrences) of value k in xn, and

C(M(K), n) =
∑

yn

P (yn | θ̂(yn,M(K))) (2.13)

=
∑

h1+···+hK=n

n!

h1! · · ·hK !

K
∏

k=1

(

hk

n

)hk

. (2.14)

2.4 NML for the Naive Bayes Model Family

The one-dimensional case discussed in the previous section is not adequate
for many real-world situations, where data are typically multi-dimensional,
involving complex dependencies between the domain variables. In Paper I
a quadratic-time algorithm for computing the NML for a specific multivari-
ate model family, usually called the Naive Bayes, was derived. This model
family has been very successful in practice in mixture modeling [41], clus-
tering of data (Paper V), case-based reasoning [39], classification [22, 40]
and data visualization [33].

Let us assume that our problem domain consists of m primary vari-
ables X1, . . . , Xm and a special variable X0, which can be one of the vari-
ables in our original problem domain or it can be latent. Assume that
the variable Xi has Ki values and that the extra variable X0 has K0

values. The data xn = (x1, . . . ,xn) consist of observations of the form
xj = (xj0, xj1, . . . , xjm) ∈ X , where

X = {1, 2, . . . ,K0} ×{ 1, 2, . . . ,K1} × · · · × {1, 2, . . . ,Km}. (2.15)

The Naive Bayes model family FNB is defined by

FNB = {M(φ) : φ ∈ ΦNB} (2.16)

with ΦNB = {1, 2, 3, . . .}m+1. The corresponding model classes are denoted
by M(K0, K1, . . . ,Km):

M(K0, K1, . . . ,Km) = {PNB(· | θ) : θ ∈ ΘK0,K1,...,Km
}. (2.17)

The basic Naive Bayes assumption is that given the value of the special
variable, the primary variables are independent. We have consequently

PNB(X0 = x0, X1 = x1, . . . , Xm = xm | θ) = P (X0 = x0 | θ)

·
m
∏

i=1

P (Xi = xi | X0 = x0, θ). (2.18)
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Furthermore, we assume that the distribution of P (X0 | θ) is multinomial
with parameters (π1, . . . , πK0

), and each P (Xi | X0 = k, θ) is multinomial
with parameters (σik1, . . . , σikKi

). The whole parameter space is then

ΘK0,K1,...,Km
={(π1, . . . , πK0

), (σ111, . . . , σ11K1
), . . . , (σmK01, . . . , σmK0Km

) :

πk ≥ 0, σikl ≥ 0, π1 + · · · + πK0
= 1, σik1 + · · · + σikKi

= 1,

i = 1, . . . ,m, k = 1, . . . K0}, (2.19)

and the parameters have interpretations πk = P (X0 = k) and σikl =
P (Xi = l | X0 = k).

Assuming i.i.d., the NML distribution for the Naive Bayes can now be
written as (see Paper V)

PNML(xn | M(K0, K1, . . . ,Km)) =

∏K0

k=1

(

hk

n

)hk ∏m
i=1

∏Ki

l=1

(

fikl

hk

)fikl

C(M(K0, K1, . . . ,Km), n)
,

(2.20)
where hk is the number of times X0 has value k in xn, fikl is the num-
ber of times Xi has value l when the special variable has value k, and
C(M(K0, K1, . . . ,Km), n) is given by

C(M(K0, K1, . . . ,Km), n)

=
∑

h1+···+hK0
=n

n!

h1! · · ·hK0
!

K0
∏

k=1

(

hk

n

)hk
m
∏

i=1

C(M(Ki), hk). (2.21)
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Chapter 3

Efficient Computation of NML

In the previous chapter we saw that in the case of discrete data the definition
of the NML distribution involves a sum over all the possible data samples
of fixed size. Direct computation of this sum takes exponential time even in
the case of a simple multinomial model. In this chapter we present efficient
algorithms for computing this sum for two model families, the multinomial
and Naive Bayes. For interesting algorithms for computing the NML for a
more complex model family called the Bayesian forests, see [70, 42, 48].

3.1 The Multinomial Model Family

3.1.1 Exact Computation Algorithms

In the previous chapter we saw that the NML distribution for the multi-
nomial model family (2.12) consists of two parts: the likelihood and the
parametric complexity (2.14). It is clear that the likelihood term can be
computed in linear time by simply sweeping through the data once and
counting the frequencies hk. However, the normalizing sum C(M(K), n)
(and thus also the parametric complexity log C(M(K), n)) involves a sum
over an exponential number of terms. Consequently, the time complexity
of computing the multinomial NML is dominated by (2.14).

In Paper I, a recursion formula for removing the exponentiality of
C(M(K), n) was presented. This formula is given by

C(M(K), n) =
n

∑

r1+r2=0

n!

r1!r2!

(r1

n

)r1
(r2

n

)r2

· C(M(K∗), r1) · C(M(K − K∗), r2), (3.1)

11
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which holds for all K∗ = 1, . . . ,K−1. A straightforward algorithm based on
this formula was then used to compute C(M(K), n) in time O

(

n2 log K
)

.
See Papers I and V for more details.

In Paper II (see also [31]), the quadratic-time algorithm was improved
to O (n log n log K) by writing (3.1) as a convolution-type sum and then
using the Fast Fourier Transform algorithm. However, the relevance of
this result is unclear due to severe numerical instability problems it easily
produces in practice. See Paper II for more details.

Although the algorithms described above have succeeded in removing
the exponentiality of the computation of the multinomial NML, they are
still superlinear with respect to n. In Paper III the first linear-time al-
gorithm based on the mathematical technique of generating functions was
derived for the problem. The algorithm is based on the following theorem:

Theorem 3.1 The C(M(K), n) terms satisfy the recurrence

C(M(K + 2), n) = C(M(K + 1), n) +
n

K
· C(M(K), n). (3.2)

Proof. See Paper III. !

It is now straightforward to write a linear-time algorithm for computing
the multinomial NML PNML(xn | M(K)) based on Theorem 3.1. The pro-
cess is described in Algorithm 1. The time complexity of the algorithm is

Algorithm 1 The linear-time algorithm for computing PNML(xn | M(K)).

1: Count the frequencies h1, . . . , hK from the data xn

2: Compute the likelihood P (xn | θ̂(xn,M(K))) =
∏K

k=1

(

hk

n

)hk

3: Set C(M(1), n) = 1
4: Compute C(M(2), n) =

∑

r1+r2=n
n!

r1!r2!

(

r1

n

)r1
(

r2

n

)r2

5: for k = 1 to K − 2 do
6: Compute C(M(k + 2), n) = C(M(k + 1), n) + n

k · C(M(k), n)
7: end for
8: Output PNML(xn | M(K)) = P (xn|θ̂(xn,M(K)))

C(M(K),n)

clearly O (n + K), which is a major improvement over the previous meth-
ods. The algorithm is also very easy to implement and does not suffer from
any numerical instability problems. See Paper III for more discussion of
the algorithm.
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3.1.2 NML Approximations

In the previous section we presented exact NML computation algorithms
for multinomial data. The time complexity of the most efficient method
was shown to be linear with respect to the size of the data, which can
sometimes be too slow for demanding tasks. Consequently, it is important
to develop efficient approximations to the multinomial NML. The topic of
this section is to present three such methods. The first two of the methods,
BIC and Rissanen’s asymptotic expansion, are well-known, but the third
one, called the Szpankowski approximation, is novel. Since we are able to
compute the exact NML, it is also possible to assess the accuracy of the
three approximations. This comparison is presented in Section 3.1.3.

In the following, we introduce the three approximations and instanti-
ate them for the multinomial model family. It should be noted that BIC
and Rissanen’s asymptotic expansion are usually considered as approxima-
tions to the stochastic complexity, i.e., the negative logarithm of the NML.
To make the formulas easier to interpret, we will adopt this established
practice.

Bayesian Information Criterion: The Bayesian Information Criterion
(BIC) [62], also known as the Schwarz criterion, is the simplest of the three
approximations. As the name implies, the BIC has a Bayesian interpreta-
tion, but it can also be given a formulation in the MDL setting as showed
in [55]. It is derived by expanding the log-likelihood function as a second
order Taylor series around the maximum likelihood point θ̂ and then inte-
grating this expansion over the parameter space. This procedure is called
the Laplace’s method. The BIC formula is given by

− log PBIC(xn | M) = − log P (xn | θ̂(xn),M) +
d

2
log n + O (1), (3.3)

where d is the Euclidean dimension of the parameter space, i.e., the number
of parameters. Looking at (3.3), we can see that it contains the same
maximum likelihood term as the exact NML equation (2.3). Therefore,
the second term d

2 log(n) can be interpreted as an approximation to the
parametric complexity.

The instantiation of the BIC approximation for the multinomial case is
trivial. If the multinomial variable has K possible values, the number of
parameters is K − 1 and

− log PBIC(xn | M(K)) = − log P (xn | θ̂(xn),M(K))+
K − 1

2
log n+O (1).

(3.4)
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The main advantage of BIC is that it is very simple, intuitive and quick to
compute. However, it is widely acknowledged that in model selection tasks
BIC favors overly simple models (see, e.g., [68]).

Rissanen’s Asymptotic Expansion: As proved in [56], for model classes
that satisfy certain regularity conditions, a sharper asymptotic expansion
than BIC can be derived for the NML. The most important regularity
condition is that the Central Limit Theorem should hold for the maximum
likelihood estimators for all the elements in the model class. The precise
regularity conditions can be found in [56]. Rissanen’s asymptotic expansion
is given by

− log PRIS(x
n | M) =

− log P (xn | θ̂(xn),M) +
d

2
log

n

2π
+ log

∫

√

|I(θ)|dθ + o (1), (3.5)

where the integral goes over the parameter space Θ. The matrix I(θ) is
called the (expected) Fisher information matrix defined by

I(θ) = −Eθ

[

∂2 log P (xn | θ,M)

∂θiθj

]

, (3.6)

where θi, θj go through all the possible pairs of parameters and the expec-
tation is taken over the data space X . The first two terms of (3.5) are
essentially the same as in the BIC approximation (3.3). The crucial dis-
tinction is the integral term measuring the complexity that comes from the
local geometrical properties of the model space. For a more precise discus-
sion of the interpretation of this term, see [21]. Note that unlike the BIC
approximation, Rissanen’s expansion is asymptotically correct. This means
that the error in the approximation vanishes as n goes to infinity.

Rissanen’s asymptotic expansion for the M(K) model class was derived
in [56], and it is given by

− log PRIS(x
n | M(K)) =

− log P (xn | θ̂(xn),M(K)) +
K − 1

2
log

n

2π
+ log

πK/2

Γ(K/2)
+ o (1), (3.7)

where Γ(·) is the Euler gamma function (see, e.g., [1]). This approximation
is clearly very efficient to compute as well. Note that the derivation of the
Rissanen’s expansion for the Naive Bayes can be found in Paper I.

Szpankowski Approximation: An advanced mathematical tool called
singularity analysis [16] can be used to derive an arbitrarily accurate ap-
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proximation to the multinomial NML. Appendix A.4 gives a brief overview
of the method. The Szpankowski approximation is based on a theorem on
redundancy rate for memoryless sources [66], which gives

− log PSZP(xn | M(K)) = − log P (xn | θ̂(xn),M(K)) (3.8)

+
K − 1

2
log

n

2
+ log

√
π

Γ(K/2)
+

√
2K · Γ(K/2)

3Γ
(

K
2 − 1

2

) ·
1√
n

+

(

3 + K(K − 2)(2K + 1)

36
−

Γ2(K/2) · K2

9Γ2
(

K
2 − 1

2

)

)

·
1

n

+ O
(

1

n3/2

)

.

The full derivation of this approximation is given in Appendix B. Note
that (3.8) is not a general NML approximation. It is only applicable for
the multinomial case.

3.1.3 Comparison of the Approximations

As noted in the previous section, the ability to compute the exact NML for
the multinomial model gives us a unique opportunity to test how accurate
the NML approximations really are. The first thing to notice is that since all
the three presented approximations contain the maximum likelihood term,
we can ignore it in the comparisons and concentrate on the parametric
complexity. Notice that we therefore avoid the problem of trying to choose
representative and unbiased data sets for the experiments.

We conducted two sets of experiments with the three approximations.
Firstly, we studied the accuracy of the approximations as a function of the
size of the data n. In the second set of the experiments we varied the
number of values of the multinomial variable. For all the experiments, the
following names are used for the three approximations:

• BIC: Bayesian information criteria (3.4)

• RIS: Rissanen’s asymptotic expansion (3.7)

• SZP: Szpankowski approximation (3.8)

The results of the first set of experiments can be seen in Figure 3.1,
where the difference between the approximative and exact parametric com-
plexity is plotted when the number of values K is set to 2, 4 and 9, respec-
tively. In each figure the size of data n varies from 1 to 100. From the
figures we can see that the SZP approximation is clearly the best of the
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three. This is naturally anticipated since SZP is theoretically the most
accurate one. What might be surprising is the absolute accuracy of SZP.
The error is practically zero even for very small values of n. The second
best of the approximations is RIS converging monotonically towards the
exact value. However, this convergence gets slower when K increases. The
figures also nicely show the typical behaviour of the BIC approximation.
When the test setting becomes more complex (for K > 3), BIC starts to
overestimate the parametric complexity.

In the second set of experiments we studied the accuracy of the three ap-
proximations when the number of values K varies from 2 to 10. Figure 3.2
shows the difference between the approximative and exact parametric com-
plexity when the size of the data n is fixed to 25, 100 and 500, respectively.
Naturally, the accuracy of the SZP approximation is superior in these tests
as well. The most dramatic thing to notice from the figures is the rapid
decrease in the accuracy of the BIC approximation when K increases. This
is in contrast with the RIS approximation, which clearly gets more accurate
with increasing amount of data, as anticipated by the theory.
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Figure 3.1: The accuracy of the three approximations as a function of the
size of the data for K = 2, 4 and 9.
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Figure 3.2: The accuracy of the three approximations as a function of the
number of values. From top to bottom, the data size n is fixed to 25, 100
and 500.
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3.2 The Naive Bayes Model Family

It is clear that the time complexity of computing the NML for the Naive
Bayes model family (2.20) is also dominated by the parametric complex-
ity C(M(K0, K1, . . . ,Km), n). It turns out (see Papers I and V) that the
recursive formula (3.1) can be generalized to this case:

Theorem 3.2 The terms C(M(K0, K1, . . . ,Km), n) satisfy the recurrence

C(M(K0, K1, . . . ,Km), n) =
∑

r1+r2=n

n!

r1!r2!

(r1

n

)r1
(r2

n

)r2

· CNB(M(K∗, K1, . . . ,Km), r1) · CNB(M(K0 − K∗, K1, . . . ,Km), r2),
(3.9)

where K∗ = 1, . . . ,K0 − 1.

Proof. See Papers I and V. !

In many practical applications of the Naive Bayes the quantity K0 is
unknown. Its value is typically determined as a part of the model class
selection process. Consequently, it is necessary to compute NML for model
classes M(K0, K1, . . . ,Km), where K0 has a range of values, say, K0 =
1, . . . ,Kmax. The process of computing NML for this case is described in
Algorithm 2. The time complexity of the algorithm is O

(

n2 · Kmax
)

. If the
value of K0 is fixed, the time complexity drops to O

(

n2 · log Kmax
)

. See
Paper V for more details.

Deriving accurate approximations to the Naive Bayes NML is more
challenging than in the multinomial case. BIC and the Rissanen’s asymp-
totic expansion can be computed for the Naive Bayes (see Paper I), but the
equivalent of the Szpankowski approximation for the multinomial model
family (3.8) has not been found. One simple approach is presented in Pa-
per I, where the multinomial NML terms in Algorithm 2 are replaced by the
approximations using (3.8). However, the time complexity of the resulting
algorithm is still quadratic with respect to the size of the data.
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Algorithm 2 The algorithm for computing the NML for the Naive Bayes
model family for K0 = 1, . . . ,Kmax.

1: Compute C(M(k), j) for k = 1, . . . , Vmax, j = 0, . . . , n, where
Vmax = max{K1, . . . ,Km}

2: for K0 = 1 to Kmax do

3: Count the frequencies h1, . . . , hK0
, fik1, . . . , fikKi

for i = 1, . . . ,m, k = 1, . . . ,K0 from the data xn

4: Compute the likelihood: P (xn | θ̂(xn,M(K0, K1, . . . ,Km)))

=
∏K0

k=1

(

hk

n

)hk
∏m

i=1

∏Ki

l=1

(

fikl

hk

)fikl

5: Set C(M(K0, K1, . . . ,Km), 0) = 1

6: if K0 = 1 then

7: Compute C(M(1, K1, . . . ,Km), j) =
∏m

i=1 C(M(Ki), j)
for j = 1, . . . , n

8: else

9: Compute C(M(K0, K1, . . . ,Km), j)

=
∑

r1+r2=j
j!

r1!r2!

(

r1

j

)r1
(

r2

j

)r2

· C(M(1, K1, . . . ,Km), r1)

·C(M(K0 − 1, K1, . . . ,Km), r2) for j = 1, . . . , n

10: end if

11: Output PNML(xn | M(K0, K1, . . . ,Km)) = P (xn|θ̂(xn,M(K0,K1,...,Km)))
C(M(K0,K1,...,Km),n)

12: end for



Chapter 4

MDL Applications

In this chapter, we will show how the NML can be applied to practical
problems using the techniques described in Chapter 3. Due to the compu-
tational efficiency problems, there are relatively few applications of NML.
However, the existing applications have proven that NML works very well
in practice and in many cases provides superior results when compared to
alternative approaches.

We mention here some examples of NML applications. First, in Pa-
pers V and VI, NML was used for clustering of multi-dimensional data
and its performance was compared to the Bayesian approach. The results
showed that the performance of the NML was especially impressive with
small sample sizes. Second, in [60], NML was applied to wavelet denois-
ing of digital images. Since the MDL principle in general can be inter-
preted as separating information from noise, this approach is very natural.
Bioinformatical applications include [43] and [67], where NML was used for
DNA sequence compression and data analysis in genomics, respectively. A
scheme for using NML for histogram density estimation was presented in
Paper IV. In this work, the density estimation problem was regarded as
a model class selection task. This approach allowed finding NML-optimal
histograms with variable-width bins in a computationally efficient way. Fi-
nally, in [12] NML histograms were used for modeling the attributes of the
Naive Bayes classifier.

In the following, we will concentrate on two applications: histogram
density estimation and clustering of multi-dimensional data. A computa-
tionally efficient NML approach for histogram density estimation was pro-
posed in Paper IV. A theoretically interesting recursion formula derived in
Paper III was shown to provide a way to compute the NML for histograms in
linear time with respect to the sample size. The NML clustering framework
was introduced in Paper V. The optimization aspect of the clustering prob-

21
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lem was studied in Paper VI, where five algorithms for efficiently searching
the exponentially-sized clustering space were empirically compared.

4.1 Histogram Density Estimation

Density estimation is one of the central problems in statistical inference and
machine learning. Given a sample of observations, the goal of histogram
density estimation is to find a piecewise constant density that describes the
data best according to some pre-determined criterion. Although histograms
are conceptually simple densities, they are very flexible and can model
complex properties like multi-modality with a relatively small number of
parameters. Furthermore, one does not need to assume any specific form for
the underlying density function: given enough bins, a histogram estimator
adapts to any kind of density.

The NML approach for irregular (variable-width bin) histogram den-
sity estimation described in Paper IV regards the problem as a model class
selection task, where the possible sets of cut points (bin borders) are con-
sidered as model classes. The model parameters are the bin masses, or
equivalently the bin heights. The NML criterion for comparing candidate
histograms can be computed efficiently using the recursion formula derived
in Paper III, where the problem of computing the parametric complexity
for multinomial model was studied.

There is obviously an exponential number of different cut point sets.
Therefore, a brute-force search is not feasible. In Paper IV it was shown
that the NML-optimal cut point locations can be found via dynamic pro-
gramming in a polynomial (quadratic) time with respect to the size of the
set containing the cut points considered in the optimization process.

The histogram density estimation is naturally a well-studied problem,
but unfortunately almost all of the previous studies, e.g. [6, 23, 73], con-
sider regular (equal-width bin) histograms only. Most similar to our work
is [59], in which irregular histograms are learned with the Bayesian mixture
criterion using a uniform prior. The same criterion is also used in [23], but
the histograms are equal-width only. It should be noted that this differ-
ence is significant as the Bayesian mixture criterion does not possess the
optimality properties of the NML.

4.1.1 Definitions

Consider a sample of n outcomes xn = (x1, . . . ,xn) on the interval [xmin,xmax].
Without any loss of generality, we assume that the data is sorted into in-
creasing order. Furthermore, we assume that the data is recorded at a
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finite accuracy ε. This assumption is made to simplify the mathematical
formulation, and as can be seen later, the effect of the accuracy parameter ε
on the stochastic complexity is a constant that can be ignored in the model
selection process.

Let C = (c1, . . . , cK−1) be an increasing sequence of points partitioning
the range [xmin − ε/2,xmax + ε/2] into the following K intervals (bins):

([xmin − ε/2, c1], ]c1, c2], . . . , ]cK−1,xmax + ε/2]). (4.1)

The points ck are called the cut points of the histogram. Define c0 =
xmin − ε/2, cK = xmax + ε/2 and let Lk = ck − ck−1, k = 1, . . . ,K be the
bin lengths. Given a parameter vector θ ∈ Θ,

Θ = {(θ1, . . . , θK) : θk ≥ 0, θ1 + · · · + θK = 1}, (4.2)

and a set (sequence) of cut points C, we now define the histogram density fh

by

fh(x | θ, C) =
ε · θk

Lk
, (4.3)

where x ∈ ]ck−1, ck]. Note that (4.3) does not define a density in the purest
sense, since fh(x | θ, C) is actually the probability that x falls into the
interval ]x − ε/2, x + ε/2].

Given (4.3), the likelihood of the whole data sample xn is easy to write.
We have

fh(xn | θ, C) =
K
∏

k=1

(

ε · θk

Lk

)hk

, (4.4)

where hk is the number of data points falling into bin k.

4.1.2 NML Histogram

To instantiate the NML distribution (2.3) for the histogram density fh, we
need to find the maximum likelihood parameters θ̂(xn) = (θ̂1, . . . , θ̂K) and
an efficient way to compute the parametric complexity. It is well-known
that the ML parameters are given by the relative frequencies θ̂k = hk/n,
so that we have

fh(xn | θ̂(xn), C) =
K
∏

k=1

(

ε · hk

Lk · n

)hk

. (4.5)

Denote now the parametric complexity of a K-bin histogram by log C(HK , n).
We now have the following theorem:
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Theorem 4.1 The term C(HK , n) is given by

C(HK , n) =
∑

h1+···+hK=n

n!

h1! · · ·hK !

K
∏

k=1

(

hk

n

)hk

, (4.6)

i.e., the same as the parametric complexity of a K-valued multinomial
model.

Proof. See research paper IV. !

This result means that we can compute the parametric complexity for his-
togram densities using Algorithm 1.

We are now ready to write down the stochastic complexity (2.6) for the
histogram model. We have

SC(xn | C) = − log

∏K
k=1

(

ε·hk

Lk·n

)hk

C(HK , n)
(4.7)

=
K

∑

k=1

−hk(log(ε · hk) − log(Lk · n)) + log C(HK , n). (4.8)

Equation (4.8) is the basis for measuring the quality of NML histograms,
i.e., comparing different cut point sets. It should be noted that as the term
∑K

k=1 −hk log ε = −n log ε is a constant with respect to C, the value of ε
does not affect the comparison.

The histogram density estimation problem is now straightforward to de-
fine: find the cut point set C which optimizes the given goodness criterion.
In our case the criterion is based on the stochastic complexity (4.8), and
the cut point sets are considered as model classes. In practical model class
selection tasks, however, the stochastic complexity criterion itself may not
be sufficient. The reason is that it is also necessary to encode the model
class index in some way, as argued in [21]. We assume that the model class
index is encoded with a uniform distribution over all the cut point sets of
the same size. For a K-bin histogram with E possible cut points, there
are clearly

( E
K−1

)

ways to choose the cut points. Thus, the codelength for

encoding them is log
( E
K−1

)

.
After these considerations, we define the final criterion (or score) used

for comparing different cut point sets as

B(xn | E,K, C) = SC(xn | C) + log

(

E

K − 1

)

=
K

∑

k=1

−hk (log(ε · hk) − log(Lk · n)) + log C(HK , n) + log

(

E

K − 1

)

. (4.9)
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It is clear that there are an exponential number of possible cut point sets,
and thus an exhaustive search to minimize (4.9) is not feasible. However,
the optimal cut point set can be found via dynamic programming, which
works by tabulating partial solutions to the problem. The final solution is
then found recursively. For details, see Paper IV.

To demonstrate the behaviour of the NML histogram method in prac-
tice we implemented the dynamic programming algorithm and ran some
simulation tests (see Paper IV). We generated data samples of various size
from densities of different shapes and then used the dynamic program-
ming method to find the NML-optimal histograms. Figure 4.1 shows two
examples of the generating densities (labeled gm6 and gm8) and the corre-
sponding NML-optimal histograms. The sample size is fixed to 10000, and
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Figure 4.1: The generating densities gm6 and gm8 and the corresponding
NML-optimal histograms.

the generating densities are Gaussian finite mixtures with 6 and 8 compo-
nents, respectively. From the plots we can see that the NML histogram
method is able to capture properties such as multi-modality and long tails.
Another nice feature is that the algorithm automatically places more bins
to the areas where more detail is needed like the high, narrow peaks of gm6.
See Paper IV for more empirical tests and discussion.
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4.2 Clustering

A clustering is a partitional data assignment or data labeling problem,
where the goal is to partition the data into mutually exclusive clusters so
that similar data vectors are grouped together. The number of clusters is
unknown, and determining the optimal number is part of the clustering
problem. The data are assumed to be in a vector form so that each data
item is a vector consisting of a fixed number of attribute values. Within this
framework two fundamental problems can be identified: how to define the
goodness of a clustering (data partitioning) and how to find good clusterings
with respect to the chosen scoring criterion.

Traditionally, the scoring problem has been approached by first fixing
a distance metric, and then by defining a global goodness measure based
on this distance metric. However, although this approach is intuitively
quite appealing, from the theoretical point of view it introduces many
problems such as choosing a suitable distance metric and the handling
of non-continuous attributes. A completely different approach to cluster-
ing is offered by the model-based approach, where for each cluster a data
generating function (a probability distribution) is assumed, and the clus-
tering problem is defined as the task to identify these distributions (see,
e.g., [64, 18, 7]). In other words, the data are assumed to be generated
by a finite mixture model [13, 69, 44]. In this framework the optimality of
a clustering can be defined as a function of the fit of data with the finite
mixture model, not as a function of the distances between the data vectors.

In Paper V we proposed an NML-based approach for clustering. Intu-
itively, the idea is that a good clustering is such that one can encode the
cluster labels together with the data so that the resulting code length is
minimized. When the cluster labels are fixed, the finite mixture model is
essentially the same as the Naive Bayes model, which allows the use of the
techniques described in Section 3.2 for efficient computation of the NML
criteria.

The optimization part of the clustering problem, i.e., how to find good
clusterings with respect to the NML score, was studied in Paper VI. In
that work, five algorithms were proposed to the problem and their perfor-
mance was compared via empirical tests using several real-world datasets.
In Section 4.2.2 we shortly summarize these empirical results.

4.2.1 NML Clustering

Let us assume that our problem domain consists of m discrete variables
X1, . . . , Xm and that the variable Xi has Ki values. The data xn =
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(x1, . . . ,xn) consists of observations xj = (xj1, . . . , xjm) ∈ X , where

X = {1, 2, . . . ,K1} × · · · × {1, 2, . . . ,Km}. (4.10)

We assume that the possibly originally continuous variables have been dis-
cretized. One reason for focusing on discrete data is that in this case we can
model the domain variables by multinomial distributions without having
to make restricting assumptions about unimodality, normality etc., which
is the situation we face in the continuous case.

A clustering of the data set xn is defined as a partitioning of the data
into mutually exclusive subsets, the union of which forms the data set. The
number of subsets is a priori unknown. The clustering problem is the task
to determine the number of subsets, and to decide to which cluster each
data vector belongs.

Formally, we can notate a clustering by using a clustering vector zn =
(z1, . . . , zn), where zj denotes the index of the cluster to which the data
vector xj is assigned to. Denote the clustering variable by X0 so that zn

is a sample from the distribution of X0. The number of clusters, say K0,
is implicitly defined in the clustering vector, as it can be determined by
counting the number of different values appearing in zn.

In Paper V, we suggested the following NML-based criterion for finding
the optimal clustering ẑn:

ẑn = arg max
zn

PNML(xn, zn | M(K0, K1, . . . ,Km)), (4.11)

where M(K0, K1, . . . ,Km) is the Naive Bayes model family with K0 com-
ponents. In the clustering framework this means that the data vectors
should be partitioned so that the vectors belonging to the same cluster can
be compressed well together, i.e., that those data vectors that obey the
same set of underlying regularities are grouped together.

Naturally, the criteria for comparing different clusterings can be based
on other approaches like Bayesian statistics. In the Bayesian case, the NML
distribution in (4.11) is replaced by the Bayesian marginal likelihood (see,
e.g. [8, 24]). The approaches were compared empirically in Paper V, where
it was shown that NML produces the best results especially with small
sample sizes.

4.2.2 Comparison of Clustering Algorithms

The space of potential clusterings is obviously exponential in size, which
means that in practice we need to resort to combinatorial search algorithms
in our attempt to solve the clustering problem. The search algorithm used
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in the empirical tests in Paper V was a simple stochastic greedy algorithm.
In Paper VI, we compared five different algorithms for finding good cluster-
ings using several real-world datasets from the UCI repository [2]. Two sets
of results were presented. The first set concentrates on finding the number
of clusters and the actual clustering minimizing the NML score (4.11). In
the second set of experiments, we tested how long it takes for each of the
five algorithms to find the respective maximum NML value.

The first search algorithm candidate is a simple stochastic greedy (SG)
algorithm suggested in Paper V. Since our definition of clustering is based
on the finite mixture model, the standard mixture learning algorithm, EM
(Expectation-Maximization) (See [11, 41]) is a natural choice as a second
clustering algorithm. The third candidate algorithm is the K-means algo-
rithm (KM), sometimes called the CEM algorithm [45], is a simple modifi-
cation to the EM algorithm.

Each of the algorithms mentioned above needs to be initialized prior
to the iterative updating procedure. In our tests, we started each algo-
rithm simply by choosing a random clustering. To test the importance of
the initialization, we added two hybrid methods to our set of candidate
search algorithms. The first hybrid algorithm (KMSG) starts by running
the K-means algorithm until convergence and then switches to the stochas-
tic greedy search. The second algorithm (EMSG) is the same except that
the EM algorithm is used as an initializer.

Having fixed the set of candidate search algorithms, the next task is to
define a strategy for finding the optimal number of clusters and the actual
clustering. Since all the five algorithms converge to a local optimum of
the stochastic complexity, the natural strategy is to restart the algorithms
several times from different starting points.

Although the NML scoring criterion can be used for comparing clus-
terings with different number of clusters, the framework does not offer an
explicit way to directly infer the optimal number of clusters (K). Conse-
quently, the second part of our search strategy is to vary the parameter K.
The complete search strategy is described in Algorithm 3.

In the first batch of results we tested which of the five algorithms find the
best clusterings in terms of the stochastic complexity. The results showed
that all five candidate algorithms end up choosing a similar number of
clusters. However, when we looked at the actual SC values, there were
significant differences between the algorithms. Since SC can be interpreted
as a quality of a clustering, these differences are important. The hybrid
EMSG was clearly the best one of the algorithms, especially with more
complex cases, i.e., when the size of data and the optimal number of clusters
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Algorithm 3 The search strategy used in our tests.
repeat

for all D in datasets do
for K = 1 to 20 do

Choose a random initial K-clustering for dataset D
for all A in {SG, KM, EM, KMSG, EMSG} do

Run the algorithm A until converged
end for

end for
end for

until 50 restarts have been made

was bigger. Another interesting observation is that the traditional KM and
EM algorithms were clearly the worst of the candidate algorithms.

In the second set of experiments we recorded how much CPU time each
algorithm required for finding their respective optimal clustering. The most
important thing to notice from these results was that the hybrid EMSG
algorithm, which in the first batch of empirical results was found to produce
comparable or better results than SG, was almost always significantly faster
than the SG algorithm proving the intuitive argument that choosing a good
initial clustering is important. This made the EMSG algorithm a clear
overall winner in our experiments. It is also noteworthy that KM and
EM were often much slower than the other algorithms even though they
produced inferior results. This makes the applicability of KM and EM even
more questionable in the setting used here. See Paper VI for all the details
of the empirical tests.
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Chapter 5

Conclusion

The Normalized Maximum Likelihood (NML) distribution offers a univer-
sal, minimax optimal approach to statistical modeling. In this thesis we
have surveyed efficient algorithms for computing the NML in the case of
discrete data sets and two model families of practical importance. The
first model family we discussed is the multinomial, which can be applied
to problems such as density estimation and discretization. In this case, the
NML can be computed in linear time. For the Naive Bayes model family,
the NML can be computed in quadratic time. Models of this type have been
used extensively in clustering or classification domains with good results.

To demonstrate the applicability of the computation algorithms pre-
sented, we also discussed two NML applications. The first application
was an information-theoretic framework for histogram density estimation.
The selected approach based on the MDL principle has several advantages.
Firstly, the MDL criterion for model class selection (stochastic complex-
ity) has nice theoretical optimality properties. Secondly, by regarding his-
togram density estimation as a model class selection problem, it is possible
to learn generic, variable-width bin histograms and also estimate the op-
timal bin count automatically. Furthermore, the MDL criterion itself can
be used as a measure of quality of a density estimator, which means that
there is no need to assume anything about the underlying generating den-
sity. Since the model selection criterion is based on the NML distribution,
there is also no need to specify any prior distribution for the parameters.

The second application we described was NML clustering of data. We
suggested a framework for this problem based on the idea that a good clus-
tering is such that it allows efficient compression when the data are encoded
together with the cluster labels. We also introduced five optimization algo-
rithms for minimizing the stochastic complexity. Using these algorithms, we
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conducted an extensive set of experiments with several real-world datasets.
In the first part of the tests we recorded the number of clusters chosen
and the quality of the actual clusterings found by the algorithms, while
the idea of the second batch of tests was to see how much CPU time each
algorithm requires for finding the best solution. In the empirical results
we found out that all the five algorithms were useful if the goal is to find
the NML-optimal number of clusters. However, the quality of the individ-
ual clusterings found by the more traditional KM and EM algorithms was
questionable. These algorithms were also found to be slow. The most in-
teresting observation was that the novel hybrid EMSG algorithm produced
the best results and was also fast.

The methods presented are especially suitable for problems that involve
multi-dimensional discrete data sets. Furthermore, unlike the Bayesian
methods, information-theoretic approaches such as ours do not require a
prior for the model parameters. This is a most important aspect, as con-
structing a reasonable parameter prior is a notoriously difficult problem,
particularly in domains with little background knowledge. All in all, infor-
mation theory has been found to offer a natural and successful theoretical
framework for applications in general.

In the future, our plan is to extend the current work to more complex
cases such as general Bayesian networks, which would allow the use of NML
in even more involved modeling tasks. Another natural area of future work
is to apply the methods of this thesis to other practical tasks involving
large discrete databases and compare the results to other approaches, such
as those based on Bayesian statistics.
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Chapter A

Mathematical Background

The purpose of this appendix is to provide the reader with some mathemat-
ical techniques that are used in the other parts of the thesis, especially in
Appendix B. The topics covered are complex analysis, formal power series,
generating functions and asymptotic analysis.

A.1 Review of Complex Analysis

The theory of functions of a complex variable, also called complex analysis
for brevity, is one of the most beautiful as well as useful branches of mathe-
matics. It is an essential part of the mathematical background of physicists,
mathematicians, engineers and other scientists. From the theoretical view-
point this is because many mathematical concepts become clarified and
unified when examined in the light of complex analysis. From the applied
viewpoint the theory is of tremendous value in the solution of problems
such as fluid dynamics, heat flow, aerodynamics, electromagnetic theory
and many other fields of science and engineering.

For a computer scientist, the importance of complex analysis comes
from the fact that the theory can be applied to, e.g., calculation of fi-
nite and infinite sums, analyzing algorithms and finding asymptotic be-
haviour of sequences. In this thesis complex analysis is used for deriving
the accurate NML approximation in Appendix B. The purpose of this ap-
pendix is to briefly review the most relevant definitions and theorems of
complex analysis. For further reading on the subject we recommend the
books [51, 74, 65, 26].
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A.1.1 The Complex Numbers and the Complex Plane

The set C of complex numbers is introduced to permit solutions to equations
like

x2 + 1 = 0, (A.1)

that has no solutions in the set R of real numbers. A complex number has
the form a+bi, where a and b are real numbers and i is called the imaginary
unit and has the property i2 = −1. If z = a + bi, a is called the real part
of z and b is called the imaginary part of z. The symbol z, which can stand
for any of a set of complex numbers, is called a complex variable.

A complex number z = a+bi is uniquely determined by an ordered pair
of real numbers (a, b). Because of this correspondence we can associate z
with a point (a, b) in coordinate plane. This plane is then called the complex
plane. The horizontal or x-axis is called the real axis and the vertical
or y-axis is called the imaginary axis. If P is a point in the complex
plane corresponding to the complex number z = a + bi, then we see from
Figure A.1 that

a = r cos θ, b = r sin θ, (A.2)

where r =
√

a2 + b2 = |a + bi| is called the modulus or absolute value of z,
and θ is called the argument of z. It follows that we can write

z = a + bi = r(cos θ + i sin θ), (A.3)

which is called the polar form of the complex number z.
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Figure A.1: The polar form of complex number 2 + 3i.
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A.1.2 Roots of Complex Numbers

A number w is called an nth root of a complex number z if wn = z, and
we write w = z1/n. We can show that if n is a positive integer, then

z1/n = (r(cos θ + i sin θ))1/n (A.4)

= r1/n

[

cos

(

θ + 2kπ

n

)

+ i sin

(

θ + 2kπ

n

)]

, (A.5)

for k = 0, 1, 2, . . . , n−1. It follows that there are n different values for z1/n.
For example, the five 5th roots of number 32 are

• 2

• 2
(

cos 2π
5 + i sin 2π

5

)

• 2
(

cos 4π
5 + i sin 4π

5

)

• 2
(

cos 6π
5 + i sin 6π

5

)

• 2
(

cos 8π
5 + i sin 8π

5

)

,

as illustrated in Figure A.2.

R

I

2-2

Figure A.2: The 5th roots of complex number 32.

Note that the roots lie on a circle centered at origin of radius r = 2 and
are spaced at equal angular intervals of 2π/5 radians, i.e., they represent
the vertices of a regular pentagon.
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A.1.3 Analytic Functions

A complex function is a function f whose domain and range are subsets
of the set C of complex numbers. Because R is a subset of the set C,
every real-valued function of a real variable is also a complex function.
Furthermore, every complex function can be defined in terms of two real
functions u(a, b) and v(a, b) as f(z) = u(a, b)+iv(a, b). This implies that the
study of complex functions is closely related to the study of real multivariate
functions of two real variables.

Suppose that a complex function f is defined in a deleted neighborhood
of a point z0 and that l is a complex number. The limit of f as z tends
to z0 exists and is equal to l, written as limz→z0

f(z) = l, if for every ε > 0
there exists a number δ such that |f(z) − l| < ε whenever |z − z0| < δ.
Complex and real limits have many common properties, but there is at
least one very important difference. For limits of complex functions, z is
allowed to approach z0 from any direction in the complex plane, that is,
along any curve or path through z0. In order that limz→z0

f(z) = l, it
is required that f(z) approaches the same complex number l along every
possible curve through z0.

The complex derivative is defined similarly as its real counterpart. Sup-
pose that a complex function f is defined in a neighborhood of a point z0.
The derivative of f at z0 is

f ′(z0) = lim
z→z0

f(z) − f(z0)

z − z0
, (A.6)

provided that the limit exists. Furthermore, the function f is said to be
analytic at a point z0 if the derivative f ′(z0) exists at z0 and at every point
in some neighborhood of z0. If f is analytic at every point in an open
connected set (domain) D we say that f(z) is analytic in D. The term
holomorphic is often used as a synonym for analytic. A function that is
analytic at every point in the complex plane is said to be an entire function.

A remarkable property of analytic functions is the infinite differentia-
bility: if f is analytic in a domain D, then f has derivatives of all orders
in D. This is not necessarily true for functions of real variables. Further-
more, if z0 is a point in D, then by the Taylor’s theorem, f has the series
representation

f(z) =
∑

n≥0

f (n)(z0)

n!
(z − z0)

n (A.7)

valid for the largest circle C with center at z0 and radius R that lies entirely
within D. The number R is called the radius of convergence.
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A.1.4 Complex Integration

A complex integral is defined in a manner that is quite similar to that of a
line integral in the Cartesian plane. Let f be a complex function defined
at all points on a smooth curve C. Subdivide C into n parts by means of
z1, . . . , zn−1 chosen arbitrarily. On each arc joining zk−1 and zk choose a
point αk and form a sum

Sn = f(α1)(z1 − z0) + f(α2)(z2 − z1) + · · · + f(αn)(zn − zn−1), (A.8)

where z0 and zn are the starting and end poinds of C, respectively. On
writing ∆zk = zk − zk−1, this becomes

Sn =
n

∑

k=1

f(αk)∆zk. (A.9)

Let the number of subdivisions n increase in such a way that the largest
of the arc lengths |∆zk| approaches zero. If the sum Sn approaches a limit
which does not depend on the choice of the zk’s we call this limit a complex
(line) integral of f along curve C and denote it by

∮

C
f(z)dz. (A.10)

Function f is said to be integrable along curve C. If f is analytic at all
points of a domain D and if curve C is lying in D then f is certainly
integrable along C.

Another remarkable result of complex analysis is the Cauchy’s integral
theorem: Suppose that a function f is analytic at all points within and on
a simple closed curve C. Then,

∮

C
f(z)dz = 0. (A.11)

A.1.5 Laurent Expansion

If a complex function f fails to be analytic at a point z0, then this point is
said to be a singularity of the function f . The Taylor expansion (A.7) does
not hold at a singularity point. However, if the singularity z0 is isolated,
i.e., there exists some deleted neighborhood of z0 throughout which f is
analytic, it is possible to represent f by a series involving both negative
and non-negative integer powers of z − z0. This series is called the Laurent
expansion,

f(z) =
∞

∑

n=−∞
an(z − z0)

n. (A.12)
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Furthermore, the coefficients an are given by

an =
1

2πi

∮

C

f(z)dz

(z − z0)n+1
, (A.13)

where C is any simple closed curve that encloses z0 and that lies entirely
inside a region in which f is analytic.

An isolated singularity z0 of a complex function f is given a classification
depending on whether its Laurent expansion (A.12) contains zero, a finite
number, or an infinite number of terms of negative powers.

1. If all the coefficients a−n are zero, then z0 is called a removable sin-
gularity.

2. If a finite number, say k, of coefficients a−n are non-zero, then z0 is
called a pole of order k.

3. If an infinite number of coefficients a−n are non-zero, then z0 is called
an essential singularity.

If the denominator of a rational function f has a zero of order k at z0, then
the function f has a pole of order k at z0.

A.1.6 The Residue Theorem

The coefficient a−1 in the Laurent series (A.12) has a special meaning. This
coefficient is called the residue of function f at the isolated singularity z0

and denoted by
a−1 = Res

z=z0

f(z). (A.14)

The reason why the residue concept is important is that under some cir-
cumstances we can evaluate complex integrals by summing the residues at
the isolated singularities of a function. More precisely, the Residue theorem
states that if f is analytic inside and on a simple closed curve C, except at
a finite number of isolated singularities z1, z2, . . . , zn within C, then

∮

C
f(z)dz = 2πi

n
∑

k=1

Res
z=zk

f(z). (A.15)

Note that the residue theorem is an extension of the Cauchy’s integral
theorem (A.11).

The residue theory has many applications. It can be used, e.g., to
evaluate real integrals, to find the locations of zeros of an analytic function,
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to sum infinite series and to find integral transforms such as the Laplace
transform and its inverse.

There are several ways to calculate residues. Obviously, if we can some-
how find the Laurent expansion of a function f at point z0, we can just
pick the coefficient a−1 from the series. Otherwise, if the singularity z0 is
a pole of order k, then

Res
z=z0

f(z) =
1

(k − 1)!
lim

z→z0

dk−1

dzk−1
[(z − z0)

kf(z)]. (A.16)

Interestingly, this means that in some cases complex integrals can be eval-
uated by taking derivatives of complex functions.

A.1.7 Puiseux Expansion

We finalize the discussion on complex analysis by a very special topic of
fractional power or Puiseux series. This series is relevant in the derivation
of the accurate NML approximation in Appendix B. Suppose f is a mul-
tivalued analytic function and z0 its special singularity called branch point
of order k − 1. The exact definition of a branch point is complicated and
omitted here, but as an example the function (z − 1)1/3 has a branch point
of order 2 at z0 = 1, and the function

√

z(z − 1) has two branch points
at 0 and 1, each of order 1. In the neighborhood of a branch point z0, the
function f can be represented as a series

f(z) =
∞

∑

n=−∞
an(z − z0)

n/k. (A.17)

Note that the series (A.17) is an extension of the Laurent expansion (A.12).
Unfortunately, there is no simple formula for calculating the coefficients

of a Puiseux series. For the purposes of this thesis, however, a special result
on inversion of Puiseux series presented in [14] is suitable. In that work,
series expansions are classified into four types of systematic patterns. We
omit the full categorization here, but the category relevant to the main part
of the thesis is called “Type II” and it is of form

f(z) = a0 +
∑

n≥1

an(z − z0)
n−1+β, (A.18)

where β > 0. According to the theorem, the inverse function of f can then
be represented as a Puiseux series

F (w) =
∑

n≥0

bn(w − w0)
n/β, (A.19)
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for some sequence of coefficients bn. Note that f(z0) = a0 = w0 and F (w0) =
z0. An example of using the inversion is given in Appendix B.

A.2 Formal Power Series

In this appendix we give a short overview of the theory of formal power
series. We concentrate on the issues that are relevant to the other parts of
the thesis. Readers interested to learn more about formal power series can
refer to, e.g., [71, 19].

A.2.1 Definition

A formal power series is an expression of the form

∑

n≥0

anzn, (A.20)

where the numbers an are called the coefficients of the series. In the theory
of formal power series, the variable z is considered as a formal symbol,
and the convergence of series (A.20) is not an issue. If, however, the series
converges for some values of z, it is a big advantage. For example, the
singularity analysis discussed in Appendix A.4 is based on this analytic
theory of power series. In practice, however, all the operations on series
can be performed without worrying about the convergence.

A.2.2 Linear Combination

The most basic of formal power series operations is taking a linear combi-
nation of two series. Since formal power series are just infinite polynomials,
we have

α
∑

n≥0

anzn + β
∑

n≥0

bnzn =
∑

n≥0

(αan + βbn) zn, (A.21)

for numbers α, β.
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A.2.3 Multiplication

Another basic operation is multiplication of two or more power series. By
basic arithmetics,





∑

n≥0

anzn



 ·





∑

n≥0

bnzn



 = (a0 + a1z + a2z
2 + · · · )(b0 + b1z + b2z

2 + · · · )

(A.22)

= (a0b0) + (a0b1 + a1b0)z (A.23)

+ (a0b2 + a1b1 + a2b0)z
2 + · · ·

=
∑

n≥0

(

n
∑

k=0

akbn−k

)

zn. (A.24)

The series (A.24) is called the Cauchy product or convolution.
The multiplication operation also generalizes to a product of three or

more series. For example, the product of three formal power series is





∑

n≥0

anzn



 ·





∑

n≥0

bnzn



 ·





∑

n≥0

cnzn



 (A.25)

= (a0 + a1z + a2z
2 + · · · )(b0 + b1z + b2z

2 + · · · )(c0 + c1z + c2z
2 + · · · )

(A.26)

= (a0b0c0) + (a0b0c1 + a0b1c0 + a1b0c0)z (A.27)

+ (a0b0c2 + a0b1c1 + a0b2c0 + a1b0c1 + a1b1c0 + a2b0c0)z
2 + · · ·

(A.28)

=
∑

n≥0

(

∑

r+s+t=n

arbsct

)

zn. (A.29)

A.2.4 Reciprocal Series

A more complex operation is taking the reciprocal of a formal power series.
It is defined as

∑

n≥0

bnzn =
1

∑

n≥0 anzn
, (A.30)

from which it follows that

(a0 + a1z + a2z
2 + · · · )(b0 + b1z + b2z

2 + · · · ) ≡ 1, (A.31)
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i.e., the trivial sequence (1, 0, 0, . . . ). Using the product rule (A.24) we
can solve the reciprocal coefficients bn as

a0b0 = 1, b0 =
1

a0
(A.32)

a0b1 + a1b0 = 0, b1 = −
a1b0

a0
= −

a1

a2
0

(A.33)

a0b2 + a1b1 + a2b0 = 0, b2 = −
a1b1 + a2b0

a0
=

a2
1

a3
0

−
a2

a2
0

, (A.34)

and so on. This result is used in Appendix B. It is easy to see that the
reciprocal of a series is only defined when a0, the constant term in the
original series, is non-zero.

As a simple example, we show that the reciprocal of (1,−1, 0, 0, . . .) is
the sequence (1, 1, 1, . . .), i.e.,

1

1 − z
=

∑

n≥0

zn. (A.35)

This is easy to prove, since

(1− z)(1+ z + z2 + · · · ) = (1+ z + z2 + · · · )+ (−z− z2 + · · · ) ≡ 1. (A.36)

A.2.5 Inverse Series

The reciprocal operation is not to be confused with the subtler operation
of inverting a series. Inverse of a series

f(z) =
∑

n≥0

anzn (A.37)

is defined as a series
g(z) =

∑

n≥0

bnzn, (A.38)

if

f(g(z)) = g(f(z)) (A.39)

= a0 + a1(b0 + b1z + b2z
2 + · · · ) (A.40)

+ a2(b0 + b1z + b2z
2 + · · · )2 + · · · ≡ z,

i.e., the trivial sequence (0, 1, 0, 0, . . . ). As argued in [71] (Chapter 2.1),
this operation only makes sense if the constant terms a0, b0 are zero or if f
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is a polynomial (finite). Otherwise, the process of finding the coefficients
of the inverse series is infinite. Consequently, we have

f(g(z)) = a1(b1z + b2z
2 + b3z

3 + · · · ) + a2(b1z + b2z
2 + b3z

3 + · · · )2
(A.41)

+ a3(b1z + b2z
2 + b3z

3 + · · · )3 + · · ·
= (a1b1)z + (a1b2 + a2b

2
1)z

2 + (a1b3 + 2a2b1b2 + a3b
3
1)z

3 + · · · ≡ z,
(A.42)

from which we get by coefficient comparison

a1b1 = 1, b1 =
1

a1
(A.43)

a1b2 + a2b
2
1 = 0, b2 = −

a2b2
1

a1
= −

a2

a3
1

(A.44)

a1b3 + 2a2b1b2 + a3b
3
1 = 0, b3 = −

2a2b1b2 + a3b3
1

a1
=

2a2
2

a5
1

−
a3

a4
1

. (A.45)

This result is also used in Appendix B.

A.3 Generating Functions

One of the most powerful ways to analyze a sequence of numbers is to
form a power series with the elements of the sequence as coefficients. The
resulting function is called the generating function of the sequence. Gen-
erating functions can be seen as a bridge between discrete mathematics
and continuous analysis. They can be used for finding recurrence formulas
and asymptotic expansions, proving combinatorial identities and finding
statistical properties of a sequence.

In this appendix we will present a short overview of generating functions
and illustrate their use with several examples. Good sources for further
reading on generating functions are [71, 3, 19, 27, 28, 29].

A.3.1 Definition

The (ordinary) generating function of a sequence

〈an〉 = (a0, a1, a2, . . .) (A.46)

is defined as a series
A(z) =

∑

n≥0

anzn, (A.47)
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where z is a dummy symbol (or a complex variable). The importance
of generating functions is that the function A(z) is a representation of
the whole sequence 〈an〉. By studying this function we can get important
information about the sequence, such as asymptotic form of the coefficients.

The most basic generating function is the one generating the constant
sequence (1, 1, 1, . . .). As already shown in Appendix A.2, this function is
given by

1

1 − z
=

∑

n≥0

zn. (A.48)

A.3.2 Fibonacci Numbers

As a first non-trivial example of the power of generating functions we con-
sider the famous Fibonacci sequence

〈Fn〉 = (0, 1, 1, 2, 3, 5, 8, . . .), (A.49)

defined by the recurrence relation

Fn+1 = Fn + Fn−1, (n ≥ 1, F0 = 0, F1 = 1). (A.50)

To find the generating function

F (z) =
∑

n≥0

Fnzn = z + z2 + 2z3 + 3z4 + 5z5 + 8z6 + · · · , (A.51)

we multiply the recurrence (A.50) by zn and sum over n ≥ 1:

∑

n≥1

Fn+1z
n =

∑

n≥1

Fnzn +
∑

n≥1

Fn−1z
n (A.52)

F (z) − z

z
= F (z) + zF (z) (A.53)

F (z) =
z

1 − z − z2
. (A.54)

From the basic complex analysis we know that the function F (z) has a
partial fraction expansion of the form

A

1 − αz
+

B

1 − βz
=

z

1 − z − z2
(A.55)

for some numbers α, β, A,B. To find these constants, we write (A.55) as

A

1 − αz
+

B

1 − βz
=

A(1 − βz) + B(1 − αz)

(1 − αz)(1 − βz)
=

z

1 − z − z2
. (A.56)
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For this to hold, we must have

(A + B) − (Aβ + Bα)z = z (A.57)

(1 − αz)(1 − βz) = 1 − z − z2, (A.58)

which can be solved straightforwardly as

α =
1 +

√
5

2
, β =

1 −
√

5

2
, A =

1√
5
, B = −

1√
5
. (A.59)

We can now write

F (z) =
A

1 − αz
+

B

1 − βz
(A.60)

= A
∑

n≥0

(αz)n + B
∑

n≥0

(βz)n (A.61)

=
∑

n≥0

(Aαn + Bβn) zn, (A.62)

and by plugging the solved values (A.59) into Equation (A.62), we get the
closed form solution for the nth Fibonacci number

Fn =
1√
5

((

1 +
√

5

2

)n

−

(

1 −
√

5

2

)n)

. (A.63)

A.3.3 Integer Partitions

Let qK(n) be the number of partitions of integer n into K parts, i.e., the
number of finite non-increasing sequences of non-negative integers (h1, . . . , hK)
such that h1 + h2 + · · · + hK = n. For example, q3(5) = 5, since we have

5 = 5 + 0 + 0 = 4 + 1 + 0 = 3 + 2 + 0 = 3 + 1 + 1 = 2 + 2 + 1. (A.64)

In this section we want to find the generating function of the numbers qK(n),
i.e.,

QK(z) =
∑

n≥0

qK(n)zn. (A.65)

Note that an asymptotic analysis of QK(n) is discussed in Appendix A.4.
It is well-known (see, e.g., [3]) that the function generating the num-

bers qK(n) is given by

QK(z) =
1

1 − z
·

1

1 − z2
·

1

1 − z3
· · ·

1

1 − zK
. (A.66)
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Partition Star diagram Conjugate 1.term 2.term 3.term

5, 0, 0 ) ) ) ) ) 1, 1, 1, 1, 1 z5 1 1

4, 1, 0
) ) ) )
)

2, 1, 1, 1 z3 z2 1

3, 2, 0
) ) )
) )

2, 2, 1 z z4 1

3, 1, 1
) ) )
)
)

3, 1, 1 z2 1 z3

2, 2, 1
) )
) )
)

3, 2 1 z2 z3

Table A.1: Partitions and conjugate partitions of integer 5 into 3 parts.

Intuitively, this result can be understood via an example. Take the above-
mentioned case with n = 5, K = 3. The generating function is

Q3(z) =
1

1 − z
·

1

1 − z2
·

1

1 − z3
(A.67)

= (1 + z + z2 + z3 + · · · )(1 + z2 + z4 + z6 + · · · ) (A.68)

· (1 + z3 + z6 + z9 + · · · ).

By the basic definition of generating functions, it is clear that the coefficient
of z5 in the expansion of (A.68) must be q3(5) = 5. To see that this is indeed
the case, take a look at Table A.1, where the partitions of 5 into 3 parts are
listed. Each partition of n can be represented as a star diagram composed
of n stars arranged in rows. The number of stars in each row is determined
by the elements of the partition. Counting the stars by columns instead of
rows, we get the conjugate partition of the original partition. Now, each
conjugate partition represents a way to get the term z5 in (A.68). Take,
for example, the conjugate partition (2, 1, 1, 1):

1. The number of 1’s in the partition is 3, so pick the 3rd order term
from (1 + z + z2 + z3 + · · · ), i.e., z3.

2. The number of 2’s in the partition is 1, so pick the 1st order term
from (1 + z2 + z4 + z6 + · · · ), i.e., z2.

3. The number of 3’s in the partition is 0, so pick the 0th order term
from (1 + z3 + z6 + z9 + · · · ), i.e., 1.
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We end up with the term z3 ·z2 ·1 = z5, as desired. The other four partitions
are treated similarly. We can therefore conclude that the function Q3(z)
generates numbers q3(n). The full proof can be found in [3].

A.4 Asymptotic Analysis of Generating Functions

In this appendix we will present methods for finding asymptotic behaviour
of a sequence based on the theory of generating functions. For the purposes
of this thesis, a powerful method called singularity analysis by Flajolet
and Odlyzko [16] is especially suitable. Additional sources of information
on singularity analysis are [52, 17, 66]. Other asymptotic methods, such
as bootstrapping, Tauberian theorems, Darboux’s method and the saddle
point method are discussed in [10, 20, 19, 71, 66].

Suppose we have found the generating function for a certain sequence
of numbers that interests us. The goal of asymptotic analysis is to find a
simple function of n which approximates well the values of the sequence
when n is large. This can be achieved by analyzing the singularities of the
generating function. Suitable asymptotic analysis method is then chosen
based on the nature of the singularities.

Especially important is the singularity that is nearest to the origo. As
argued in [66], this dominant singularity determines the asymptotic growth
of the coefficients of the generating function. Therefore, it is only necessary
to locate this singularity and analyze the behaviour of the function around
it.

A.4.1 Rational Functions

We start the discussion on asymptotic analysis by a relatively simple case
of rational generating functions, whose only singularities are poles. Let
f(z) be a rational function generating the sequence 〈an〉. Suppose f(z) is
analytic at zero and has poles at points p1, p2, . . . , pm. Then there exists m
polynomials (P1, . . . , Pm) such that exactly

an = [zn]f(z) =
m

∑

j=1

Pj(n)p−n
i . (A.69)

Furthermore, the degree of Pj is equal to the order of the pole at pj minus
one. In particular, a single pole only contributes a constant term to (A.69).
This theorem is proved in, e.g., [66]. In practice, the polynomials Pj can
be found via residue calculus.
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To illustrate the use of (A.69), let us consider a version of the classic
money changing problem: in how many ways can one pay an amount of
n cents using only coins of 1, 2 and 5 cents? Let mn denote this number.
To solve the problem, we need to find the generating function m(z) for
the sequence 〈mn〉. The money changing problem is closely related to the
counting of integer partitions discussed in Appendix A.3. Using similar
arguments, it is easy to see that the generating function is given by

m(z) =
1

(1 − z)(1 − z2)(1 − z5)
, (A.70)

which is a rational function and analytic at zero, so (A.69) applies.
The first step is to find the poles of (A.70). From the complex root

discussion of Appendix A.1, we have:

• The only pole of (1 − z) is 1.

• The poles of (1 − z2) are 1,−1.

• The poles of (1 − z5) are:

∗ 1

∗ cos 2π
5 + i sin 2π

5

∗ cos 4π
5 + i sin 4π

5

∗ cos 6π
5 + i sin 6π

5

∗ cos 8π
5 + i sin 8π

5 .

Thus, the function m(z) has a triple pole at z = 1 and several single poles.
We choose here to ignore the single poles, since they only contribute a
constant term to (A.69).

By the Laurent’s theorem presented in Appendix A.1, we know that m(z)
has a Laurent expansion at z = 1,

m(z) =
a−3

(z − 1)3
+

a−2

(z − 1)2
+

a−1

(z − 1)
+

∑

n≥0

an(z − 1)n. (A.71)

The coefficients an can be found via basic residue calculus. By the coeffi-
cient formula (A.13),

a−3 =
1

2πi

∮

C

(z − 1)2

(1 − z)(1 − z2)(1 − z5)
dz (A.72)

=
1

2πi

∮

C

1

(1 + z)(1 − z)(1 + z + z2 + z3 + z4)
dz, (A.73)
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which is by the residue theorem (A.15)

a−3 = Res
z=1

1

(1 + z)(1 − z)(1 + z + z2 + z3 + z4)
(A.74)

= lim
z→1

z − 1

(1 + z)(1 − z)(1 + z + z2 + z3 + z4)
(A.75)

= lim
z→1

−1

(1 + z)(1 + z + z2 + z3 + z4)
(A.76)

= −
1

10
. (A.77)

Similarly we can calculate that a−2 = 1/4 and a−1 = −13/40. The Laurent
expansion is then

m(z) = −
1

10(z − 1)3
+

1

4(z − 1)2
−

13

40(z − 1)
+

∑

n≥0

an(z − 1)n (A.78)

=
1

10(1 − z)3
+

1

4(1 − z)2
+

13

40(1 − z)
+

∑

n≥0

an(z − 1)n. (A.79)

To extract the nth coefficient from the expansion (A.79), we need the
following basic combinatoric result (see, e.g., [71])

[zn]
1

(1 − z)k+1
=

(

n + k

n

)

, (A.80)

so (see also Table A.2)

[zn]
1

(1 − z)3
=

(

n + 2

n

)

=
1

2
n2 +

3

2
n + 1, (A.81)

[zn]
1

(1 − z)2
=

(

n + 1

n

)

= n + 1. (A.82)

Now we get the asymptotics for the money changing problem,

mn ∼
1

10

(

1

2
n2 +

3

2
n + 1

)

+
1

4
(n + 1) + O (1) (A.83)

=
1

20
n2 +

8

20
n + O (1). (A.84)

To assess the accuracy of the approximation (A.84), we used Maple to
calculate the full expansion of the generating function (A.70) therefore ob-
taining the exact sequence 〈mn〉. The comparison of the exact and asymp-
totic values is given in Figures A.3 and A.4. Clearly, the approximation
works very well.
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Figure A.3: The comparison of the exact and approximative solutions for
the money changing problem with n = 1, . . . , 20.

A.4.2 Asymptotics of Integer Partitions

In this section we briefly discuss the asymptotic analysis of the integer
partition generating function (A.66) introduced in Appendix A.3,

QK(z) =
1

1 − z
·

1

1 − z2
·

1

1 − z3
· · ·

1

1 − zK
. (A.85)

Clearly, this function has a pole of order K at z = 1. From the discus-
sion of the previous section we know that the highest order pole dominates
the asymptotics of rational generating functions. Furthermore, by Equa-
tion (A.69) a pole of order K contributes a term of degree K − 1. Thus,
we can conclude that the number of partitions of an integer n into K parts
is O

(

nK−1
)

, i.e., asymptotically the same as the number of compositions.

A.4.3 Algebraic-Logarithmic Functions: The Singularity Anal-
ysis

A very general and powerful asymptotic method called singularity analysis
was introduced in [16]. In its most general form it allows to find asymptotics
for algebraic-logarithmic functions of the form

(1 − z)−α

(

1

z
log

1

1 − z

)β

, (A.86)
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Figure A.4: The comparison of the exact and approximative solutions for
the money changing problem for n = 1, . . . , 100.

for real numbers α, β. For the purposes of the other parts of this the-
sis, however, the following special version is more appropriate: Let α -=
0,−1,−2, . . .. Then the coefficient of zn in (1 − z)−α is given by

[zn](1 − z)−α ∼
nα−1

Γ(α)

(

1 +
∞

∑

k=1

ek(α)

nk

)

, (A.87)

where ek(α) is a polynomial in α of degree 2k. The first few polynomials
are given by

e1(α) =
α(α− 1)

2
(A.88)

e2(α) =
α(α− 1)(α− 2)(3α− 1)

24
(A.89)

e3(α) =
α2(α− 1)2(α− 2)(α− 3)

48
. (A.90)

The exact definition of these polynomials is complicated but can be found
in [66].

To illustrate the use of (A.87), we show how to calculate the asymptotic
form for the coefficients of (1 − az)−1/2, where a is a constant. Firstly, we
notice a simple fact that

[zn](1 − az)−α = an[zn](1 − z)−α. (A.91)
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Function Coefficients

(1 − z)3/2 1√
πn5

(

3
4 + 45

32n + 1155
512n2 + O

(

1
n3

))

(1 − z) 0

(1 − z)1/2 − 1√
πn3

(

1
2 + 3

16n + 25
256n2 + O

(

1
n3

))

1 0

(1 − z)−1/2 1√
πn

(

1 − 1
8n + 1

128n2 + O
(

1
n3

))

(1 − z)−1 1

(1 − z)−3/2
√

n
π

(

2 + 3
4n − 7

64n2 + O
(

1
n3

))

(1 − z)−2 n + 1

(1 − z)−3 1
2n2 + 3

2n + 1

(1 − z)−4 1
6n3 + n2 + 11

6 n + 1

Table A.2: Some commonly encountered functions and the asymptotic form
of their coefficients.

The value of α in our example is 1/2, so

[zn](1 − az)−1/2 ∼ an ·
n−1/2

Γ(1/2)

[

1 +
(1/2)(−1/2)

2n
(A.92)

+
(1/2)(−1/2)(−3/2)(1/2)

24n2
+ O

(

1

n3

)]

= an ·
1√
πn

(

1 −
1

8n
+

1

128n2
+ O

(

1

n3

))

. (A.93)

Further examples are listed in Table A.2.
Another very important result of singularity analysis is the following

transfer theorem: If a generating function A(z) satisfies

A(z) = O
(

(1 − z)−α
)

, (A.94)

then
[zn]A(z) = O

(

nα−1
)

. (A.95)

The same holds for the o (·)-functions. Comparing the transfer theorem
(A.95) to Equation (A.87), we can see that it is actually very intuitive.
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We finalize this section by summarizing the method of singularity anal-
ysis into the following recipe:

1. Find the generating function A(z) for the sequence we are interested
in.

2. Find the dominant singularity of A(z).

3. Expand A(z) into series around the dominant singularity.

4. Apply Theorems (A.87) and (A.95) to get the asymptotic form for
the coefficients.

A highly non-trivial example of using this recipe is presented in Appendix B.
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Chapter B

The Szpankowski Approximation

In this appendix we will first derive a generating function for the sequence
of multinomial regret terms. This function is used twice in the other parts
of this thesis: The elegant recursion formula for exact NML computation in
Section 3.1.1 and the accurate Szpankowski approximation in Section 3.1.2
are based on this generating function. Secondly, we give full derivation of
the Szpankowski approximation.

B.1 The Regret Generating Function

Let us start with the sequence 〈nn/n!〉. As in [66], we denote the function
generating this sequence by B(z). Unfortunately, there is no closed-form
formula for B(z). As we will see later, this function is nevertheless suitable
for our purposes. The connection between B(z) and the multinomial regret

57
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terms can be seen by squaring B(z),

B2(z) =





∑

r≥0

rr

r!
zr



 ·





∑

s≥0

ss

s!
zs



 (B.1)

=
∑

r,s≥0

rrss

r!s!
zr+s (B.2)

=
∑

n≥0

(

∑

r+s=n

nn

n!

n!

r!s!

rrss

nr+s

)

zn (B.3)

=
∑

n≥0

nn

n!

(

∑

r+s=n

n!

r!s!

( r

n

)r ( s

n

)s
)

zn (B.4)

=
∑

n≥0

nn

n!
C(M(2), n)zn, (B.5)

where M(2) is the multinomial model class with two values. Thus, B2(z)
generates the sequence 〈nn

n! C(M(2), n)〉. This easily generalizes to

BK(z) =
∑

n≥0

nn

n!





∑

h1+···+hK=n

n!

h1! · · ·hK !

(

h1

n

)h1

· · ·
(

hk

n

)hk



 zn (B.6)

=
∑

n≥0

nn

n!
C(M(K), n)zn, (B.7)

generating the sequence 〈nn

n! C(M(K), n)〉. Note that to be precise, the
function BK(z) is the tree-like generating function [66] of the sequence
〈C(M(K), n)〉. For simplicity, however, we just call it the regret generating
function.

To make the Equation (B.7) useful, we will derive a relation of BK(z)
and the so-called Cayley’s tree function T (z) [30, 9], which generates the
sequence 〈nn−1/n!〉, i.e.,

T (z) =
∑

n≥1

nn−1

n!
zn, (B.8)

as shown in [66]. This sequence counts the rooted labeled trees, hence the
name of the function. The tree function is defined by the functional equa-
tion

T (z) = zeT (z). (B.9)
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Differentiating and multiplying (B.8) by z, we get

zT ′(z) = z ·
∑

n≥1

n · nn−1

n!
zn−1 (B.10)

=
∑

n≥1

nn

n!
zn (B.11)

=
∑

n≥0

nn

n!
zn − 1, (B.12)

from which we get
B(z) = zT ′(z) + 1. (B.13)

On the other hand, differentiating the functional equation (B.9) gives

T ′(z) = eT (z) + zeT (z) · T ′(z) (B.14)

T ′(z)(1 − zeT (z)) = eT (z) (B.15)

zT ′(z)(1 − T (z)) = T (z) (B.16)

zT ′(z) =
T (z)

1 − T (z)
. (B.17)

Combining the Equations (B.13) and (B.17), we get

B(z) =
T (z)

1 − T (z)
+ 1 =

1

1 − T (z)
, (B.18)

and thus

BK(z) =
1

(1 − T (z))K
. (B.19)

This final form can now applied in NML computation by using the proper-
ties of the tree function T (z).

B.2 The Derivation

The proof of the Szpankowski approximation (3.8) was only outlined in [66].
We will now present a full derivation. Our starting point is the regret
generating function already discussed in Appendix B.1,

BK(z) =
1

(1 − T (z))K
=

∑

n≥0

nn

n!
C(M(K), n)zn. (B.20)

To make the presentation easier to follow, the derivation is split into the
following steps:
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1. Find the dominant singularity of the regret generating function BK(z).

2. Expand the inverse of the tree function T (z) into series around the
dominant singularity point.

3. Invert this series to get the expansion of the tree function.

4. Find the series for B(z) = 1/(1 − T (z)).

5. Find the series for BK(z).

6. Apply the singularity analysis theorem (A.87) term by term.

7. Multiply by n!/nn to extract the asymptotic form of the regret terms.

8. Take the logarithm to prove (3.8).

Step 1: To get the asymptotic form for the coefficients of (B.20), we need
to expand the function BK(z) around its dominant singularity, i.e., the one
nearest to the origo. It is well-known (see, e.g., [9]) that the dominant
singularity of T (z) occurs at z = 1/e. This point is also the dominant
singularity of (B.20), since the zero of the denominator (pole) is also at z =
1/e. This can be seen by solving z from the functional equation (B.9),

z = F (T ) = Te−T , (B.21)

and then plugging T = 1 into it.

Step 2: Deriving the series expansion for (B.20) is a very non-trivial task,
since there is no explicit formula for B(z) or T (z). It turns out that the
inverse function F (T ) is a good starting point, since it is an entire function
(analytic everywhere). To get the expansion of T (z) around z = 1/e, we
can first expand F (T ) around T = 1, and then use the series inversion
method described in Appendix A.2.5. Since F (T ) is entire, its expansion
is a simple Taylor series, which can be found by calculating the derivatives
of F (T ) at T = 1. We have

F ′(T ) = e−T + T · (−e−T ) = e−T (1 − T ) (B.22)

F ′′(T ) = −e−T (1 − T ) − e−T = −e−T (2 − T ) (B.23)

F ′′′(T ) = e−T (2 − T ) + e−T = e−T (3 − T ) (B.24)

F ′′′′(T ) = −e−T (3 − T ) − e−T = −e−T (4 − T ), (B.25)
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which leads to

F (T ) =F (1) + F ′(1)(T − 1) +
F ′′(1)

2!
(T − 1)2 +

F ′′′(1)

3!
(T − 1)3+ (B.26)

F ′′′′(1)

4!
(T − 1)4 + · · ·

=1/e −
1/e

2
(T − 1)2 +

1/e

3
(T − 1)3 −

1/e

8
(T − 1)4 + · · · (B.27)

=1/e −
1/e

2
(1 − T )2 −

1/e

3
(1 − T )3 −

1/e

8
(1 − T )4 + · · · . (B.28)

Step 3: Looking at Equation (B.22), we can see that the first deriva-
tive vanishes at T = 1. As suggested in Appendix A.2.5, this unfortu-
nately means that inverting the series (B.28) is not straightforward. In-
tuitively, this complication can be understood via Figure B.1, where the
function F (T ) is plotted near the point T = 1 (in real number space).
Clearly, F (T ) is non-monotonic in every neighborhood of T = 1, and the

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.6 0.8 1 1.2 1.4

F(
T)

T

T * exp(-T)

Figure B.1: Plot of F (T ) = Te−T around T = 1.

inverse function thus multiple-valued. It follows that the expansion of T (z)
around point z = 1/e must also contain multiple-valued terms. As we will
soon see, this is indeed the case: the inverted series will be a Puiseux se-
ries with fractional power terms. To read more about Puiseux series, see
Appendix A.1.7.

To find the inverse of (B.28), we can use a theorem from [14], which
classifies series expansions into four types of systematic patterns based on
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the first few terms of the series. With the terminology of [14], our series
falls into category “Type II” with the order parameter β set to 2 (see also
Appendix A.1.7). For this category, the series inversion is performed by
starting with variable transformations

v = 1 − T (B.29)

w = (1/e − F (T ))1/β = (1/e − z)1/2, (B.30)

and then examining the function

w = A(v) = (1/e − F (T ))1/2 (B.31)

= (f2v
2 + f3v

3 + f4v
4 + · · · )1/2, (B.32)

where, from (B.28),

f2 =
1/e

2
, f3 =

1/e

3
, f4 =

1/e

8
. (B.33)

Next we need to find the series expansion for function A(v), i.e., coeffi-
cients sn such that

(

f2v
2 + f3v

3 + f4v
4 + · · ·

)1/2
= s1v + s2v

2 + s3v
3 + · · · . (B.34)

It is easy to prove (see also Figure B.1) that 1/e−F (T ) ≥ 0 for all T ∈ R,
from which it follows that we can square both sides of (B.34)

f2v
2 + f3v

3 + f4v
4 + · · · =

(

s1v + s2v
2 + s3v

3 + · · ·
)2

(B.35)

= s2
1v

2 + 2s1s2v
3 + (2s1s3 + s2

2)v
4 + · · · , (B.36)

and by coefficient comparison

s2
1 = f2, s1 =

√

f2 (B.37)

2s1s2 = f3, s2 =
f3

2s1
=

f3

2
√

f2
(B.38)

2s1s3 + s2
2 = f4, s3 =

f4 − s2
2

2s1
=

4f2f4 − f2
3

8f3/2
2

. (B.39)

The function A(v) can now be written as

A(v) =
√

f2v +
f3

2
√

f2
v2 +

4f2f4 − f2
3

8f3/2
2

v3 + · · · , (B.40)
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from which we can finally see the idea behind the transformations (B.29)
and (B.30). That is, series (B.40) is an ordinary power series with zero
constant coefficient therefore having a well-defined inverse, say,

v = D(w) = d1w + d2w
2 + d3w

3 + · · · , (B.41)

where the coefficients dn are given by (see Appendix A.2.5)

d1 =
1

s1
=

1√
f2

=
√

2e (B.42)

d2 = −
s2

s3
1

= −
f3

2f2
2

= −
2

3
e (B.43)

d3 =
2s2

2

s5
1

−
s3

s4
1

=
5f2

3 − 4f2f4

8f7/2
2

=
11
√

2

36
e3/2. (B.44)

Transforming back to original variables gives the series expansion for the
tree function

T (z) = 1 − D(w) (B.45)

= 1 −
√

2e(1/e − z)1/2 +
2

3
e(1/e − z) −

11
√

2

36
e3/2(1/e − z)3/2 + · · · ,

(B.46)

which can be further written as

T (z) = 1 −
√

2(1 − ez)1/2 +
2

3
(1 − ez) −

11
√

2

36
(1 − ez)3/2 + · · · . (B.47)

This final form makes is more convenient to apply singularity analysis in
Step 6.
Step 4: After deriving the expansion for T (z), the next task is to find
series for

B(z) =
1

1 − T (z)
, (B.48)

i.e., the reciprocal series of

1 − T (z) =
√

2(1 − ez)1/2 −
2

3
(1 − ez) +

11
√

2

36
(1 − ez)3/2 + · · · . (B.49)

It is clear that the reciprocal is of the form

B(z) = a(1 − ez)−1/2 + b + c(1 − ez)1/2 + · · · , (B.50)
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for some numbers (a, b, c, . . .). By the definition of the reciprocal series, we
must then have

B(z)(1 − T (z)) =
[

a(1 − ez)−1/2 + b + c(1 − ez)1/2 + · · ·
]

·
[
√

2(1 − ez)1/2 −
2

3
(1 − ez) +

11
√

2

36
(1 − ez)3/2 + · · ·

]

≡ 1, (B.51)

i.e., the trivial sequence (1, 0, 0, . . .). The coefficients (a, b, c, . . .) can be
calculated by comparing coefficients

√
2a = 1, a =

1√
2

(B.52)

−
2

3
a +

√
2b = 0, b =

2

3
√

2
a =

1

3
(B.53)

11
√

2

36
a −

2

3
b +

√
2c = 0, c = −

11

36
a +

2

3
√

2
b = −

√
2

24
, (B.54)

and thus we get the series expansion

B(z) =
1√
2
(1 − ez)−1/2 +

1

3
−

√
2

24
(1 − ez)1/2 + · · · . (B.55)

Step 5: The final step for deriving the series expansion for the regret
generating function (B.20) is to expand

BK(z) =
1

(1 − T (z))K
=

(

1√
2
(1 − ez)−1/2 +

1

3
−

√
2

24
(1 − ez)1/2 + · · ·

)K

.

(B.56)
The first term of this series, i.e., the one with the smallest exponent, is
obtained by raising the first term of (B.56) into Kth power

(

1√
2
(1 − ez)−1/2

)K

=

(

1√
2

)K

(1−ez)−K/2 =
1

2K/2
(1−ez)−K/2. (B.57)

To get the next term we raise the first term of (B.56) into (K − 1)th power
and then multiply by the second term. There are K different ways to choose
the second term, which gives

K ·
(

1√
2

)K−1

·
1

3
· (1 − ez)−

K

2
+ 1

2 =
K

3 · 2
K

2
− 1

2

(1 − ez)−
K

2
+ 1

2 . (B.58)

For the third term, we need to consider two cases:
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1. Raise the first term of (B.56) into (K−1)th power and then multiply
by the third term. The third term can be chosen in K different ways.

2. Raise the first term of (B.56) into (K−2)th power and then multiply
by the square of the second term. We have

(K
2

)

= K(K − 1)/2 ways
to do that.

Thus, the third term of BK(z) is

[

K ·
(

1√
2

)K−1

·
−
√

2

24
+

K(K − 1)

2
·
(

1√
2

)K−2

·
(

1

3

)2
]

·(1−ez)−
K

2
+1

=
4K(K − 1) − 3K

36 · 2K/2
(1 − ez)−

K

2
+1. (B.59)

As we will soon see, it is not necessary to calculate more terms. The series
expansion for the regret generating function is now

BK(z) =
1

2K/2
(1 − ez)−K/2 +

K

3 · 2
K

2
− 1

2

(1 − ez)−
K

2
+ 1

2

+
4K(K − 1) − 3K

36 · 2K/2
(1 − ez)−

K

2
+1 + · · · . (B.60)

Step 6: We are now ready to apply the singularity analysis theorem (A.87)
to series (B.60). Proceeding term by term basis,

[zn]

(

1

2K/2
(1 − ez)−K/2

)

∼ (B.61)

en ·
n

K

2
−1

2K/2 · Γ(K/2)

(

1 +
K(K − 1)

2n
+ O

(

1/n2
)

)

[zn]

(

K

3 · 2
K

2
− 1

2

(1 − ez)−
K

2
+ 1

2

)

∼ (B.62)

en ·
K · n

K

2
− 3

2

3 · 2
K

2
− 1

2 · Γ(K
2 − 1

2)

(

1 +
K(K − 1)

2n
+ O

(

1/n2
)

)

[zn]

(

4K(K − 1) − 3K

36 · 2K/2
(1 − ez)−

K

2
+1

)

∼ (B.63)

en ·
(4K(K − 1) − 3K) · n

K

2
−2

36 · 2K/2 · Γ(K
2 − 1)

(

1 +
K(K − 1)

2n
+ O

(

1/n2
)

)

.
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After some tedious algebra we get the asymptotic form for the nth coeffi-
cient of the regret generating function:

[zn]BK(z) ∼ en ·
[

1

2K/2 · Γ(K/2)
· n

K

2
−1 +

K

2
K

2
− 1

2 · 3Γ(K
2 − 1

2)
· n

K

2
− 3

2

+
K(K − 2)(2K + 1)

2K/2 · 36Γ(K/2)
· n

K

2
−2 + O

(

n
K

2
− 5

2

)

]

. (B.64)

Step 7: To extract the asymptotic form of the terms C(M(K), n), we need
to multiply Equation (B.64) by n!/nn. By the celebrated Stirling’s formula,

n!

nn
=

√
2πn · e−n

(

1 +
1

12n
+ O

(

1

n2

))

, (B.65)

which nicely cancels the en term in (B.64). Multiplying (B.64) by (B.65)
gives after simplifications

C(M(K), n) ∼
(n

2

)
K−1

2 ·
√
π

Γ(K/2)

[

1 +

√
2K · Γ(K/2)

3Γ(K
2 − 1

2)
·

1√
n

(B.66)

+
K(K − 2)(2K + 1)

36
·
1

n
+ O

(

1

n3/2

)]

·
[

1 +
1

12n
+ O

(

1

n2

)]

=
(n

2

)
K−1

2 ·
√
π

Γ(K/2)

[

1 +

√
2K · Γ(K/2)

3Γ(K
2 − 1

2)
·

1√
n

(B.67)

+
3 + K(K − 2)(2K + 1)

36
·
1

n
+ O

(

1

n3/2

)]

.

Step 8: The final step is to take the logarithm of (B.67). Consider the
standard Taylor series of the (natural) logarithm function

log(1 + z) = z −
z2

2
+

z3

3
+ · · · . (B.68)

Plugging

z =
a√
n

+
b

n
+ O

(

1

n3/2

)

(B.69)
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into series (B.68) gives

log

[

1 +
a√
n

+
b

n
+ O

(

1

n3/2

)]

=
a√
n

+
b

n
−

1

2

[

a√
n

+
b

n
+ O

(

1

n3/2

)]2

(B.70)

=
a√
n

+ (b −
1

2
a2) ·

1

n
+ O

(

1

n3/2

)

,

(B.71)

for numbers a, b. By applying (B.71) to (B.67) we get the asymptotic
formula for the multinomial regret terms:

log C(M(K), n) =
K − 1

2
log

n

2
+ log

√
π

Γ(K/2)
+

√
2K · Γ(K/2)

3Γ(K
2 − 1

2)
·

1√
n

(B.72)

+

(

3 + K(K − 2)(2K + 1)

36
−

Γ2(K/2) · K2

9Γ2
(

K
2 − 1

2

)

)

·
1

n
(B.73)

+ O
(

1

n3/2

)

.

The proof of (3.8) follows trivially.
An important thing to notice is that in all the steps of the derivation

we could have calculated an arbitrary number of terms for the series expan-
sions. It follows that the derivation does not limit the accuracy of the final
result. However, as shown in Section 3.1.3, O

(

1/n3/2
)

is accurate enough
for practical purposes.
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Minimum encoding approaches for predictive modeling. In G. Cooper
and S. Moral, editors, Proceedings of the 14th International Confer-
ence on Uncertainty in Artificial Intelligence (UAI’98), pages 183–192,



References 71

Madison, WI, July 1998. Morgan Kaufmann Publishers, San Francisco,
CA.

[23] P. Hall and E. Hannan. On stochastic complexity and nonparametric
density estimation. Biometrika, 75(4):705–714, 1988.

[24] D. Heckerman. A tutorial on learning with Bayesian networks. Techni-
cal Report MSR-TR-95-06, Microsoft Research, Advanced Technology
Division, One Microsoft Way, Redmond, WA 98052, 1996.

[25] P. Henrici. Automatic computations with power series. Journal of the
ACM, 3(1):11–15, January 1956.

[26] P. Henrici. Applied and Computational Complex Analysis, Vols. 1–3.
John Wiley & Sons, New York, 1977.

[27] D. Knuth. The Art of Computer Programming, vol. 1 / Fundamental
Algorithms (third edition). Addison-Wesley, 1997.

[28] D. Knuth. The Art of Computer Programming, vol. 2 / Seminumerical
Algorithms (third edition). Addison-Wesley, 1998.

[29] D. Knuth. The Art of Computer Programming, vol. 3 / Sorting and
Searching (second edition). Addison-Wesley, 1998.

[30] D. Knuth and B. Pittel. A recurrence related to trees. Proceedings of
the American Mathematical Society, 105(2):335–349, 1989.

[31] M. Koivisto. Sum-Product Algorithms for the Analysis of Genetic
Risks. PhD thesis, Report A-2004-1, Department of Computer Sci-
ence, University of Helsinki, 2004.

[32] P. Kontkanen, W. Buntine, P. Myllymäki, J. Rissanen, and H. Tirri.
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Efficient Computation of Stochastic Complexity

Pp. 181–188 in Proceedings of the Ninth International Workshop on Ar-

tificial Intelligence and Statistics, edited by Christopher M. Bishop and

Brendan J. Frey, 2003.

c© 2003 the Authors.





Pp. 181–188 in Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, edited by Christopher M.
Bishop and Brendan J. Frey. Society for Artificial Intelligence and Statistics, 2003. 181

Efficient Computation of Stochastic Complexity

Petri Kontkanen, Wray Buntine, Petri Myllymäki, Jorma Rissanen, Henry Tirri
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Abstract

Stochastic complexity of a data set is defined as
the shortest possible code length for the data ob-
tainable by using some fixed set of models. This
measure is of great theoretical and practical im-
portance as a tool for tasks such as model selec-
tion or data clustering. Unfortunately, comput-
ing the modern version of stochastic complexity,
defined as the Normalized Maximum Likelihood
(NML) criterion, requires computing a sum with
an exponential number of terms. Therefore, in
order to be able to apply the stochastic complex-
ity measure in practice, in most cases it has to
be approximated. In this paper, we show that for
some interesting and important cases with multi-
nomial data sets, the exponentiality can be re-
moved without loss of accuracy. We also intro-
duce a new computationally efficient approxima-
tion scheme based on analytic combinatorics and
assess its accuracy, together with earlier approx-
imations, by comparing them to the exact form.
The results suggest that due to its accuracy and
efficiency, the new sharper approximation will be
useful for a wide class of problems with discrete
data.

1 INTRODUCTION

From the information-theoretic point of view, the most
plausible explanation for a phenomenon is the one which
can be used for constructing the most effective coding of
the observable realizations of the phenomenon. This type
of minimum encoding explanations can be applied in sta-
tistical learning for building realistic domain models, given
some sample data. Intuitively speaking, in principle this
approach can be argued to produce the best possible model
of the problem domain, since in order to be able to pro-
duce the most efficient coding of data, one must capture
all the regularities present in the domain. Consequently,

the minimum encoding approach can be used for construct-
ing a solid theoretical framework for statistical modeling.
Similarly, the minimum encoding approach can be used for
producing accurate predictions of future events.

The most well-founded theoretical formalization of the
intuitively appealing minimum encoding approach is the
Minimum Description Length (MDL) principle developed
by Rissanen (Rissanen, 1978, 1987, 1996). The MDL prin-
ciple has gone through several evolutionary steps during
the last two decades. For example, the early realization
of the MDL principle, the two-part code MDL (Rissanen,
1978), takes the same form as the Bayesian BIC crite-
rion (Schwarz, 1978), which has led some people to incor-
rectly believe that MDL and BIC are equivalent. The lat-
est instantiation of MDL discussed here is not directly re-
lated to BIC, but to a more evolved formalization described
in (Rissanen, 1996). For discussions on the theoretical ad-
vantages of this approach, see e.g. (Rissanen, 1996; Barron,
Rissanen, & Yu, 1998; Grünwald, 1998; Rissanen, 1999;
Xie & Barron, 2000; Rissanen, 2001) and the references
therein.

The most important notion of MDL is the Stochastic Com-
plexity (SC), which is defined as the shortest description
length of a given data relative to a model classM. Unlike
some other approaches, like for example Bayesian meth-
ods, the MDL principle does not assume that the model
class chosen is correct. It even says that there is no such
thing as a true model or model class, which in Bayesian
methods is sometimes acknowledged in practice. Fur-
thermore, SC is an objective criterion in the sense that
it is not dependent on any prior distribution, it only uses
the data at hand1. This means that the objectives of the
MDL approach are very similar to those behind Bayesian
methods with so-called reference priors (Bernardo, 1997),
but note, however, that Bernardo himself expresses doubt
that a reasonably general notion of “non-informative” pri-

1Unlike Bayesian methods, with SC the possible subjective
prior information is not used as an explicit part of the theoretical
framework, but it is expected to be used implicitly in the selection
of the parametric model class discussed in the next section.
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ors exists in Bayesian statistics in the multivariate frame-
work (Bernardo, 1997).

It has been shown (see (Clarke & Barron, 1990; Grünwald,
1998)) that the stochastic complexity criterion is asymptot-
ically equivalent to the asymptote of the Bayesian marginal
likelihood method with the Jeffreys prior under certain con-
ditions, when the Jeffreys prior also becomes equivalent to
the so-called reference priors (Bernardo & Smith, 1994).
Nevertheless, with discrete data this equivalence does not
hold near the boundary of the parameter space in many
models (Chickering & Heckerman, 1997; Xie & Barron,
2000), and in applications such as document or natural lan-
guage modelling some parameters are expected to lie at the
boundary. The implicit use of the Laplace approximation in
the Bayesian derivations severely strains the approximation
or completely anulls it on the boundaries, as discussed in
(Bernardo & Smith, 1994; Bleistein & Handelsman, 1975).
Consequently, it can be said that the stochastic complexity
approach aims to achieve the goal of objectivity in a way
not demonstrated in the Bayesian approach due to technical
difficulties.

All this makes the MDL principle theoretically very ap-
pealing. However, the applications of the modern, so
called Normalized Maximum Likelihood (NML) version
of MDL, at least with multinomial data, have been quite
rare. This is due to the fact that the definition of SC in-
volves a sum (or integral) over all the possible data matri-
ces of certain length, which are obviously exponential in
number. Some applications have been presented for dis-
crete regression (Tabus, Rissanen, & Astola, 2002), linear
regression (Barron et al., 1998; Dom, 1996), density es-
timation (Barron et al., 1998) and segmentation of binary
strings (Dom, 1995). In this paper, we will present meth-
ods for removing the exponentiality of SC in several im-
portant cases involving multinomial (discrete) data. Even
these methods are, however, in some cases computationally
demanding. Therefore we also present three computation-
ally efficient approximations to SC and instantiate them for
the cases mentioned. The approach is similar to our pre-
vious work in (Kontkanen, Myllymäki, Silander, & Tirri,
1999), but it was based on an earlier definition of MDL,
not on the modern version adopted here. The ability to
compute the exact SC gives us a unique opportunity to see
how accurate the approximations are. This is important as
we firmly believe that the results extend to more complex
cases where exact SC is not available.

In Section 2 we first review the MDL principle and discuss
how to compute it for a single multinomial variable and
a certain multi-dimensional model class. The techniques
used in this section are completely new. Section 3 presents
the three SC approximations for multinomial data. In Sec-
tion 4 we study the accuracy of these approximations by
comparing them to the exact stochastic complexity. Finally,
Section 5 gives the concluding remarks and presents some

ideas for future work.

2 STOCHASTIC COMPLEXITY FOR
MULTINOMIAL DATA

2.1 INTRODUCTION TOMDL

Let us consider a data set (or matrix) xN = (x1, . . . ,xN )
of N outcomes (vectors), where each outcome xj is an el-
ement of the set X . The set X consists of all the vectors of
the form (a1, . . . , am), where each variable (or attribute) ai

takes on values v ∈ {1, . . . , ni}. Furthermore, we assume
that our data is multinomially distributed.

We now consider the case with a parametric family of prob-
abilistic candidate models (or codes)M = {f(x|θ) | θ ∈
Γ}, where Γ is an open bounded region of Rk and k is
a positive integer. The basic principle behind Minimum
Description Length (MDL) modeling is to find a code that
minimizes the code length over all data sequences which
can be well modeled by M. Here a data sequence being
“well-modeled byM” means that there is a model θ inM
which gives a good fit to the data. In other words, if we
let θ̂(xN ) denote the maximum likelihood estimator (MLE)
of the data xN , then xN is well modeled byM means that
f(xN |θ̂(xN )) is high. The stochastic complexity of a data
sequence xN , relative to a family of modelsM, is the code
length of xN when it is encoded using the most efficient
code obtainable with the help of the familyM.

In the above, stochastic complexity was defined only in
an implicit manner — as discussed in (Grünwald, Kontka-
nen, Myllymäki, Silander, & Tirri, 1998), there exist sev-
eral alternative ways for defining the stochastic complexity
measure and the MDL principle explicitly. In (Rissanen,
1996) Rissanen shows how the two-part code MDL pre-
sented in (Rissanen, 1978) can be refined to a much more
efficient coding scheme. This scheme is based on a notion
of normalized maximum likelihood (NML), proposed for fi-
nite alphabets in (Shtarkov, 1987). The definition of NML
is

PNML(xN | M) =
P (xN | θ̂(xN ),M)

∑

yN P (yN | θ̂(yN ),M)
, (1)

where the sum goes over all the possible data matrices of
length N . For discussions on the theoretical motivations
behind this criterion, see e.g. (Rissanen, 1996; Merhav &
Feder, 1998; Barron et al., 1998; Grünwald, 1998; Rissa-
nen, 1999; Xie & Barron, 2000; Rissanen, 2001).

Definition (1) is intuitively very appealing: every data ma-
trix is coded using its own maximum likelihood (i.e. best
fit) model, and then a penalty for the complexity of the
model classM is added to normalize the distribution. This
penalty, i.e., the denominator of (1), is called the regret.
Note that usually the regret is defined as a logarithm of the
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denominator. In this paper, however, we mostly use the
language of probability theory rather than information the-
ory and thus the definition without the logarithm is more
natural.

2.2 COMPUTING THE NML:
ONE-DIMENSIONAL CASE

We now turn to the question of how to compute the NML
criterion (1), given a data matrix xN and a model classM1.
Let us first consider a case with only one multinomial vari-
able with K values. The maximum likelihood term is easy
and efficient to compute:

P (xN | θ̂(xN ),M1) =
N
∏

j=1

P (xj | θ̂(xN ))

=
K
∏

v=1

θ̂hv

v =
K
∏

v=1

(

hv

N

)hv

, (2)

where θ̂v is the probability of value v, and (h1, . . . , hK)
are the sufficient statistics of xN , which in the case of
multinomial data are simply the frequencies of the values
{1, . . . , K} in xN .

At first sight it may seem that the time complexity of com-
puting the regret, i.e., the denominator in (1), grows expo-
nentially with the size of the data, since the summing goes
over KN terms. However, it turns out that for reasonable
small values of K it is possible to compute (1) efficiently.
Since the maximum likelihood (2) only depends on the suf-
ficient statistics hv , the regret can be written as

R1
K,N

def.
=

∑

xN

P (xN | θ̂(xN ),M1)

=
∑

h1+···+hK=N

N !

h1! · · ·hK !

K
∏

v=1

(

hv

N

)hv

, (3)

where in the last formula the summing goes over all the
compositions of N into K parts, i.e., over all the possible
ways to choose non-negative integers h1, . . . , hK so that
they sum up toN . We use the notationR1

K,N to refer to this
subsequently, i.e., the regret for one multinomial variable
with K values and N data vectors. The time complexity
of (3) is O(NK−1), which is easy to see. For example,
take case K = 3. The regret can be computed in O(N2)
time:

R1
3,N =

N
∑

h1=0

N−h1
∑

h2=0

N !

h1!h2!(N − h1 − h2)!

·
(

h1

N

)h1
(

h2

N

)h2
(

N − h1 − h2

N

)N−h1−h2

. (4)

2.3 COMPUTING THE NML : THE RECURSIVE
FORMULA

It turns out that the exact regret for a single multinomial
variable can also be computed with a computationally very
efficient combinatoric recursive formula. Consider R1

K,N
as before. Using standard combinatorics we get the follow-
ing recursion:

R1
K,N =

∑

h1+h2=N

N !

h1!h2!

(

h1

N

)h1
(

h2

N

)h2

· R1
k1,h1R

1
k2,h2, (5)

where k1 + k2 = K.

This formula allows us to compute the exact NML very ef-
ficiently by applying a common doubling trick from com-
binatorics. Firstly, one computes the tables of R1

2m,n for
m = 1, . . . , #log K$ and n = 1, . . . , N . Secondly, R1

K,N
can be built up from these tables. For example, take the
case R1

26,N . First calculate R1
K,n for K ∈ {2, 4, 8, 16}

and n = 1, . . . , N . Then apply (5) to calculate the ta-
bles of R1

10,n from R1
2,n and R1

8,n. Finally, R1
26,N can be

computed from the tables of R1
16,n and R1

10,n. It is now
easy to see that the time complexity of computing (5) is
O(N2 log K).

2.4 COMPUTING THE NML :
MULTI-DIMENSIONAL CASE

The one-dimensional case discussed in the previous sec-
tions is not adequate for many real-world situations, where
data is typically multi-dimensional. Let us assume that we
have m variables. The number of possible data vectors
is

∏m
i=1 ni. It is clear that even the methods presented in

the previous sections do not make the NML computation
efficient in the multi-dimensional case. We are forced to
make some independence assumptions. In this article, we
assume the existence of a special variable c (which can be
chosen to be one of the variables in our data matrix or it
can be latent), and that given the value of c, the variables
(a1, . . . , am) are independent. That is, denoting the model
class resulting from this assumption byMT ,

P (c, a1, . . . , am | θ,MT )

= P (c | θ,MT )
m
∏

i=1

P (ai | c, θ,MT ). (6)

Although simple, this model class has been very successful
in practice in mixture modeling (Kontkanen, Myllymäki, &
Tirri, 1996), cluster analysis, case-based reasoning (Kon-
tkanen, Myllymäki, Silander, & Tirri, 1998), Naive Bayes
classification (Grünwald et al., 1998; Kontkanen, Myl-
lymäki, Silander, Tirri, & Grünwald, 2000) and data vi-
sualization (Kontkanen, Lahtinen, Myllymäki, Silander, &
Tirri, 2000).
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We now show how to compute NML forMT . Assuming c
hasK values and using (3), Equation (1) becomes

PNML(xN |MT )

=

∏K
k=1

(

hk

N

)hk
∏m

i=1

∏K
k=1

∏ni

v=1

(

fikv

hk

)fikv

Rm
MT

, (7)

where hk is the number of times c has value k in xN ,
fikv is the number of times ai has value v when c = k,
and Rm

MT
is the regret:

Rm
MT

=
∑

h1+···+hK=N
∑

f111+···+f11n1
=h1

· · ·
∑

f1K1+···+f1Kn1
=hK

· · ·
∑

fm11+···+fm1nm
=h1

· · ·
∑

fmK1+···+fmKnm
=hK

N !

h1! · · ·hK !

K
∏

k=1

(

hk

N

)hk

·
m
∏

i=1

K
∏

k=1

hk!

fik1! · · · fikni
!

ni
∏

v=1

(

fikv

hk

)fikv

. (8)

The trick to make (8) more efficient is to note that we can
move all the terms under their respective summation signs,
and replace the inner term with the one-dimensional case,
which gives

Rm
MT

=
∑

h1+···+hK=N

N !

h1! · · ·hK !

K
∏

k=1

(

hk

N

)hk

·
m
∏

i=1

K
∏

k=1

R1
hk,ni

. (9)

This depends only linearly on the number of variables m
making it possible to compute (7) for cases with lots of
variables provided that the number of value counts are rea-
sonably small. On the other hand, formula (9) is clearly
exponential with respect toK. This makes it infeasible for
cases like cluster analysis, where typically K can be very
big.

It turns out that the recursive formula (5) can also be gen-
eralized to the multi-dimensional case. There are, how-
ever, cases where even this recursive generalization is too
inefficient. One important example is stochastic optimiza-
tion problems, where typically one must evaluate the cost
function thousands or even hundreds of thousands of times.
It is clear that for these cases efficient approximations are
needed. This will be the subject of the next section.

3 STOCHASTIC COMPLEXITY
APPROXIMATIONS

In the previous section we discussed how the NML can be
computed efficiently for both one- and multi-dimensional
cases. However, we usually had to assume that the vari-
ables in our domain do not have too many values. Although
the recursive formula (5) is only logarithmic with respect
to the number of values, it is still quadratically dependent
on the number of data vectors. Therefore, it is necessary
to develop approximations to the NML. In this section,
we are going to present three such approximations, two of
which are well-known (BIC, Rissanen’s asymptotic expan-
sion) and a new one based on analytic combinatorics. For
each approximation, we instantiate them for both the sin-
gle multinomial case and the multivariate model classMT

defined by Equation (6). Furthermore, since we are able to
compute the exact NML for these interesting and important
cases, it is possible for the first time assess how accurate
these approximations really are. This will be the topic of
Section 4.

3.1 BAYESIAN INFORMATION CRITERION

The Bayesian information criterion (BIC) (Schwarz, 1978;
Kass & Raftery, 1994), also known as the Schwarz crite-
rion, is the simplest of the three approximations. For the
single multinomial variable case, we get

− log PBIC(xN |M1) = − log P (xN | θ̂(xN ))

+
K − 1

2
log(N), (10)

where K is the number of values of the multinomial vari-
able. As the name implies, the BIC has a Bayesian inter-
pretation, but it can also be given a formulation in the MDL
setting, as showed in (Rissanen, 1989).

In the multi-dimensional case, we easily get

− log PBIC(xN |MT ) = − log P (xN | θ̂(xN ))

+
(K − 1) + K ·

∑m
i=1 (ni − 1)

2
· log(N). (11)

As can be seen, the BIC approximation is very quick to
compute and also easy to generalize to more complex
model classes. However, it is known that BIC typically
favors too simple model classes.

3.2 RISSANEN’S ASYMPTOTIC EXPANSION

As proved in (Rissanen, 1996), for model classes that sat-
isfy certain regularity conditions, an asymptotic expansion
can be derived. The most important condition is that the
Central Limit Theorem should hold for the maximum like-
lihood estimators for all the elements in the model class.
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The precise regularity conditions can be found in (Rissa-
nen, 1996). The expansion is as follows:

− log PRIS(xN |M) = − log P (xN |θ̂(xN ))

+
k

2
log

N

2 π
+ log

∫

√

|I(θ)|dθ + o (1) , (12)

where the integral goes over all the possible parameter vec-
tors θ ∈ M, and I(θ) is the (expected) Fisher informa-
tion matrix. The first term is the familiar negative log-
arithm of maximum likelihood. The second term mea-
sures the complexity that is due to the number of param-
eters in the model. Finally, the last term measures the
complexity that comes from the local geometrical proper-
ties of the model space. For a more precise discussion,
see (Grünwald, 1998).

Rissanen’s asymptotic expansion for a single multinomial
variable is discussed in (Rissanen, 1996), and with our no-
tation it is given by

− log PRIS(xN |M1) = − log P (xN | θ̂(xN ))

+
K − 1

2
log

(

N

2 π

)

+ log

(

πK/2

Γ
(

K
2

)

)

+ o (1) , (13)

where Γ(·) is the Euler gamma function.

For the multi-dimensional case, we have earlier (Kontka-
nen et al., 2000) derived the square root of the determinant
of the Fisher information for model classMT :

√

|I(θ)| =
K
∏

k=1

α
1

2 (
m

i=1
(ni−1)−1)

k

m
∏

i=1

K
∏

k=1

ni
∏

v=1

θ
− 1

2

ikv , (14)

where αk = P (c = k) and θikv = P (ai = v|c = k).
To get (12), we need to integrate this expression over the
parameters. Fortunately, this is relatively easy since this
expression is a product of Dirichlet integrals, yielding

∫

√

|I(θ)|dθ

=

∫ K
∏

k=1

α
1

2 (
m

i=1
(ni−1)−1)

k ·
m
∏

i=1

K
∏

k=1

ni
∏

v=1

θ
− 1

2

ikv dθ

=

∏K
k=1 Γ

(

1
2 (

∑m
i=1 (ni − 1) + 1)

)

Γ
(

K
2 (

∑m
i=1 (ni − 1) + 1)

)

·
m
∏

i=1

K
∏

k=1

πni/2

Γ
(

ni

2

) , (15)

and after simplifications we get

− log PRIS(xN |MT ) = − log P (xN | θ̂(xN ))

+
(K − 1) + K

∑m
i=1 (ni − 1)

2
log

(

N

2 π

)

+ K · log Γ

(

1

2

(

m
∑

i=1

(ni − 1) + 1

))

− log Γ

(

K

2

(

m
∑

i=1

(ni − 1) + 1

))

+ K ·
m

∑

i=1

(ni

2
log π − log Γ

(ni

2

))

+ o (1) . (16)

Clearly, Rissanen’s asymptotic expansion is efficient to
compute, but for more complex model classes than
our MT , the determinant of the Fisher information is no
longer a product of Dirichlet integrals, which might cause
technical problems.

3.3 SZPANKOWSKI APPROXIMATION

Theorem 8.32 in (Szpankowski, 2001) gives the redun-
dancy rate for memoryless sources. The theorem is based
on analytic combinatorics and generating functions, and
can be used as a basis for a new NML approximation. Re-
dundancy rate for memoryless sources is actually the regret
for a single multinomial variable, and thus we have

− log PSZP (xN |M1) = − log P (xN | θ̂(xN ))

+
K − 1

2
log

(

N

2

)

+log

( √
π

Γ
(

K
2

)

)

+

√
2Γ

(

K
2

)

3
√

N Γ
(

K
2 − 1/2

)

+

(

3 + K(K − 2)(2K + 1)

36
−

Γ2
(

K
2

)

K2

9Γ2
(

K
2 − 1/2

)

)

·
1

N

+ O
(

1

N3/2

)

. (17)

For the multi-dimensional case we can use the factorized
form (9) of the exact NML. Let R̂1

K,N denote the regret
approximation in (17) with N data vectors and K possible
values. Now we can write

− log PSZP (xN |MT ) = − log P (xN | θ̂(xN ))

+ log
∑

h1+···+hK=N

(

N !

h1! · · ·hK !

K
∏

k=1

(

hk

N

)hk

·
m
∏

i=1

K
∏

k=1

R̂1
ni,hk

)

+ O
(

1

N3/2

)

. (18)

The time complexity of this approximation grows exponen-
tially withK. However, we believe that similar approxima-
tion to (17) can be derived for model classMT so that this
exponentiality could be removed. This is a topic for future
work.
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4 EMPIRICAL RESULTS

As noted in the previous section, since we are able to com-
pute the exact NML for model classes discussed in this pa-
per, we have a unique opportunity to test how accurate the
NML approximations really are. The first thing to notice
is that since all three approximations presented contain the
maximum likelihood term, we can ignore it in the compar-
isons and concentrate on the (log-)regret. Notice that since
the regret is constant given the model class (i.e., it does not
depend on observed data), we avoid the problem of trying
to choose representative and unbiased data sets for the ex-
periments.

We conducted two sets of experiments corresponding to
the single multinomial case and the multivariate model
classMT . In the following, we will use the following ab-
breviations for the approximations:

• BIC: Bayesian information criteria presented in Sec-
tion 3.1.

• RIS: Rissanen’s asymptotic expansion presented in
Section 3.2.

• SZP: Szpankowski-based approximation presented in
Section 3.3.

We start with the one-dimensional case. Figures 1, 2 and 3
show the differences between the three approximations and
the exact log-regret as a function of the data size N with a
different K, i.e., with a different number of values for the
single variable. Cases with K = 2, K = 4 and K = 9 are
shown.
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Figure 1: NML approximation results with a single multi-
nomial variable having 2 values.

From these figures we see that the SZP approximation is
clearly the best of the three. Furthermore, it is remarkably
accurate: just after a few vectors the error is practically
zero. The second best approximation is RIS, which takes
about 100 data vectors or so to converge to a level near zero.
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Figure 2: NML approximation results with a single multi-
nomial variable having 4 values.
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Figure 3: NML approximation results with a single multi-
nomial variable having 9 values.

However, unlike SZP approximation, the convergence of
RIS seems to get slower with increasingK. From figures 2
and 3 we see that when the test setting becomes more com-
plex (with K = 4 and K = 9), BIC starts to overestimate
the regret, and thus favors too simple models.

For the multidimensional case we tested with several values
for the number of variables m. The results were very sim-
ilar, so we show here only the case with 30 variables and 2
or 4 values. The special (clustering) variable c was taken
to be binary in all tests. The results are shown in Figures 4
and 5.

From the results we can conclude that the SZP approxi-
mation is the best and prominently accurate approximation
also in the multivariate case. Furthermore, it converged
only after few data vectors also in this more complex set-
ting. Rissanen’s asymptotic expansion works still reason-
ably well, but the converge is slower than in the single
multinomial case. The BIC approximation overestimates
the regret in both cases, and becomes very inaccurate in
more complex cases (as can be seen in Figure 5).



187

-50

-40

-30

-20

-10

0

10

20 40 60 80 100 120 140 160 180 200

Lo
g-

re
gr

et
 d

iff
er

en
ce

Data size

BIC
RIS

SZP

Figure 4: NML approximation results with 30 multinomial
variables having 2 values.
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Figure 5: NML approximation results with 30 multinomial
variables having 4 values.

5 CONCLUSION AND FUTUREWORK

In this article we have investigated how to compute the
stochastic complexity both exactly and approximatively in
an attempt to widen the application potential of the MDL
principle. We showed that in the case of discrete data the
exact form of SC can be computed for several important
cases. Particularly interesting was the multi-dimensional
model class case, which opens up several application pos-
sibilities for the MDL in problems like data clustering.

In addition to exact computation methods, we presented
and instantiated three stochastic complexity approxima-
tions, and compared their accuracy. The most interesting
and important observation was that the new approximation
based on analytic combinatorics was significantly better
than the older ones. It was also shown to be accurate al-
ready with very small sample sizes. Furthermore, the accu-
racy did not seem to get worse even for the more complex
cases. This gives a clear indication that this approxima-
tion will also be useful for the cases where exact SC is not

efficiently computable.

In the future, on the theoretical side, our goal is to extend
the SZP approximation to more complex cases like gen-
eral graphical models. Secondly, we will research super-
vised versions of SC, designed for supervised prediction
tasks such as classification. On the application side, we
have already conducted preliminary tests with MDL clus-
tering by using proprietary real-world industrial data. The
preliminary results are very encouraging: according to do-
main experts we have consulted, the clusterings found with
MDL are much better than the ones found with traditional
approaches. It is likely that the methods presented here can
be used in several other application areas as well with sim-
ilar success.
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Abstract
Stochastic complexity of a data set is defined as the
shortest possible code length for the data obtainable
by using some fixed set of models. This measure is
of great theoretical and practical importance as a
tool for tasks such as model selection or data clus-
tering. In the case of multinomial data, comput-
ing the modern version of stochastic complexity,
defined as the Normalized Maximum Likelihood
(NML) criterion, requires computing a sum with
an exponential number of terms. Furthermore, in
order to apply NML in practice, one often needs to
compute a whole table of these exponential sums.
In our previous work, we were able to compute this
table by a recursive algorithm. The purpose of this
paper is to significantly improve the time complex-
ity of this algorithm. The techniques used here are
based on the discrete Fourier transform and the con-
volution theorem.

1 Introduction
The Minimum Description Length (MDL) principle devel-
oped by Rissanen [Rissanen, 1978; 1987; 1996] offers a well-
founded theoretical formalization of statistical modeling. The
main idea of this principle is to represent a set of models
(model class) by a single model imitating the behaviour of
any model in the class. Such representative models are called
universal. The universal model itself does not have to belong
to the model class as often is the case.
From a computer science viewpoint, the fundamental idea

of the MDL principle is compression of data. That is, given
some sample data, the task is to find a description or code
of the data such that this description uses less symbols than
it takes to describe the data literally. Intuitively speaking,
this approach can in principle be argued to produce the best
possible model of the problem domain, since in order to be
able to produce the most efficient coding of data, one must
capture all the regularities present in the domain.
The MDL principle has gone through several evolutionary

steps during the last two decades. For example, the early re-
alization of the MDL principle, the two-part code MDL [Ris-
sanen, 1978], takes the same form as the Bayesian BIC cri-
terion [Schwarz, 1978], which has led some people to incor-

rectly believe that MDL and BIC are equivalent. The latest
instantiation of the MDL is not directly related to BIC, but
to the formalization described in [Rissanen, 1996]. Unlike
Bayesian and many other approaches, the modern MDL prin-
ciple does not assume that the chosen model class is correct.
It even says that there is no such thing as a true model or
model class, as acknowledged by many practitioners. The
model class is only used as a technical device for constructing
an efficient code. For discussions on the theoretical motiva-
tions behind the modern definition of the MDL see, e.g., [Ris-
sanen, 1996; Merhav and Feder, 1998; Barron et al., 1998;
Grünwald, 1998; Rissanen, 1999; Xie and Barron, 2000;
Rissanen, 2001].
The most important notion of the MDL principle is the

Stochastic Complexity (SC), which is defined as the shortest
description length of a given data relative to a model classM.
The modern definition of SC is based on the Normalized
Maximum Likelihood (NML) code [Shtarkov, 1987]. Unfor-
tunately, with multinomial data this code involves a sum over
all the possible data matrices of certain length. Computing
this sum, usually called the regret, is obviously exponential.
Therefore, practical applications of the NML have been quite
rare,
In our previous work [Kontkanen et al., 2003; 2005], we

presented a polynomial time (quadratic) method to compute
the regret. In this paper we improve our previous results and
show how mathematical techniques such as discrete Fourier
transform and convolution can be used in regret computation.
The idea of applying these techniques for computing a sin-
gle regret term was first suggested in [Koivisto, 2004], but as
discussed in [Kontkanen et al., 2005], in order to apply NML
to practical tasks such as clustering, a whole table of regret
terms is needed. We will present here an efficient algorithm
for this specific task. For a more detailed discussion of this
work, see [Kontkanen and Myllymäki, 2005].

2 NML for Multinomial Data
The most important notion of theMDL is the Stochastic Com-
plexity (SC). Intuitively, stochastic complexity is defined as
the shortest description length of a given data relative to a
model class. To formalize things, let us start with a definition
of a model class. Consider a set Θ ∈ Rd, where d is a pos-
itive integer. A class of parametric distributions indexed by
the elements of Θ is called a model class. That is, a model



classM is defined as

M = {P (· | θ) : θ ∈ Θ}. (1)

Consider now a discrete data set (or matrix) xN =
(x1, . . . ,xN ) of N outcomes, where each outcome xj is
an element of the set X consisting of all the vectors of the
form (a1, . . . , am), where each variable (or attribute) ai takes
on values v ∈ {1, . . . , ni}. Given a model classM, the Nor-
malized Maximum Likelihood (NML) distribution [Shtarkov,
1987] is defined as

PNML(xN | M) =
P (xN | θ̂(xN ),M)

RN
M

, (2)

where θ̂(xN ) denotes the maximum likelihood estimate of
data xN , andRN

M is given by

RN
M =

∑

x
N

P (xN | θ̂(xN ),M), (3)

and the sum goes over all the possible data matrices of sizeN .
The term RN

M is called the regret. The definition (2) is intu-
itively very appealing: every data matrix is modeled using
its own maximum likelihood (i.e., best fit) model, and then a
penalty for the complexity of the model classM is added to
normalize the distribution.
The stochastic complexity of a data set xN with respect to a

model classM can now be defined as the negative logarithm
of (2), i.e.,

SC(xn | M) = − log
P (xN | θ̂(xN ),M)

RN
M

(4)

= − log P (xN | θ̂(xN ),M) + logRN
M. (5)

As in [Kontkanen et al., 2005], in the sequel we focus on
a multi-dimensional model class suitable for cluster analysis.
The selected model class has also been successfully applied
to mixture modeling [Kontkanen et al., 1996], case-based
reasoning [Kontkanen et al., 1998], Naive Bayes classifica-
tion [Grünwald et al., 1998; Kontkanen et al., 2000b] and
data visualization [Kontkanen et al., 2000a].
Let us assume that we havem variables, (a1, . . . , am), and

we also assume the existence of a special variable c (which
can be chosen to be one of the variables in our data or it can
be latent). Furthermore, given the value of c, the variables
(a1, . . . , am) are assumed to be independent. The resulting
model class is denoted by MT . Suppose the special vari-
able c has K values and each ai has ni values. The NML
distribution for the model classMT is now

PNML(xN | MT ) =

[

K
∏

k=1

(

hk

N

)hk m
∏

i=1

K
∏

k=1

ni
∏

v=1

(

fikv

hk

)fikv

]

·
1

RN
MT ,K

, (6)

where hk is the number of times c has value k in xN , fikv is
the number of times ai has value v when c = k, andRN

MT ,K

is the regret term. In [Kontkanen et al., 2005] it was proven

that an efficient way to compute the regret term is via the
following recursive formula:

RN
MT ,K =

N
∑

r=0

N !

r!(N − r)!

( r

N

)r
(

N − r

N

)N−r

· Rr
MT ,k1

· RN−r
MT ,k2

, (7)

where k1 + k2 = K.
As discussed in [Kontkanen et al., 2005], in order to ap-

ply NML to the clustering problem, we need to compute a
whole table of regret terms. This table consists of the terms
Rn

MT ,k for n = 0, . . . , N and k = 1, . . . ,K, where K is the
maximum number of clusters.
The procedure of computing the regret table starts by fill-

ing the first column, i.e., the case k = 1, which is trivial
(see [Kontkanen et al., 2005]). To compute the column k,
for k = 2, . . . ,K, the recursive formula (7) can be used by
choosing k1 = k − 1, k2 = 1. The time complexity of filling
the whole table is O

(

K · N2
)

. For more details, see [Kon-
tkanen et al., 2005; Kontkanen and Myllymäki, 2005].
In practice, the quadratic dependency on the size of data

limits the applicability of NML to small or moderate size data
sets. In the next section, we will present a novel, significantly
more efficient method for computing the regret table.

3 The Fast NML Algorithm
In this section we will derive a very efficient algorithm for
the regret table computation. The new method is based on
the Fast Fourier Transform algorithm. As mentioned in the
previous section, the calculation of the first column of the
regret table is trivial. Therefore, we only need to consider the
case of calculating the column k given the first k−1 columns.
Let us define two sequences a and b by

an =
nn

n!
Rn

MT ,k−1, bn =
nn

n!
Rn

MT ,1, (8)

for n = 0, . . . , N . Evaluating the convolution of a and b

gives

(a ∗ b)n =
n

∑

h=0

hh

h!
Rh

MT ,k−1

(n − h)n−h

(n − h)!
Rn−h

MT ,1 (9)

=
nn

n!

n
∑

h=0

n!

h!(n − h)!

(

h

n

)h (

n − h

n

)n−h

· Rh
MT ,k−1R

n−h
MT ,1 (10)

=
nn

n!
Rn

MT ,k, (11)

where the last equality follows from the recursion for-
mula (7). This derivation shows that the column k can be
computed by first evaluating the convolution (11), and then
multiplying each term by n!/nn.
The standard convolution theorem states that convolutions

can be evaluated via the (discrete) Fourier transform, which in
turn can be computed efficiently with the Fast Fourier Trans-
form algorithm (see [Kontkanen and Myllymäki, 2005] for
details). It follows that the time complexity of computing the



whole regret table drops to O (N log N · K). This is a ma-
jor improvement over O

(

N2 · K
)

obtained by the recursion
method of Section 2.

4 Conclusion And Future Work
The main result of this paper was a derivation of a novel algo-
rithm for the regret table computation. The theoretical time
complexity of this algorithm allows practical applications of
NML in domains with very large datasets. With the earlier
quadratic-time algorithms, this was not possible.
In the future, we plan to conduct an extensive set of em-

pirical tests to see how well the theoretical advantage of the
new algorithm transfers to practice. On the theoretical side,
our goal is to extend the regret table computation to more
complex cases like general graphical models. We will also
research supervised versions of the stochastic complexity, de-
signed for supervised prediction tasks such as classification.

Acknowledgements
This work was supported in part by the Academy of Finland
under the projects Minos and Civi and by the National Tech-
nology Agency under the PMMA project. In addition, this
work was supported in part by the IST Programme of the Eu-
ropean Community, under the PASCAL Network of Excel-
lence, IST-2002-506778. This publication only reflects the
authors’ views.

References
[Barron et al., 1998] A. Barron, J. Rissanen, and B. Yu. The
minimum description principle in coding and modeling.
IEEE Transactions on Information Theory, 44(6):2743–
2760, October 1998.

[Grünwald et al., 1998] P. Grünwald, P. Kontkanen, P. Myl-
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Abstract

The minimum description length (MDL) principle is a theoretically well-founded, general framework for performing model
class selection and other types of statistical inference. This framework can be applied for tasks such as data clustering, density
estimation and image denoising. The MDL principle is formalized via the so-called normalized maximum likelihood (NML)
distribution, which has several desirable theoretical properties. The codelength of a given sample of data under the NML distribution
is called the stochastic complexity, which is the basis for MDL model class selection. Unfortunately, in the case of discrete data,
straightforward computation of the stochastic complexity requires exponential time with respect to the sample size, since the
definition involves an exponential sum over all the possible data samples of a fixed size. As a main contribution of this paper, we
derive an elegant recursion formula which allows efficient computation of the stochastic complexity in the case of n observations
of a single multinomial random variable with K values. The time complexity of the new method is O(n + K) as opposed to
O(n logn logK) obtained with the previous results.
 2007 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most important problems in machine
learning and statistics is model class selection, which is
the task of selecting among a set of competing math-
ematical explanations the one that describes a given
sample of data best. The minimum description length

(MDL) principle developed in the series of papers [16–
18] is a well-founded, general framework for perform-

* Corresponding author.
E-mail address: petri.kontkanen@hiit.fi (P. Kontkanen).

ing model class selection and other types of statistical
inference. The fundamental idea behind the MDL prin-
ciple is that any regularity in data can be used to com-

press the data, i.e., to find a description or code of it
such that this description uses less symbols than it takes
to describe the data literally. The more regularities there
are, the more the data can be compressed. According to
the MDL principle, learning can be equated with find-
ing regularities in data. Consequently, we can say that
the more we are able to compress the data, the more we
have learned about it.

As codes and probability distributions are inherently
intertwined (see, e.g., [5]), an efficient code for a data

0020-0190/$ – see front matter  2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2007.04.003
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set can be regarded as a probabilistic model yield-
ing a high probability (short codelength) to the data
at hand. Considering all possible models is not com-
putationally feasible, so in practice we have to restrict
ourselves to some limited set of probabilistic models.
Mathematically, a model class is defined as a set of
probability distributions indexed by a parameter vec-
tor. A universal model assigns a probability distribu-
tion for fixed-size data samples given a model class in
such a manner that the data is given a high probabil-
ity whenever there exists a distribution in the model
class that gives high probability to the data. In other
words, a universal model represents (or mimics) the be-
havior of all the distributions in the model class. The
model class selection task is then solved by choosing
the model class for which the associated universal dis-
tribution assigns the highest probability to the observed
data.

According to the MDL principle, the universal mod-
els are formalized via the normalized maximum likeli-
hood (NML) distribution [23,18], and the corresponding
codelength of a data sample under the NML distribution
is called the stochastic complexity (SC). Consequently,
MDL model class selection is based on minimization of
the stochastic complexity.

The NML distribution has several theoretical opti-
mality properties, which make it a very attractive can-
didate for performing model class selection and related
tasks. It was originally [18,2] formulated as a unique so-
lution to the minimax problem presented in [23], which
implied that NML is the minimax optimal universal
model. Later [19], it was shown that NML is also the
minimax optimal universal model in the expectation
sense. See Section 2 and [2,19,7,20] for more discus-
sion on the theoretical properties of the NML.

On the practical side, NML has been successfully
applied to several problems. We mention here some ex-
amples. First, in [14], NML was used for clustering of
multi-dimensional data and its performance was com-
pared to alternative approaches like Bayesian statistics.
The results showed that the performance of NML was
especially impressive with small sample sizes. Second,
in [21], NML was applied to wavelet denoising of dig-
ital images. Since the MDL principle in general can be
interpreted as separating information from noise, this
approach is very natural. Third, a scheme for using
NML for histogram density estimation was presented
in [13]. In this work, the density estimation problem
was regarded as a model class selection task. This ap-
proach allowed finding NML-optimal histograms with
variable-width bins in a computationally efficient way,

providing both the optimal number of bins and the loca-
tion of the bin borders.

For multinomial (discrete) data, the definition of the
NML distribution (and thus of the stochastic complex-
ity) involves a normalizing sum over all the possible
data samples of a fixed size. Unfortunately, in most
cases, the computation of this normalizing sum is in-
feasible. The topic of this paper is the derivation of
an efficient algorithm to calculate the stochastic com-
plexity in the case of multinomial data with K possible
values. The algorithm works in linear time with respect
to the sample size n.

The problem of computing the multinomial sto-
chastic complexity efficiently has been studied before.
In [10], a quadratic-time algorithm was presented. This
was later [9,12] improved to O(n logn logK). Although
the exponentiality of the computation was removed by
these algorithms, they are still superlinear with respect
to the size of the data. Furthermore, the practical value
of the O(n logn logK) algorithm is questionable due
to numerical instability problems, while the linear-time
algorithm presented in this paper can be easily imple-
mented without such problems.

Several approximation schemes for computing the
multinomial stochastic complexity have also been sug-
gested. The accuracy of the approximations was studied
empirically in [10], where it was observed that the er-
ror of the traditional Bayesian Information Criterion

(BIC) [22] and Rissanen’s asymptotic expansion [18]
can be substantial, especially with small sample sizes
or if the number of values K is large, while the Szpan-

kowski approximation introduced in [10] was found to
be very accurate. However, the task of computing the
exact stochastic complexity has theoretical significance
in itself. What is more, it is not clear how to extend
the Szpankowski approximation beyond the multino-
mial case, while the exact computation methods can be
directly applied in more complex cases, like the clus-
tering model class discussed in [14]. Therefore, in the
following we concentrate only on the exact computa-
tion of the stochastic complexity.

This paper is structured as follows. In Section 2 we
discuss the basic properties of the MDL principle and
the NML distribution. In Section 3 we instantiate the
NML distribution for the multinomial model class. We
will also shortly discuss the previous stochastic com-
plexity computation algorithms. The topic of Section 4
is to derive the so-called regret generating function,
which is then in Section 5 used as a basis for the new,
linear-time algorithm. Finally, Section 6 gives some
concluding remarks.
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2. Properties of MDL and NML

The MDL principle has several desirable properties.
Firstly, it automatically protects against overfitting in
the model class selection process. Secondly, there is no
need to assume that there exists some underlying “true”
model, while most other statistical frameworks do. The
model class is only used as a technical device for con-
structing an efficient code for describing the data. MDL
is also closely related to Bayesian inference but there
are some fundamental differences, the most important
being that MDL is not dependent on any prior distribu-
tion, it only uses the data at hand. For more discussion
on the theoretical motivations behind the MDL princi-
ple see, e.g., [18,2,26,19,7,20].

MDL model class selection is based on minimization
of the stochastic complexity. In the following, we give
the definition of the stochastic complexity and then pro-
ceed by discussing its theoretical properties.

Let xn = (x1, . . . ,xn) be a data sample of n out-
comes, where each outcome xj is an element of some
space of observations X . The n-fold Cartesian prod-
uct X × · · · × X is denoted by X n, so that xn ∈ X n.
Consider a set Θ ⊆ Rd , where d is a positive integer.
A class of parametric distributions indexed by the el-
ements of Θ is called a model class. That is, a model
class M is defined as

M =
{

P(· | θ): θ ∈ Θ
}

. (1)

Denote the maximum likelihood estimate of data xn

for a given model class M by θ̂(xn,M), i.e., θ̂(xn,M)

= arg maxθ∈Θ{P(xn | θ)}. The normalized maximum

likelihood (NML) distribution [23] is now defined as

PNML(xn | M) =
P(xn | θ̂(xn,M))

C(M, n)
, (2)

where the normalizing term C(M, n) in the case of dis-
crete data is given by

C(M, n) =
∑

yn∈X n

P
(

yn | θ̂(yn,M)
)

, (3)

and the sum goes over the space of data samples of
size n. If the data is continuous, the sum is replaced by
the corresponding integral.

The stochastic complexity of the data xn given a
model class M is defined via the NML distribution as

SC(xn |M) = − logPNML(xn | M)

= − logP
(

xn | θ̂(xn,M)
)

+ logC(M, n), (4)

and the term logC(M, n) is called the minimax regret

or parametric complexity. The minimax regret can be

interpreted as measuring the logarithm of the number
of essentially different (distinguishable) distributions in
the model class. Intuitively, if two distributions assign
high likelihood to the same data samples, they do not
contribute much to the overall complexity of the model
class, and the distributions should not be counted as dif-
ferent for the purposes of statistical inference. See [1]
for more discussion on this topic.

The NML distribution (2) has several important the-
oretical optimality properties. The first one is that NML
provides the unique solution to the minimax problem
posed in [23],

min
P̂

max
xn

log
P(xn | θ̂(xn,M))

P̂ (xn | M)
, (5)

so that the minimizing P̂ is the NML distribution, and
the minimax regret

logP
(

xn | θ̂(xn,M)
)

− log P̂ (xn | M) (6)

is given by the parametric complexity logC(M, n). This
means that the NML distribution is the minimax optimal

universal model with respect to the model class M, but
note that the NML distribution itself typically does not
belong to the model class.

A related property of NML involving expected regret
was proven in [19]. This property states that NML also
solves

min
P̂

max
g

Eg log
P(xn | θ̂(xn,M))

P̂ (xn |M)
, (7)

where the expectation is taken over xn and g is the
worst-case data generating distribution. The minimax
expected regret is also given by logC(M, n).

3. NML for the multinomial model class

In the following, we will assume that our problem
domain consists of a single discrete random variable X

with K values, and that our data xn = (x1, . . . , xn) is
multinomially distributed. Without loss of generality,
the space of observations X can be assumed to be the
set {1,2, . . . ,K}. We denote the multinomial model
classes by MK and define

MK =
{

P(X | θ): θ ∈ ΘK

}

, (8)

where ΘK is the simplex-shaped parameter space

ΘK =
{

θ = (θ1, . . . , θK): θk ! 0, θ1 + · · · + θK = 1
}

,

(9)

with θk = P(X = k | θ), k = 1, . . . ,K.
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It is well known (see, e.g., [10,14]) that the maxi-
mum likelihood parameters for the multinomial model

class are given by θ̂(xn,MK) = (h1/n, . . . , hK/n),
where hk is the frequency (number of occurrences) of
value k in xn. The NML distribution (2) for the model
class MK is then given by

PNML
(

xn |MK

)

=

∏K
k=1(hk/n)hk

C(MK,n)
, (10)

where

C(MK,n) =
∑

yn

P
(

yn | θ̂(yn,MK)
)

=
∑

h1+···+hK=n

n!

h1! · · ·hK !

K
∏

k=1

(

hk

n

)hk

. (11)

In the following, we will simplify the notation by writ-
ing C(K,n) instead of C(MK,n).

It is clear that the maximum likelihood term in (10)
can be computed in linear time by simply sweeping
through the data once and counting the frequencies hk .
However, the normalizing sum C(K,n) (and thus also
the parametric complexity logC(K,n)) involves a sum
over an exponential (in K) number of terms. Conse-
quently, the time complexity of computing the multino-
mial stochastic complexity is dominated by (11).

In [10,14] a recursion formula for removing the ex-
ponentiality of C(K,n) was presented. This formula is
given by

C(K1 + K2, n) =
∑

r1+r2=n

n!

r1!r2!

(

r1

n

)r1
(

r2

n

)r2

· C(K1, r1) · C(K2, r2), (12)

which holds for all K1,K2 ! 1. A straightforward al-
gorithm based on this formula was then used to com-
pute C(K,n) in time O(n2 logK). See [10,14] for more
details.

In [9,12] the quadratic-time algorithm was improved
to O(n logn logK) by writing (11) as a convolution-
type sum and then using the Fast Fourier Transform al-
gorithm. However, the relevance of this result is unclear
due to severe numerical instability problems it produces
in practice.

Although the previous algorithms have succeeded in
removing the exponentiality of the computation of the
multinomial stochastic complexity, they are still super-
linear with respect to n. In the next two sections we will
derive a novel, linear-time algorithm for the problem.

4. The regret generating function

The mathematical technique of generating functions
turns out to be the key element in the derivation of the
new, efficient algorithm for computing the multinomial
stochastic complexity. We start by reviewing some basic
facts about generating functions.

One of the most powerful ways to analyze a sequence
of numbers is to form a power series with the elements
of the sequence as coefficients. The resulting function is
called the generating function of the sequence. Generat-
ing functions can be seen as a bridge between discrete
mathematics and continuous analysis. They can be used
for, e.g., finding recurrence formulas and asymptotic ex-
pansions, proving combinatorial identities and finding
statistical properties of a sequence. Good sources for
further reading on generating functions are [25,6].

The (ordinary) generating function of a sequence
(an)

∞
n=0 = (a0, a1, a2, . . .) is defined as the series

A(z) =
∑

n!0

anz
n, (13)

where z is a dummy symbol (or a complex variable).
The importance of generating functions is that the func-
tion A(z) is a compact representation of the whole se-
quence (an)

∞
n=0. By studying this function we can get

important information about the sequence, such as the
exact or asymptotic form of the coefficients.

Our goal now is to find a computationally useful
form for the generating function of the sequence

(

C(K,n)
)∞

n=0
=

(

C(K,0),C(K,1),C(K,2), . . .
)

.

(14)

A similar problem was studied in [24], and our deriva-
tion mostly follows it. Let us first consider the se-
quence (nn/n!)∞n=0. As in [24], we denote the function
generating this sequence by B(z). Squaring B(z) yields

B2(z) =

(

∑

h1!0

h
h1
1

h1!
zh1

)

·

(

∑

h2!0

h
h2
2

h2!
zh2

)

=
∑

n!0

(

∑

h1+h2=n

nn

n!

n!

h1!h2!

h
h1
1 h

h2
2

nh1+h2

)

zn

=
∑

n!0

nn

n!
C(2, n)zn. (15)

Thus, the function B2(z) generates the sequence
( nn

n! C(2, n))∞n=0. By basic combinatorics, it is straight-
forward to generalize this to
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BK(z) =
∑

n!0

nn

n!

[

∑

h1+···+hK=n

n!

h1! · · ·hK !

·

K
∏

k=1

(

hk

n

)hk
]

zn

=
∑

n!0

nn

n!
C(K,n)zn, (16)

which generates ( nn

n! C(K,n))∞n=0. The extra nn/n! term
does not pose any problem, since it clearly can be can-
celed at the end of computation. Therefore this gen-
erating function can be used instead of the generating
function of (14), and we call it the regret generating

function.
However, there is no closed-form formula for B(z)

and little is known about the function in general. There-
fore, we will write the function BK(z) in a differ-
ent, more useful form using the so-called Cayley’s

tree function T (z) [8,4], which generates the sequence
(nn−1/n!)∞n=1:

T (z) =
∑

n!1

nn−1

n!
zn. (17)

This sequence counts the rooted labeled trees [3], hence
the name of the function.

The connection between T (z) and B(z) is easy to de-
rive (see [24]), and it is given by B(z) = 1/(1 − T (z)).
Consequently, the regret generating function can be
written as

BK(z) =
1

(1 − T (z))K
. (18)

5. The linear-time algorithm

In this section, we will derive an elegant recurrence
for the C(K,n) terms based on the regret generating
function BK(z). At the end of the section, this recur-
rence is then used as a basis for the new, linear-time al-
gorithm for computing the multinomial stochastic com-
plexity.

We start by proving the following lemma:

Lemma 1. For the tree function T (z), it holds that

zT ′(z) =
T (z)

1 − T (z)
. (19)

Proof. A basic property of the tree function is the func-
tional equation T (z) = zeT (z) (see, e.g., [8]). Differen-
tiating this equation yields

T ′(z) = eT (z) + T (z)T ′(z), (20)

zT ′(z)
(

1 − T (z)
)

= zeT (z), (21)

from which (19) follows. !

Now we can proceed to the main result of this paper:

Theorem 2. The C(K,n) terms follow the recurrence

C(K + 2, n) = C(K + 1, n) +
n

K
· C(K,n). (22)

Proof. We start by multiplying and differentiating (16)
as follows:

z ·
d

dz

∑

n!0

nn

n!
C(K,n)zn = z ·

∑

n!1

n ·
nn

n!
C(K,n)zn−1

=
∑

n!0

n ·
nn

n!
C(K,n)zn. (23)

On the other hand, by manipulating (18) in the same
way, we get

z ·
d

dz

1

(1 − T (z))K

=
z · K

(1 − T (z))K+1
· T ′(z)

=
K

(1 − T (z))K+1
·

T (z)

1 − T (z)
(24)

= K

(

1

(1 − T (z))K+2
−

1

(1 − T (z))K+1

)

= K

(

∑

n!0

nn

n!
C(K + 2, n)zn

−
∑

n!0

nn

n!
C(K + 1, n)zn

)

, (25)

where (24) follows from Lemma 1. Comparing the co-
efficients of zn in (23) and (25), we get

n · C(K,n) = K ·
(

C(K + 2, n) − C(K + 1, n)
)

, (26)

from which the theorem follows. !

An alternative proof of Theorem 2 is given in [11],
where the so-called tree polynomials [8] are used. The
proof given here, however, is shorter and more elegant.

It is now straightforward to write a linear-time al-
gorithm for computing the multinomial stochastic com-
plexity SC(xn | MK) based on Theorem 2. The process
is described in Algorithm 1. The time complexity of the
algorithm is clearly O(n + K), which is a major im-
provement over the previous methods. The algorithm is
also very easy to implement and does not suffer from
any numerical instability problems.
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1: Count the frequencies h1, . . . , hK from the
data xn

2: Compute the likelihood

P
(

xn | θ̂(xn,MK)
)

=
∏K

k=1

(hk
n

)hk

3: Set C(1, n) = 1
4: Compute

C(2, n) =
∑

r1+r2=n
n!

r1!r2!

( r1
n

)r1
( r2

n

)r2

5: for k = 1 to K − 2
6: Compute

C(k + 2, n) = C(k + 1, n) + n
k · C(k, n)

7: end for

8: Output SC(xn |MK)

= − logP
(

xn | θ̂(xn,MK)
)

+ logC(K,n)

Algorithm 1. The linear-time algorithm for computing SC(xn | MK).

6. Conclusion

In this paper we have derived a recursive formula
for the exponential sums that appear in the definition of
the normalized maximum likelihood distribution. Based
on this formula, we presented the first linear-time algo-
rithm for exact computation of the multinomial stochas-
tic complexity. Besides being a theoretically important
result, the new algorithm has also already been applied
for efficient NML-optimal histogram density estimation
in [13].

In the future, our plan is to extend the current work
to more complex model classes such as Bayesian net-
works [15]. Even if it turns out that the regret generating
function is not available in these cases, we believe that
the current framework might still be useful in deriving
accurate approximations of the stochastic complexity.
Another natural area of future work is to apply the re-
sults of this paper to practical tasks such as classifica-
tion.
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Abstract

We regard histogram density estimation as
a model selection problem. Our approach
is based on the information-theoretic min-
imum description length (MDL) principle,
which can be applied for tasks such as data
clustering, density estimation, image denois-
ing and model selection in general. MDL-
based model selection is formalized via the
normalized maximum likelihood (NML) dis-
tribution, which has several desirable opti-
mality properties. We show how this frame-
work can be applied for learning generic, ir-
regular (variable-width bin) histograms, and
how to compute the NML model selection
criterion efficiently. We also derive a dy-
namic programming algorithm for finding
both the MDL-optimal bin count and the cut
point locations in polynomial time. Finally,
we demonstrate our approach via simulation
tests.

1 INTRODUCTION

Density estimation is one of the central problems in
statistical inference and machine learning. Given a
sample of observations, the goal of histogram den-
sity estimation is to find a piecewise constant density
that describes the data best according to some pre-
determined criterion. Although histograms are con-
ceptually simple densities, they are very flexible and
can model complex properties like multi-modality with
a relatively small number of parameters. Furthermore,
one does not need to assume any specific form for the
underlying density function: given enough bins, a his-
togram estimator adapts to any kind of density.

Most existing methods for learning histogram densities
assume that the bin widths are equal and concentrate

only on finding the optimal bin count. These regu-
lar histograms are, however, often problematic. It has
been argued (Rissanen, Speed, & Yu, 1992) that reg-
ular histograms are only good for describing roughly
uniform data. If the data distribution is strongly non-
uniform, the bin count must necessarily be high if one
wants to capture the details of the high density portion
of the data. This in turn means that an unnecessary
large amount of bins is wasted in the low density re-
gion.

To avoid the problems of regular histograms one must
allow the bins to be of variable width. For these irreg-
ular histograms, it is necessary to find the optimal set
of cut points in addition to the number of bins, which
naturally makes the learning problem essentially more
difficult. For solving this problem, we regard the his-
togram density estimation as a model selection task,
where the cut point sets are considered as models. In
this framework, one must first choose a set of candidate
cut points, from which the optimal model is searched
for. The quality of each of the cut point sets is then
measured by some model selection criterion.

Our approach is based on information theory, more
specifically on the Minimum description length (MDL)
principle developed in the series of papers (Rissanen,
1978, 1987, 1996). MDL is a well-founded, general
framework for performing model selection and other
types of statistical inference. The fundamental idea
behind the MDL principle is that any regularity in
data can be used to compress the data, i.e., to find
a description or code of it such that this description
uses the least number of symbols, less than other codes
and less than it takes to describe the data literally.
The more regularities there are, the more the data
can be compressed. According to the MDL principle,
learning can be equated with finding regularities in
data. Consequently, we can say that the more we are
able to compress the data, the more we have learned
about it.

Model selection with MDL is done by minimizing a



quantity called the stochastic complexity, which is the
shortest description length of a given data relative to
a given model class. The definition of the stochas-
tic complexity is based on the normalized maximum
likelihood (NML) distribution introduced in (Shtarkov,
1987; Rissanen, 1996). The NML distribution has sev-
eral theoretical optimality properties, which make it a
very attractive candidate for performing model selec-
tion. It was originally (Rissanen, 1996) formulated as
a unique solution to the minimax problem presented
in (Shtarkov, 1987), which implied that NML is the
minimax optimal universal model. Later (Rissanen,
2001), it was shown that NML is also the solution to
a related problem involving expected regret. See Sec-
tion 2 and (Rissanen, 2001; Grünwald, 2006; Rissanen,
2005) for more discussion on the theoretical properties
of the NML.

On the practical side, NML has been successfully ap-
plied to several problems. We mention here two ex-
amples. In (Kontkanen, Myllymäki, Buntine, Rissa-
nen, & Tirri, 2006), NML was used for data clustering,
and its performance was compared to alternative ap-
proaches like Bayesian statistics. The results showed
that NML was especially impressive with small sam-
ple sizes. In (Roos, Myllymäki, & Tirri, 2005), NML
was applied to wavelet denoising of computer images.
Since the MDL principle in general can be interpreted
as separating information from noise, this approach is
very natural.

Unfortunately, in most practical applications of NML
one must face severe computational problems, since
the definition of the NML involves a normalizing inte-
gral or a sum, called the parametric complexity, which
usually is difficult to compute. One of the contribu-
tions of this paper is to show how the parametric com-
plexity can be computed efficiently in the histogram
case, which makes it possible to use NML as a model
selection criterion in practice.

There is obviously an exponential number of different
cut point sets. Therefore, a brute-force search is not
feasible. Another contribution of this paper is to show
how the NML-optimal cut point locations can be found
via dynamic programming in a polynomial (quadratic)
time with respect to the size of the set containing the
cut points considered in the optimization process.

The histogram density estimation is naturally a well-
studied problem, but unfortunately almost all of the
previous studies, e.g. (Birge & Rozenholc, 2002; Hall
& Hannan, 1988; Yu & Speed, 1992), consider regular
histograms only. Most similar to our work is (Rissanen
et al., 1992), in which irregular histograms are learned
with the Bayesian mixture criterion using a uniform
prior. The same criterion is also used in (Hall & Han-

nan, 1988), but the histograms are equal-width only.
Another similarity between our work and (Rissanen
et al., 1992) is the dynamic programming optimiza-
tion process, but since the optimality criterion is not
the same, the process itself is quite different. It should
be noted that these differences are significant as the
Bayesian mixture criterion does not possess the opti-
mality properties of NML mentioned above.

This paper is structured as follows. In Section 2 we
discuss the basic properties of the MDL framework in
general, and also shortly review the optimality proper-
ties of the NML distribution. Section 3 introduces the
NML histogram density and also provides a solution
to the related computational problem. The cut point
optimization process based on dynamic programming
is the topic of Section 4. Finally, in Section 5 our
approach is demonstrated via simulation tests.

2 PROPERTIES OF MDL AND
NML

The MDL principle has several desirable properties.
Firstly, it automatically protects against overfitting
when learning both the parameters and the structure
(number of parameters) of the model. Secondly, there
is no need to assume the existence of some underly-
ing “true” model, which is not the case with several
other statistical methods. The model is only used as
a technical device for constructing an efficient code.
MDL is also closely related to the Bayesian inference
but there are some fundamental differences, the most
important being that MDL is not dependent on any
prior distribution, it only uses the data at hand.

MDL model selection is based on minimization of the
stochastic complexity. In the following, we give the
definition of the stochastic complexity and then pro-
ceed by discussing its theoretical properties.

Let xn = (x1, . . . ,xn) be a data sample of n outcomes,
where each outcome xj is an element of some space of
observations X . The n-fold cartesian product X ×
· · · × X is denoted by Xn, so that xn ∈ Xn. Consider
a set Θ ⊆ Rd, where d is a positive integer. A class
of parametric distributions indexed by the elements
of Θ is called a model class. That is, a model class M
is defined as M = {f(· | θ) : θ ∈ Θ}. Denote the
maximum likelihood estimate of data xn by θ̂(xn), i.e.,

θ̂(xn) = arg max
θ∈Θ

{f(xn | θ)}. (1)

The normalized maximum likelihood (NML) den-
sity (Shtarkov, 1987) is now defined as

fNML(xn | M) =
f(xn | θ̂(xn),M)

Rn
M

, (2)



where the normalizing constant Rn
M is given by

Rn
M =

∫

x
n∈Xn

f(xn | θ̂(xn),M)dxn, (3)

and the range of integration goes over the space of data
samples of size n. If the data is discrete, the integral
is replaced by the corresponding sum.

The stochastic complexity of the data xn given a model
class M is defined via the NML density as

SC(xn | M) = − log fNML(xn | M) (4)

= − log f(xn | θ̂(xn),M) + logRn
M,

(5)

and the term logRn
M is called the parametric com-

plexity or minimax regret. The parametric complexity
can be interpreted as measuring the logarithm of the
number of essentially different (distinguishable) distri-
butions in the model class. Intuitively, if two distribu-
tions assign high likelihood to the same data samples,
they do not contribute much to the overall complexity
of the model class, and the distributions should not
be counted as different for the purposes of statistical
inference. See (Balasubramanian, 2006) for more dis-
cussion on this topic.

The NML density (2) has several important theoretical
optimality properties. The first one is that NML pro-
vides a unique solution to the minimax problem posed
in (Shtarkov, 1987),

min
f̂

max
x

n
log

f(xn | θ̂(xn),M)

f̂(xn | M)
= logRn

M, (6)

This means that the NML density is the minimax op-
timal universal model. A related property of NML
involving expected regret was proven in (Rissanen,
2001). This property states that NML also minimizes

min
f̂

max
g

Eg log
f(xn | θ̂(xn),M)

f̂(xn | M)
= logRn

M, (7)

where the expectation is taken over xn and g is the
worst-case data generating density.

Having now discussed the MDL principle and the NML
density in general, we return to the main topic of the
paper. In the next section, we instantiate the NML
density for the histograms and show how the para-
metric complexity can be computed efficiently in this
case.

3 NML HISTOGRAM DENSITY

Consider a sample of n outcomes xn = (x1, . . . ,xn) on
the interval [xmin,xmax]. Typically, xmin and xmax are

defined as the minimum and maximum value in xn, re-
spectively. Without any loss of generality, we assume
that the data is sorted into increasing order. Further-
more, we assume that the data is recorded at a finite
accuracy ε, which means that each xj ∈ xn belongs to
the set X defined by

X = {xmin + tε : t = 0, . . . ,
xmax − xmin

ε
}. (8)

This assumption is made to simplify the mathematical
formulation, and as can be seen later, the effect of the
accuracy parameter ε on the stochastic complexity is
a constant that can be ignored in the model selection
process.

Let C = (c1, . . . , cK−1) be an increasing sequence of
points partitioning the range [xmin − ε/2,xmax + ε/2]
into the following K intervals (bins):

([xmin − ε/2, c1], ]c1, c2], . . . , ]cK−1,xmax + ε/2]). (9)

The points ck are called the cut points of the his-
togram. Note that the original data range [xmin,xmax]
is extended by ε/2 from both ends for technical rea-
sons. It is natural to assume that there is only one cut
point between two consecutive elements of X , since
placing two or more cut points would always produce
unnecessary empty bins. For simplicity, we assume
that the cut points belong to the set C defined by

C = {xmin + ε/2 + tε : t = 0, . . . ,
xmax − xmin

ε
− 1},

(10)
i.e., each ck ∈ C is a midpoint of two consecutive values
of X .

Define c0 = xmin − ε/2, cK = xmax + ε/2 and let Lk =
ck − ck−1, k = 1, . . . ,K be the bin lengths. Given a
parameter vector θ ∈ Θ,

Θ = {(θ1, . . . , θK) : θk ≥ 0, θ1 + · · · + θK = 1}, (11)

and a set (sequence) of cut points C, we now define
the histogram density fh by

fh(x | θ, C) =
ε · θk

Lk
, (12)

where x ∈ ]ck−1, ck]. Note that (12) does not de-
fine a density in the purest sense, since fh(x | θ, C)
is actually the probability that x falls into the inter-
val ]x− ε/2, x + ε/2]. Given (12), the likelihood of the
whole data sample xn is easy to write. We have

fh(xn | θ, C) =
K
∏

k=1

(

ε · θk

Lk

)hk

, (13)

where hk is the number of data points falling into bin k.



To instantiate the NML distribution (2) for the his-
togram density fh, we need to find the maximum likeli-
hood parameters θ̂(xn) = (θ̂1, . . . , θ̂K) and an efficient
way to compute the parametric complexity (3). It is
well-known that the ML parameters are given by the
relative frequencies θ̂k = hk/n, so that we have

fh(xn | θ̂(xn), C) =
K
∏

k=1

(

ε · hk

Lk · n

)hk

. (14)

Denote now the parametric complexity of a K-bin his-
togram by logRn

hK
. First thing to notice is that since

the data is pre-discretized, the integral in (3) is re-
placed by a sum over the space Xn. We have

Rn
hK

=
∑

x
n∈Xn

K
∏

k=1

(

ε · hk

Lk · n

)hk

(15)

=
∑

h1+···+hK=n

n!

h1! · · ·hK !

K
∏

k=1

(

Lk

ε

)hk

·
K
∏

k=1

(

ε · hk

Lk · n

)hk

(16)

=
∑

h1+···+hK=n

n!

h1! · · ·hK !

K
∏

k=1

(

hk

n

)hk

, (17)

where the term (Lk/ε)hk in (16) follows from the fact
that an interval of length Lk contains exactly (Lk/ε)
members of the set X , and the multinomial coeffi-
cient n!/(h1! · · ·hK !) counts the number of arrange-
ments of n objects into K boxes each containing
h1, . . . , hK objects, respectively.

Although the final form (17) of the parametric com-
plexity is still an exponential sum, we can compute it
efficiently. It turns out that (17) is exactly the same as
the parametric complexity of a K-valued multinomial,
which we studied in (Kontkanen & Myllymäki, 2005).
In this work, we derived the recursion

Rn
hK

= Rn
hK−1

+
n

K − 2
Rn

hK−2
, (18)

which holds for K > 2. It is now straightforward to
write a linear-time algorithm based on (18). The com-
putation starts with the trivial case Rn

h1
≡ 1. The

case K = 2 is a simple sum

Rn
h2

=
∑

h1+h2=n

n!

h1!h2!

(

h1

n

)h1
(

h2

n

)h2

, (19)

which clearly can be computed in time O (n). Fi-
nally, recursion (18) is applied K − 2 times to end
up with Rn

hK
. The time complexity of the whole com-

putation is O (n + K).

Having now derived both the maximum likelihood pa-
rameters and the parametric complexity, we are now
ready to write down the stochastic complexity (5) for
the histogram model. We have

SC(xn | C)

= − log

∏K
k=1

(

ε·hk

Lk·n

)hk

Rn
hK

(20)

=
K

∑

k=1

−hk(log(ε · hk) − log(Lk · n))

+ logRn
hK

. (21)

Equation (21) is the basis for measuring the qual-
ity of NML histograms, i.e., comparing different cut
point sets. It should be noted that as the term
∑K

k=1 −hk log ε = −n log ε is a constant with respect
to C, the value of ε does not affect the comparison.
In the next section we will discuss how NML-optimal
histograms can be found in practice.

4 LEARNING MDL-OPTIMAL
HISTOGRAMS

In this section we will describe a dynamic program-
ming algorithm, which can be used to efficiently find
both the optimal bin count and the cut point loca-
tions. We start by giving the exact definition of the
problem. Let C̃ ⊆ C denote the candidate cut point
set, which is the set of cut points we consider in the
optimization process. How C̃ is chosen in practice, de-
pends on the problem at hand. The simplest choice is
naturally C̃ = C, which means that all the possible cut
points are candidates. However, if the value of the ac-
curacy parameter ε is small or the data range contains
large gaps, this choice might not be practical. Another
idea would be to define C̃ to be the set of midpoints
of all the consecutive value pairs in the data xn. This
choice, however, does not allow empty bins, and thus
the potential large gaps are still problematic.

A much more sensible choice is to place two candidate
cut points between each consecutive values in the data.
It is straightforward to prove and also intuitively clear
that these two candidate points should be placed as
close as possible to the respective data points. In this
way, the resulting bin lengths are as small as possible,
which will produce the greatest likelihood for the data.
These considerations suggest that C̃ should be chosen
as

C̃ =({xj − ε/2 : xj ∈ xn} ∪ {xj + ε/2 : xj ∈ xn})

\ {xmin − ε/2,xmax + ε/2}. (22)

Note that the end points xmin − ε/2 and xmax + ε/2



are excluded from C̃, since they are always implicitly
included in all the cut point sets.

After choosing the candidate cut point set, the his-
togram density estimation problem is straightforward
to define: find the cut point set C ⊆ C̃ which optimizes
the given goodness criterion. In our case the criterion
is based on the stochastic complexity (21), and the cut
point sets are considered as models. In practical model
selection tasks, however, the stochastic complexity cri-
terion itself may not be sufficient. The reason is that
it is also necessary to encode the model index in some
way, as argued in (Grünwald, 2006). In some tasks, an
encoding based on the uniform distribution is appro-
priate. Typically, if the set of models is finite and the
models are of same complexity, this choice is suitable.
In the histogram case, however, the cut point sets of
different size produce densities which are dramatically
different complexity-wise. Therefore, it is natural to
assume that the model index is encoded with a uniform
distribution over all the cut point sets of the same size.
For a K-bin histogram with the size of the candidate
cut point set fixed to E, there are clearly

(

E
K−1

)

ways
to choose the cut points. Thus, the codelength for
encoding them is log

(

E
K−1

)

.

After these considerations, we define the final criterion
(or score) used for comparing different cut point sets
as

B(xn | E,K,C)

= SC(xn | C) + log

(

E

K − 1

)

(23)

=
K

∑

k=1

−hk (log(ε · hk) − log(Lk · n))

+ logRn
hK

+ log

(

E

K − 1

)

. (24)

It is clear that there is an exponential number of pos-
sible cut point sets, and thus an exhaustive search
to minimize (24) is not feasible. However, the opti-
mal cut point set can be found via dynamic program-
ming, which works by tabulating partial solutions to
the problem. The final solution is then found recur-
sively.

Let us first assume that the elements of C̃ are indexed
in such a way that

C̃ = {c̃1, . . . , c̃E}, c̃1 < c̃2 < · · · < c̃E . (25)

We also define c̃E+1 = xmax + ε/2. Denote

B̂K,e = min
C⊆C̃

B(xne | E,K,C), (26)

where xne = (x1, . . . ,xne
) is the portion of the data

falling into interval [xmin, c̃e] for e = 1, . . . , E+1. This

means that B̂K,e is the optimizing value of (24) when

the data is restricted to xne . For a fixed K, B̂K,E+1 is
clearly the final solution we are looking for, since the
interval [xmin, c̃E+1] contains all the data.

Consider now a K-bin histogram with cut points C =
(c̃e1

, . . . , c̃eK−1
). Assuming that the data range is re-

stricted to [xmin, c̃eK
] for some c̃eK

> c̃eK−1
, we can

straightforwardly write the score function B(xneK |
E,K,C) by using the score function of a (K − 1)-bin
histogram with cut points C ′ = (c̃e1

, . . . , c̃eK−2
) as

B(xneK | E,K,C)

= B(xneK−1 | E,K − 1, C ′)

− (neK
− neK−1

)(log(ε · (neK
− neK−1

))

− log((c̃eK
− c̃eK−1

) · n))

+ log
R

neK

hK

R
neK−1

hK−1

+ log
E − K + 2

K − 1
, (27)

since (neK
−neK−1

) is the number of data points falling
into the Kth bin, (c̃eK

− c̃eK−1
) is the length of that

bin, and

log

(

E
K−1

)

(

E
K−2

) = log
E − K + 2

K − 1
. (28)

We can now write the dynamic programming recursion
as

B̂K,e = min
e′

{

B̂K−1,e′ −(ne−ne′) ·(log(ε ·(ne−ne′))

− log((c̃e − c̃e′) · n))

+ log
Rne

hK

Rne′

hK−1

+ log
E − K + 2

K − 1

}

, (29)

where e′ = K−1, . . . , e−1. The recursion is initialized
with

B̂1,e = −ne · (log(ε · ne)− log((c̃e − (xmin − ε/2)) · n)),
(30)

for e = 1, . . . , E + 1. After that, the bin count
is always increased by one, and (29) is applied for
e = K, . . . , E + 1 until a pre-determined maximum
bin count Kmax is reached. The minimum B̂K,e is
then chosen to be the final solution. By constantly
keeping track which e′ minimizes (29) during the pro-
cess, the optimal cut point sequence can also be re-
covered. The time complexity of the whole algorithm
is O

(

E2 · Kmax

)

.

5 EMPIRICAL RESULTS

The quality of a density estimator is usually measured
by a suitable distance metric between the data gen-
erating density and the estimated one. This is often



problematic, since we typically do not know the data
generating density, which means that some heavy as-
sumptions must be made. The MDL principle, how-
ever, states that the stochastic complexity (plus the
codelength for encoding the model index) itself can be
used as a goodness measure. Therefore, it is not neces-
sary to use any additional way of assessing the quality
of an MDL density estimator. The optimality proper-
ties of the NML criterion and the fact that we are able
to find the global optimum in the histogram case will
make sure that the final result is theoretically valid.

Nevertheless, to demonstrate the behaviour of the
NML histogram method in practice we implemented
the dynamic programming algorithm of the previous
section and ran some simulation tests. We generated
data samples of various size from four densities of dif-
ferent shapes (see below) and then used the dynamic
programming method to find the NML-optimal his-
tograms. In all the tests, the accuracy parameter ε was
fixed to 0.1. We decided to use Gaussian finite mix-
tures as generating densities, since they are very flexi-
ble and easy to sample from. The four generating den-
sities we chose and the corresponding NML-optimal
histograms using a sample of 10000 data points are
shown in Figures 1 and 2. The densities are labeled
gm2, gm5, gm6 and gm8, and they are mixtures of 2, 5,
6 and 8 Gaussian components, respectively, with vari-
ous amount of overlap between the components. From
the plots we can see that the NML histogram method
is able to capture properties such as multi-modality
(all densities) and long tails (gm6). Another nice fea-
ture is that the algorithm automatically places more
bins to the areas where more detail is needed like the
high, narrow peaks of gm5 and gm6.

To see the behaviour of the NML histogram density
algorithm with varying amount of data, we generated
data samples of various sizes between 100−10000 from
the four generating densities. For each case, we mea-
sured the distance between the generating density and
the NML-optimal histogram. As the distance measure
we used the (squared) Hellinger distance

h2(f, g) =

∫

(
√

f(x) −
√

g(x))2dx, (31)

which has often been used in the histogram context be-
fore (see, e.g., (Birge & Rozenholc, 2002; Kanazawa,
1993)). The actual values of the Hellinger distance
were calculated via numerical integration. The results
can be found in Figure 3. The curves are averaged over
10 different samples of each size. The figure shows that
the NML histogram density converges to the generat-
ing one quite rapidly when the sample size is increased.
The shapes of the convergence curves with the four
generating densities are also very similar, which is fur-
ther evidence of the flexibility of the variable-width
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Figure 1: The Gaussian finite mixture densities gm2
and gm5 and the NML-optimal histograms with sam-
ple size 10000.

histograms.

To visually see the effect of the sample size, we plotted
the NML-optimal histograms against the generating
density gm6 with sample sizes 100, 1000 and 10000.
These plots can be found in Figure 4. As a refer-
ence, we also plotted the empirical distributions of the
data samples as a (mirrored) equal-width histograms
(the negative y-values). Each bar of the empirical plot
has width 0.1 (the value of the accuracy parameter ε).
When the sample size is 100, the NML histogram al-
gorithm has chosen only 3 bins, and the resulting his-
togram density is rather crude. However, the small
sample size does not justify placing any more bins as
can be seen from the empirical distribution. There-
fore, we claim that the NML-optimal solution is ac-
tually a very sensible one. When the sample size is
increased, the bin count is increased and more and
more details are captured. Notice that with all the
sample sizes, the bin widths of the NML-optimal his-
tograms are strongly variable. It is clear that it would
be impossible for any equal-width histogram density
estimator to produce such detailed results using the
same amount of data.

6 CONCLUSION

In this paper we have presented an information-
theoretic framework for histogram density estimation.
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Figure 2: The Gaussian finite mixture densities gm6
and gm8 and the NML-optimal histograms with sam-
ple size 10000.

The selected approach based on the MDL principle
has several advantages. Firstly, the MDL criterion for
model selection (stochastic complexity) has nice the-
oretical optimality properties. Secondly, by regarding
histogram estimation as a model selection problem,
it is possible to learn generic, variable-width bin his-
tograms and also estimate the optimal bin count auto-
matically. Furthermore, the MDL criterion itself can
be used as a measure of quality of a density estima-
tor, which means that there is no need to assume any-
thing about the underlying generating density. Since
the model selection criterion is based on the NML dis-
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erating densities and the corresponding NML-optimal
histograms as a function of the sample size.
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Figure 4: The generating density gm6, the NML-
optimal histograms and the empirical distributions
with sample sizes 100, 1000 and 10000.

tribution, there is also no need to specify any prior
distribution for the parameters.

To make our approach practical, we presented an effi-
cient way to compute the value of the stochastic com-
plexity in the histogram case. We also derived a dy-
namic programming algorithm for efficiently optimiz-
ing the NML-based criterion. Consequently, we were
able to find the globally optimal bin count and cut
point locations in quadratic time with respect to the
size of the candidate cut point set.

In addition to the theoretical part, we demonstrated
the validity of our approach by simulation tests. In
these tests, data samples of various sizes were gener-
ated from Gaussian finite mixture densities with highly
complex shapes. The results showed that the NML his-
tograms automatically adapt to various kind of densi-
ties.



In the future, our plan is to perform an extensive set
of empirical tests using both simulated and real data.
In these tests, we will compare our approach to other
histogram estimators. It is anticipated that the vari-
ous equal-width estimators will not be performing well
in the tests due to the severe limitations of regular
histograms. More interesting will be the compara-
tive performance of the density estimator in (Rissanen
et al., 1992), which is similar to ours but based on the
Bayesian mixture criterion. Theoretically, our version
has an advantage at least with small sample sizes.

Another interesting application of NML histograms
would be to use them for modeling the class-specific
distributions of classifiers such as the Naive Bayes.
These distributions are usually modeled with a Gaus-
sian density or a multinomial distribution with equal-
width discretization, which typically cannot capture
all the relevant properties of the distributions. Al-
though the NML histogram is not specifically tailored
for classification tasks, it seems evident that if the
class-specific distributions are modeled with high ac-
curacy, the resulting classifier also performs well.
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2 An MDL Framework for Data Clustering

We regard clustering as a data assignment problem where the goal is to partition
the data into several non-hierarchical groups of items. For solving this problem,
we suggest an information-theoretic framework based on the minimum description
length (MDL) principle. Intuitively, the idea is that we group together those data
items that can be compressed well together, so that the total code length over all
the data groups is optimized. One can argue that as efficient compression is possible
only when one has discovered underlying regularities that are common to all the
members of a group, this approach produces an implicitly defined similarity metric
between the data items. Formally the global code length criterion to be optimized is
defined by using the intuitively appealing universal normalized maximum likelihood
code which has been shown to produce optimal compression rate in an explicitly
defined manner. The number of groups can be assumed to be unknown, and the
problem of deciding the optimal number is formalized as part of the same theoretical
framework. In the empirical part of the paper we present results that demonstrate
the validity of the suggested clustering framework.

1.1 Introduction

Clustering is one of the central concepts in the field of unsupervised data analysis.
Unfortunately it is also a very controversial issue, and the very meaning of the
concept “clustering” may vary a great deal between different scientific disciplines
(see, e.g., [Jain, Murty, and Flynn 1999] and the references therein). However, a
common goal in all cases is that the objective is to find a structural representation
of data by grouping (in some sense) similar data items together. In this work
we want to distinguish the actual process of grouping the data items from the
more fundamental issue of defining a criterion for deciding which data items belong
together, and which do not.

In the following we regard clustering as a partitional data assignment or data
labeling problem, where the goal is to partition the data into mutually exclusive
clusters so that similar (in a sense that needs to be defined) data vectors are grouped
together. The number of clusters is unknown, and determining the optimal number
is part of the clustering problem. The data are assumed to be in a vector form so
that each data item is a vector consisting of a fixed number of attribute values.

Traditionally this problem has been approached by first fixing a distance metric,
and then by defining a global goodness measure based on this distance metric —
the global measure may for example punish a clustering for pairwise intra-cluster
distances between data vectors, and reward it for pairwise inter-cluster distances.
However, although this approach is intuitively quite appealing, from the theoretical
point of view it introduces many problems.

The main problem concerns the distance metric used: the task of formally
describing the desirable properties of a suitable similarity metric for clustering has
turned out to be a most difficult task. Commonly used distance metrics include the
Euclidean distance and other instances from the Minkowski metric family. However,
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although these types of metrics may produce reasonable results in cases where the
the underlying clusters are compact and isolated, and the domain attributes are all
continuous and have a similar scale, the approach faces problems in more realistic
situations [Mao and A.K. 1996].

As discussed in [Kontkanen, Lahtinen, Myllymäki, Silander, and Tirri 2000],
non-continuous attributes pose another severe problem. An obvious way to try to
overcome this problem is to develop data preprocessing techniques that essentially
try to map the problem in the above setting by different normalization and scaling
methods. Yet another alternative is to resort to even more exotic distance metrics,
like the Mahalanobis distance. However, deciding between alternative distance
metrics is extremely difficult, since although the concept of a distance metric is
intuitively quite understandable, the properties of different distance metrics are far
from it [Aggarwal, Hinneburg, and Keim 2001].

A completely different approach to clustering is offered by the model-based ap-
proach, where for each cluster a data generating function (a probability distribution)
is assumed, and the clustering problem is defined as the task to identify these dis-
tributions (see, e.g., [Smyth 1999; Fraley and Raftery 1998; Cheeseman, Kelly, Self,
Stutz, Taylor, and Freeman 1988]). In other words, the data are assumed to be
generated by a finite mixture model [Everitt and Hand 1981; Titterington, Smith,
and Makov 1985; McLachlan 1988]. In this framework the optimality of a clustering
can be defined as a function of the fit of data with the finite mixture model, not as
a function of the distances between the data vectors.

However, the difference between the distance-based and model-based approaches
to clustering is not as fundamental as one might think at a first glance. Namely, it
is well known that if one, for example, uses the squared Mahalanobis distance in
clustering, then this implicitly defines a model-based approach based on Gaussian
distributions. A general framework for mapping arbitrary distance functions (or
loss functions) to probability distributions is presented in [Grünwald 1998]. The
reverse holds of course as well: any explicitly defined probabilistic model can be seen
to implicitly generate a distance measure. Consequently, we have two choices: we
can either explicitly define a distance metric, which produces an implicitly defined
probability distribution, or we can explicitly define a probabilistic model, which
implicitly defines a distance metric. We favor the latter alternative for the reasons
discussed below.

One of the main advantages of the model-based approach is that the explicit
assumptions made correspond to concepts such as independence, linearity, uni-
modality etc., that are intuitively quite understandable. Consequently, we can ar-
gue that constructing a sensible model is easier than constructing a meaningful
distance metric. Another important issue is that the modern statistical machine
learning community has developed several techniques for automated selection of
model complexity. This means that by explicitly defining the model assumptions,
one can address the problem of deciding the optimal number of clusters together
with the problem of assigning the data vectors to the clusters.

Nevertheless, although the modeling approach has many advantages, it also
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introduces some problems. First of all, the finite mixture model implicitly assumes
the existence of a hidden clustering variable, the values of which are unknown
by definition. Evaluating probabilistic models in this type of an incomplete data
case is difficult, and one needs to resort to approximations of theoretically derived
model selection criteria. Furthermore, it can also be argued that if the fundamental
goal is to find a data partitioning, then it is somewhat counter-intuitive to define
the objective of clustering primarily as a model search problem, since clustering
is a property of the data, not of the model. Moreover, if one is really interested
in the model, and not a partition, then why restrict oneself to a simple finite
mixture model? Bayesian or probabilistic networks, for instance, offer a rich family
of models that extend the simple mixture model [Lauritzen 1996; Heckerman,
Geiger, and Chickering 1995; Cowell, Dawid, Lauritzen, and Spiegelhalter 1999].
A typical survey of users of the Autoclass system [Cheeseman, Kelly, Self, Stutz,
Taylor, and Freeman 1988] shows that they start out using clustering, start noticing
certain regularities, and then switch over to some custom system. When the actual
goal is broader knowledge discovery, model-based clustering is often too simple an
approach.

The model-based approach of course implicitly leads to clustering, as the mixture
components can be used to compute the probability of any data vector originating
from that source. Hence, a mixture model can be used to produce a “soft” clustering
where each data vector is assigned to different clusters with some probability.
Nevertheless, for our purposes it is more useful to consider “hard” data assignments,
where each data vector belongs to exactly one cluster only. In this case we can
compute in practice some theoretically interesting model selection criteria, as we
shall later see. In addition, it can be argued that this type of hard assignments
match more naturally to the human intuition on clustering, where the goodness of
a clustering depends on how the data are globally balanced among the different
clusterings [Kearns, Mansour, and Ng 1997].

In this paper we propose a model selection criterion for clustering based on the
idea that a good clustering is such that one can encode the clustering together with
the data so that the resulting code length is minimized. In the Bayesian modeling
framework this means regarding clustering as a missing data problem, and choosing
the clustering (assignment of missing data) maximizing the joint probability. As
code lengths and probabilities are inherently linked to each other (see e.g. [Cover
and Thomas 1991]), these two perspectives are just two sides of the same coin.
But in order to formalize this clustering criterion, we need to explicitly define
what we mean by minimal code length / maximal probability. In the Bayesian
setting optimality is usually defined with respect to some prior distribution, with
the additional assumption that the data actually come from one of the models under
consideration.

The main problem with the Bayesian model-based approach for clustering stems
from the fact that it implicitly assumes the existence of a latent “clustering
variable”, the values of which are the missing values that we want to find in
clustering. We claim that determining an informative prior for this latent variable
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is problematic, as the variable is by definition “hidden”! For example, think of a
data set of web log data collected at some WWW site. A priori, we have absolutely
no idea of how many underlying clusters of users there exist in the data, or what
are the relative sizes of these clusters. What is more, we have also very little prior
information about the class-conditional distributions within each cluster: we can of
course compute for example the population mean of, say, the age of the users, but
does that constitute a good prior for the age within different clusters? We argue
that it does not, as what we intuitively are looking for in clustering is discriminative
clusters that differ not only from each other, but also from the population as a whole.

The above argument leads to the following conclusion: the Bayesian approach
to clustering calls for non-informative (objective) priors that do not introduce any
involuntary bias in the process. Formally this can be addressed as a problem for
defining so called reference priors [Bernardo 1997]. However, current methods for
determining this type of priors have technical difficulties at the boundaries of the
parameter space of the probabilistic model used [Bernardo 1997]. To overcome this
problem, we suggest an information-theoretic framework for clustering, based on
the Minimum Description Length (MDL) principle [Rissanen 1978; Rissanen 1987;
Rissanen 1996], which leads to an objective criterion in the sense that it is not
dependent on any prior distribution, it only uses the data at hand. Moreover, it
also has an interpretation as a Bayesian method w.r.t. a worst case prior, and is
thus a finite sample variant of the reference prior. It should also be noted that the
suggested optimality criterion based on the MDL approach does not assume that
the data actually come from the probabilistic model class used for formalizing the
MDL principle — this is of course a sensible property in all realistic situations.

In summary, our approach is essentially model-based as it requires an explicit
probabilistic model to be defined, no explicit distance metric is assumed. This is
in sharp contrast to the information-theoretic approaches suggested in [Gokcay
and Principe 2002; Slonim, Friedman, and Tishby 2002], which are essentially
distance-based clustering frameworks, where the distance metric is derived from
information-theoretic arguments. As discussed above, with respect to the standard
model-based Bayesian approach, our approach differs in that the objectivity is
approached without having to define an explicit prior for the model parameters.

The clustering criterion suggested here is based on the MDL principle which
intuitively speaking aims at finding the shortest possible encoding for the data.
For formalizing this intuitive goal, we adopt the modern normalized maximum
likelihood (NML) coding approach [Shtarkov 1987], which can be shown to lead to a
criterion with very desirable theoretical properties (see e.g. [Rissanen 1996; Barron,
Rissanen, and Yu 1998; Grünwald 1998; Rissanen 1999; Xie and Barron 2000;
Rissanen 2001] and the references therein). It is important to realize that approaches
based on either earlier formalizations of MDL, or on the alternative Minimum
Message Length (MML) encoding framework [Wallace and Boulton 1968; Wallace
and Freeman 1987], or on more heuristic encoding schemes (see e.g. [Rissanen and
Ristad 1994; Dom 2001; Plumbley 2002; Ludl and Widmer 2002]) do not possess
these theoretical properties!
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The work reported in [Dom 1995] is closely related to our work as it addresses
the problem of segmenting binary strings, which essentially is clustering (albeit in
a very restricted domain). The crucial difference is that in [Dom 1995] the NML
criterion is used for encoding first the data in each cluster, and the clustering itself
(i.e., the cluster labels for each data item) is then encoded independently, while
in the clustering approach suggested in Section 1.2 all the data (both the data in
the clusters plus the cluster indexes) is encoded together. Another major difference
is that the work in [Dom 1995] concerns binary strings, i.e., ordered sequences of
data, while we study unordered sets of data. Finally, the computational method
used in [Dom 1995] for computing the NML is computationally feasible only in the
simple binary case — in Section 1.4 we present a recursive formula that allows us
the compute the NML exactly also in more complex, multi-dimensional cases.

This paper is structured as follows. In Section 1.2 we introduce the notation
and formalize clustering as a data assignment problem. The general motivation
for the suggested information-theoretic clustering criterion is also discussed. In
Section 1.3 the theoretical properties of the suggested criterion are discussed in
detail. Section 1.4 focuses on computational issues: we show how the suggested MDL
clustering criterion can be computed efficiently for a certain interesting probabilistic
model class. The clustering criterion has also been validated empirically: illustrative
examples of the results are presented and discussed in Section 1.5. Section 1.6
summarizes the main results of our work.

1.2 The clustering problem

1.2.1 Clustering as data partitioning

Let us consider a data set xn = {x1, . . . ,xn} consisting of n outcomes (vectors),
where each outcome xj is an element of the set X . The set X consists of all the
vectors of the form (a1, . . . , am), where each variable (or attribute) ai takes on
values on some set that can be either a continuum of real numbers, or a finite set
of discrete values. A clustering of the data set xn is here defined as a partitioning
of the data into mutually exclusive subsets, the union of which forms the data set.
The number of subsets is a priori unknown. The clustering problem is the task to
determine the number of subsets, and to decide to which cluster each data vector
belongs.

Formally, we can notate a clustering by using a clustering vector yn = (y1, . . . , yn),
where yi denotes the index of the cluster to which the data vector xi is assigned
to. The number of clusters K is implicitly defined in the clustering vector, as it
can be determined by counting the number of different values appearing in yn. It
is reasonable to assume that K is bounded by the size of our data set, so we can
define the clustering space Ω as the set containing all the clusterings yn with the
number of clusters being less than n. Hence the clustering problem is now to find
from all the yn ∈ Ω the optimal clustering yn.
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For solving the clustering problem we obviously need a global optimization
criterion that can be used for comparing clusterings with different number of
clusters. On the other hand, as the clustering space Ω is obviously exponential
in size, in practice we need to resort to combinatorial search algorithms in our
attempt to solve the clustering problem. We return to this issue in Section 1.5.
In the following we focus on the more fundamental issue: what constitutes a good
optimality criterion for choosing among different clusterings? To formalize this, we
first need to explicate the type of probabilistic models we consider.

1.2.2 Model class

Consider a set Θ ∈ Rd. A class of parametric distributions indexed by the elements
of Θ is called a model class. That is, a model class M is defined as the set

M = {P (·|θ) : θ ∈ Θ}. (1.1)

In the following, we use the simple finite mixture as the model class. In this case,
the probability of a single data vector is given by

P (x | θ, MK) =
K

∑

k=1

P (x | y = k, θ, MK)P (y = k | θ, MK), (1.2)

so that a parametric model θ is a weighted mixture of K component models
θ1, . . . , θK each determining the local parameters P (x | y = k, θ, MK) and P (y =
k | θ, MK). Furthermore, as is usually done in mixture modeling, we assume that
the variables (a1, . . . , am) are locally (conditionally) independent:

P (x | y = k, θ, MK) =
m
∏

i=1

P (ai | y = k, θ, MK). (1.3)

The above assumes that the parameter K is fixed. As discussed above, the number
of clusters can be assumed to be bounded by the size of the available data set, so
in the following we consider the union of model classes M1, . . . , Mn.

The finite mixture model class is used as an illustrative example in this paper,
but it should be noted that the general clustering framework applies of course for
other model classes as well. The benefit of the above simple mixture model class is
that while it allows arbitrary complex global dependencies with increasing number
of components K, from the data mining or data exploration point of view this
model class is very appealing as this type of local independence models are very
easy to understand and explain.

For the remainder of this paper, we make also the following restricting assump-
tion: we assume that the data are discrete, not continuous, and that the possibly
originally continuous variables have been discretized (how the discretization should
be done is a difficult problem, and forms a research area that is outside the scope
of this paper). One reason for focusing on discrete data is that in this case we can
model the domain variables by multinomial distributions without having to make
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restricting assumptions about unimodality, normality etc., which is the situation
we face in the continuous case. Besides, discrete data are typical to domains such
as questionnaire or web log data analysis, and the demand for this type of analy-
sis is increasing rapidly. Moreover, as we shall see in Section 1.4, by using certain
computational tricks, in the multinomial case we can compute the theoretically de-
rived objective function presented in the next section exactly, without resorting to
approximations. On the other hand, although we restrict ourselves to discrete data
in this paper, the information-theoretic framework presented in this paper can be
easily extended to cases with continuous variables, or to cases with both continuous
and discrete variables, but this is left as a task for future work.

1.2.3 Clustering criterion

Our optimality criterion for clustering is based on information-theoretical argu-
ments, in particular on the Minimum Description Length (MDL) principle [Ris-
sanen 1978; Rissanen 1987; Rissanen 1996]. This also has a perspective from the
Bayesian point of view, discussed in more detail in Section 1.3. In the following we
try to motivate our approach on a more general level.

Intuitively, the MDL principle aims at finding the shortest possible encoding for
the data, in other words the goal is to find the most compressed representation of
the data. Compression is possible by exploiting underlying regularities found in the
data — the more regularities found, the higher the compression rate. Consequently,
the MDL optimal encoding has found all the available regularities in the data; if
there would be an “unused” regularity, this could be used for compressing the data
even further.

What does this mean in the clustering framework? We suggest the following
criterion for clustering: the data vectors should be partitioned so that the vectors
belonging to the same cluster can be compressed well together. This means that those
data vectors that obey the same set of underlying regularities are grouped together.
In other words, the MDL clustering approach defines an implicit multilateral
distance metric between the data vectors.

How to formalize the above intuitively motivated MDL approach for clustering?
Let us start by noting the well-known fact about the fundamental relationship
between codes and probability distributions: for every probability distribution P,
there exists a code with a code length − log P (x) for all the data vectors x, and for
each code there is probability distribution P such that − logP (x) yields the code
length for data vector x (see [Cover and Thomas 1991]). This means that we can
compress a cluster efficiently, if our model class yields a high probability for that set
of data. Globally this means that we can compress the full data set xn efficiently,
if P (xn | M) is high. Consequently, in the finite mixture framework discussed in
Section 1.2.2, we can define the following optimization problem: Find the model
class MK ∈ M so that P (xn | MK) is maximized.

As discussed in the Introduction, the above model-based approach to clustering
poses several problems. One problem is that this type of an incomplete data
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probability is in this case difficult to compute in practice as the finite mixture
formulation (1.3) implicitly assumes the existence of a latent clustering variable y.
What is even more disturbing is the fact that actual clustering yn has disappeared
from the formulation altogether, so the above optimization task does not solve the
clustering problem as defined in Section 1.2.1. For these reasons, we suggest the
following general optimality criterion for finding the optimal clustering ŷn:

ŷn = arg max
yn

P (xn, yn | M), (1.4)

where M is a probabilistic model class.
It is important to notice here is that in this suggested framework, optimality with

respect to clustering is defined as a relative measure that depends on the chosen
model class M . We see no alternative to this: any formal optimality criterion is
necessarily based on some background assumptions. We consider it very sensible
that in this framework the assumptions must be made explicit in the definition of
the probabilistic model class M . In addition to this, although we in this approach
end up with an optimal data partitioning ŷn, which was our goal, we can in this
framework also compare different model classes with respect to the question of how
well they compress and partition the data.

From the coding point of view, definition (1.4) means the following: If one uses
separate codes for encoding the data in different clusters, then in order to be able to
decode the data, one needs to send with each vector the index of the corresponding
code to be used. This means that we need to encode not only the data xn, but also
the clustering yn, which is exactly what is done in (1.4).

Definition (1.4) is incomplete in the sense that it does not determine how the joint
data probability should be computed with the help of the model class M . In the
Bayesian framework this would be done by integrating over some prior distribution
over the individual parameter instantiations on M :

P (xn, yn | M) =

∫

P (xn, yn | θ, M)P (θ | M)dθ. (1.5)

As discussed in the Introduction, in the clustering framework very little can
be known about the model parameters a priori, which calls for objective (non-
informative) priors. Typical suggestions are the uniform prior, and the Jeffreys
prior. In our discrete data setting, the basic building block of the probability
in (1.4) is the Multinomial distribution. As the values of the clustering variable
are in our approach based on (1.4) known, not hidden, it follows that instead of a
sum as in (1.2), the joint likelihood of a data vector x, y reduces to a product
of Multinomials. This means that the (conjugate) prior P (θ) is a product of
Dirichlet distributions. In the case of the uniform prior, all the individual Dirichlet
distributions have all the hyperparameters set to 1. As shown in [Kontkanen,
Myllymäki, Silander, Tirri, and Grünwald 2000], the Jeffreys prior is in this case
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given by

θ ∼ Di

(

1

2

(

m
∑

i=1

(ni − 1) + 1

)

, . . . ,
1

2

(

m
∑

i=1

(ni − 1) + 1

))

×
m
∏

i=1

K
∏

k=1

Di

(

1

2
, . . . ,

1

2

)

, (1.6)

where ni denotes the number of values of variable ai, K is the number of clusters,
and m is the number of variables (not counting the clustering variable y). Yet
another possibility is to use the prior suggested in [Buntine 1991], which is given
by

θ ∼ Di
( r

K
, . . . ,

r

K

)

m
∏

i=1

K
∏

k=1

Di

(

r

Kni
, . . . ,

r

Kni

)

. (1.7)

Properties of this prior are discussed in [Heckerman, Geiger, and Chickering 1995].
Parameter r is the so called equivalent sample size (ESS) parameter that needs
to be determined. Unfortunately, as can be seen in Section 1.5, the value of the
equivalent sample size parameter affects the behavior of the resulting clustering
criterion a great deal, and we are aware of no disciplined way for automatically
determining the optimal value.

In the next section we discuss an information-theoretic framework where the
joint probability of the data and the clustering can be determined in an objective
manner without an explicit definition of a prior distribution for the model parame-
ters. Section 1.4 (see Equation (1.24)) shows how this framework can be applied for
computing the clustering criterion (1.4). In Section 1.5 this information-theoretic
approach to clustering is studied empirically and compared to the Bayesian alter-
natives.

1.3 Stochastic complexity and the minimum description length principle

The information-theoretic Minimum Description Length (MDL) principle developed
by Rissanen [Rissanen 1978; Rissanen 1987; Rissanen 1989; Rissanen 1996] offers
a well-founded theoretical framework for statistical modeling. Intuitively, the main
idea of this principle is to represent a set of models (model class) by a single model
imitating the behavior of any model in the class. Such representative models are
called universal. The universal model itself does not have to belong to the model
class as often is the case.

The MDL principle is one of the minimum encoding approaches to statistical
modeling. The fundamental goal of the minimum encoding approaches is compres-
sion of data. That is, given some sample data, the task is to find a description
or code of it such that this description uses the least number of symbols, less than
other codes and less than it takes to describe the data literally. Intuitively speaking,
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in principle this approach can be argued to produce the best possible model of the
problem domain, since in order to be able to produce the most efficient coding of
data, one must capture all the regularities present in the domain.

The MDL principle has gone through several evolutionary steps during the last
two decades. For example, the early realization of the MDL principle (the two-
part code MDL [Rissanen 1978]) takes the same form as the Bayesian information
criterion (BIC) [Schwarz 1978], which has led some people to incorrectly believe
that these two approaches are equivalent. The latest instantiation of MDL discussed
here is not directly related to BIC, but to the formalization described in [Rissanen
1996]. The difference between the results obtained with the “modern” MDL and
BIC can be in practice quite dramatic, as demonstrated in [Kontkanen, Buntine,
Myllymäki, Rissanen, and Tirri 2003].

Unlike some other approaches, like for example Bayesianism, the MDL principle
does not assume that the model class is correct (technically speaking, in the
Bayesian framework one needs to define a prior distribution over the model class
M , yielding a zero probability to models θ outside this set). It even says that
there is no such thing as a true model or model class, as acknowledged by many
practitioners. This becomes apparent in Section 1.3.3: the MDL principle can be
formalized as a solution to an optimization problem, where the optimization is
done over all imaginable distributions, not just over the parametric model class M .
Consequently, the model class M is used only as a technical device for constructing
an efficient code, and no prior distribution over the set M is assumed.

1.3.1 Stochastic complexity as normalized maximum likelihood

The most important notion of MDL is the Stochastic Complexity (SC). Intuitively,
stochastic complexity is defined as the shortest description length of a given data
relative to a model class. In the following we give the definition of stochastic
complexity, before giving its theoretical justification in the next subsection.

Let θ̂(xn) denote the maximum likelihood estimate of data xn, i.e.,

θ̂(xn) = argmax
θ∈Θ

{P (xn|θ, M)}. (1.8)

The stochastic complexity is then defined in terms of the likelihood evaluated at
its maximum P (xn | θ, M)|θ=θ̂(xn) as

SC(xn | M) = − log
P (xn | θ, M)|θ=θ̂(xn)

Rn
M

= − log P (xn | θ, M)|θ=θ̂(xn) + log Rn
M , (1.9)

where Rn
M is given by

Rn
M =

∑

x
n

P (xn | θ, M)|θ=θ̂(xn), (1.10)

and the sum goes over all the possible data matrices of length n. The term log Rn
M
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is called the regret and since it depends on the length of data, not the data itself, it
can be considered as a normalization term, and the distribution in (1.9) is called the
normalized maximum likelihood (NML) distribution proposed for finite alphabets
in [Shtarkov 1987]. The definition (1.9) is intuitively very appealing: every data
matrix is modeled using its own maximum likelihood (i.e. best fit) model, and
then a penalty for the complexity of the model class M is added to normalize the
distribution.

1.3.2 Normalized maximum likelihood as a two-part code

A two-part code is such that one first encodes the model to be used for coding,
and then the data with the help of the model. Consequently, the total code length
consists of a sum of two terms, both of which are lengths of codes produced by
proper codes. In its definitional form in (1.9), NML is not a two-part code because
the (minus) log regret term is subtracted from the first term.

To make this a two part code, we use the following interpretation: the statistical
event xn can be broken down into two parts: the first part is the event θ̂(xn) which
means we are supplied with the data maximum likelihood but not the data itself;
the second part is the event xn | θ̂(xn) which then supplies us with the full data. For
a simple one dimensional Gaussian model, this means receiving the sample mean
first, and then secondly receiving the full set of data points. For distributions with
sufficient statistics, the first part θ̂(xn) is generally all that is interesting in the data
anyway!

The stochastic complexity (1.9) can now be manipulated as follows:

SC(xn | M) = − log
P (xn, θ̂(xn) | θ, M)

∣

∣

∣

θ=θ̂(xn)

Rn
M

= − log P (θ̂(xn)|n, M) − log P (xn | θ̂(xn), θ, M)
∣

∣

∣

θ=θ̂(xn)
(1.11)

where

P (θ̂(xn)|n, M) =
P (θ̂(xn) | θ, M)

∣

∣

∣

θ=θ̂(xn)
∑

θ̂ P (θ̂(xn) = θ̂ | θ, M)
∣

∣

∣

θ=θ̂(xn)

. (1.12)

The normalizing term of P (θ̂(xn)|n, M) is just the regret (1.10) with the summation
rearranged.

The NML version of stochastic complexity is now a two-part code. The first part
encodes the maximum likelihood value θ̂(xn) according to the prior

P (θ̂(xn)|n, M) ∝ max
θ

P (θ̂(xn) | θ, M) . (1.13)

Thus the parameter space Θ has been discretized to values achieving a maximum
likelihood for some sample of size n, and the prior distributed so each has its
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Figure 1.1 Likelihood curves for K=2, n=10.

highest possible likelihood. This construction is given in Figure 1.1 for the binomial
model with sample size n = 10. Each dashed curve gives a likelihood for a different
number of, say 1’s, in the data, yielding 11 curves in all. The stochastic complexity
is then computed for θ̂ = 0, 1/10, 2/10, . . . , 9/10, 1, which before scaling by regret
yields the solid curve. NML at the discretized points θ̂ for different sample sizes
n = 2, 4, . . . , 128 is given in Figure 1.2. Notice since this is a discrete distribution,
the probability at the points sums to one, and thus the values decrease on average
as 1/(n + 1).

The second part of the two-part code encodes the remainder of the data given
the maximum likelihood value θ̂(xn) already encoded. Thus this is no longer a
standard sequential code for independent data. In the one dimensional Gaussian
case, for instance, it means the sample mean is supplied up front and then the
remainder of the data follows with a dependence induced by the known mean.

The ingenious nature of the NML construction now becomes apparent: One is in
effect using a two part code to encode the data, yet no data bits have been wasted in
defining the parameters θ since these also form part of the data description itself.
This two part code appears to be a complex codelength to construct in pieces.
However, one computes this two-part codelength without having to explicitly compute
the codelengths for the two parts. Rather, the regret is computed once and for all
for the model class and the regular sequential code for data (− log P (xn | θ, M)) is
the basis for the computation.

One is tempted to continue this construction to interpret P (θ̂|n, M) based on
some reduction to a prior P (θ|M) over the full parameter space Θ, not just the
maximum likelihood values for samples of size n. But this is apparently not possible
in the general case. Moreover, in many cases no unique such prior exists. For typical
exponential family distributions, for instance, the dimensionality of P (θ̂|n, M) is
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less than P (θ|M) and no unique prior will exist except in a limiting sense when
n → ∞. We discuss this situation next.

1.3.3 Normalized maximum likelihood as an optimization problem

There have been a number of different alternatives for NML proposed in the
literature over the years. We compare some of these here. They provide us with
theoretical counterparts to our experimental results.

There are different standards one might use when comparing codelengths on data.

Best case: The optimal possible value for encoding the data xn according to
model M is log 1/P (xn|θ̂(xn), M), which is unrealizable because θ̂ needs to be
known.

Average of best case: Assuming a particular θ for model M holds, the average
of the best case is EP (xn|θ,M) log 1/P (xn|θ̂(xn), M).

Barron, Rissanen, and Yu [1998] summarize various optimization problems with
respect to these. First, one needs the codelength that will actually be used, Q(xn),
which is the length we are optimizing.

NML is sometimes derived as the following: find a Q(·) minimizing the worst case
(for xn) increase over the best case codelength for xn:

min
Q(·)

max
x

n
log

P (xn | θ̂(xn), M)

Q(xn)
. (1.14)

Stochastic complexity SC(xn) is the minimizing distribution here [Shtarkov 1987].
Notice this requires no notion of truth, only a model family used in building a code.

A related definition is based on the average best case codelength for θ: Find a Q(·)
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minimizing the worst case (for θ) increase over the average best case codelength for
θ,

min
Q(·)

max
θ

EP (xn|θ,M) log
P (xn|θ̂(xn), M)

Q(xn)

= min
Q(·)

max
P (θ|M)

EP (θ|M)EP (xn|θ,M) log
P (xn|θ̂(xn), M)

Q(xn)

= max
P (θ|M)

EP (θ|M)EP (xn|θ,M) log
P (xn|θ̂(xn), M)

P (xn|M)

= log Rn
M − min

P (θ|M)
KL (P (xn|M)‖SC(xn|M)) . (1.15)

The first step is justified changing a maximum maxθ into maxP (θ|M) EP (θ|M), the
second step is justified using minimax and maximin equivalences [Barron, Rissanen,
and Yu 1998] since

P (xn|M) = arg min
Q(xn)

EP (xn,θ|M) log
P (xn|θ̂(xn), M)

Q(xn)
, (1.16)

and the third step comes from the definition of SC(xn|M).
This optimization then yields the remarkable conclusions for the average best

case:

Finding a Q(xn) minimizing the worst case over θ is equivalent to finding a prior
P (θ|M) maximizing the average over θ, although the prior found may not be unique.
One could call this a “worst-case Bayesian” analysis that is similar to the so-called
reference prior analysis of Bernardo [Bernardo 1997]: a maxP (θ|M) term has been
added to a standard formula to minimize a posterior expected cost. However, it
applies to the finite sample case, and thus is surely more realistic in practice.

The minimizing Q(xn) must be a valid marginal P (xn|M) for some joint
P (θ|M)P (xn|θ, M). Otherwise it is the closest in Kullback-Leibler divergence to
the NML distribution. If for some prior P (θ|M) the induced marginal P (xn|M) ap-
proaches the NML, then that prior must approach the optimal. Thus NML provides
the gold standard for this average case.

In particular, for exponential family distributions the likelihood for the sufficient
statistics of the data and the likelihood for their maximum likelihood value θ̂(xn)
are closely related. When the Fisher Information is of full rank, a prior P (θ|M)
with point mass on the set { θ : ∃xn such that θ = θ̂(xn) } can sometimes be found
to make the marginal P (xn|M) equal to the NML distribution. We claim this holds
for the multinomial case. The minimizing Q(xn) will thus be the NML in many
cases.

Under certain regularity conditions, the optimizing prior approaches Jeffreys
prior when n → ∞. Boundaries cause problems here because they mean part of the
parameter space is of a lower dimension. For finite n in the case of the multinomial
model when the boundaries are included, Xie and Barron [Xie and Barron 2000]
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argue for a mixture of Jeffreys priors corresponding to different dimensions being
fixed. For the binomial case, this corresponds roughly to mixing a Jeffreys prior
with point mass at the two end points (θ = 0, 1). NML versus the Jeffreys prior for
the binomial is given in Figure 1.3 for the case when n = 16.

For the multinomial for different dimension K and sample size n, NML corre-
sponds closely to Jeffreys prior off the boundaries. The boundaries have signifi-
cant additional mass. An approximate proportion for Jeffreys prior in the NML
distribution is given in Figure 1.4 for the multinomial model with sample sizes
n = 10, . . . , 1000 and K = 2, . . . , 9. This records the ratio of NML over the Jeffreys
prior at a data point with near equal counts (i.e., off the boundaries). It can be
seen that the proportion very slowly rises to 1.0 and for the section here at least is
sub-linear in convergence. Xie and Barron use O(1/n1/8) for their convergence rate
to the Jeffreys prior for the general multinomial. This indicates just how dangerous
it is to use the Jeffreys prior as a substitute for the NML distribution in practice.

1.4 Computing the stochastic complexity for multinomial data

1.4.1 One-dimensional case

In the following we instantiate the NML for the one-dimensional multinomial
case. Extension to the multi-dimensional model class discussed in Section 1.2.2
is relatively straightforward and is given in Section 1.4.2.
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1.4.1.1 Multinomial maximum likelihood

Let us assume that we have a multinomial variable X with K values. The parameter
set Θ is then a simplex

Θ = {(θ1, . . . , θK) : θk ≥ 0, θ1 + · · · + θK = 1}, (1.17)

where θk = P (X = k). Under the usual i.i.d. assumption the likelihood of a data
set xn is given by

P (xn|θ) =
K
∏

k=1

θhk

k , (1.18)

where hk is the frequency of value k in xn. Numbers (h1, . . . , hK) are called the
sufficient statistics of data xn. Word “statistics” in this expression means a function
of a data and “sufficient” refers to the fact that the likelihood depends on the data
only through them.

To instantiate the stochastic complexity (1.9) to the single multinomial case, we
need the maximum likelihood estimates of the parameters θk, i.e.,

θ̂(xn) = (θ̂1, . . . , θ̂K) = (
h1

n
, . . . ,

hK

n
). (1.19)

Thus, the likelihood evaluated at the maximum likelihood point is given by

P (xn | θ̂(xn)) =
K
∏

k=1

(

hk

n

)hk

. (1.20)
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1.4.1.2 Multinomial regret

Since the maximum likelihood (1.20) only depends on the sufficient statistics hk,
the regret can be written as

Rn
K =

∑

h1+···+hK=n

n!

h1! · · ·hK !

K
∏

k=1

(

hk

n

)hk

, (1.21)

where the summing goes over all the compositions of n into K parts, i.e., over all
the possible ways to choose non-negative integers h1, . . . , hK so that they sum up
to n.

The time complexity of (1.21) is O
(

nK−1
)

, which is easy to see. For example,
take case K = 3. The regret can be computed in O

(

n2
)

time, since we have

Rn
K =

∑

h1+h2+h3=n

n!

h1!h2!h3!

(

h1

n

)h1
(

h2

n

)h2
(

h3

n

)h3

=
n

∑

h1=0

n−h1
∑

h2=0

n!

h1!h2!(n − h1 − h2)!
·

(

h1

n

)h1
(

h2

n

)h2
(

n − h1 − h2

n

)n−h1−h2

.

(1.22)

Note that slightly more efficient way for computing the regret would be to sum
over partitions of n instead of compositions. A (restricted) partition of integer n
into K parts is a set of K non-negative integers whose sum is n. For example,
compositions h1 = 3, h2 = 2, h3 = 5 and h1 = 2, h2 = 5, h3 = 3 (with n = 10)
correspond to the same partition {5, 3, 2}. Since the maximum likelihood term
in (1.21) is clearly different for every partition (but not for every composition),
it would be more efficient to sum over the partitions. However, the number of
partitions is still O

(

nK−1
)

, so this more complex summing method would not lead
to any improvement of the time complexity. Therefore, in order to compute the
stochastic complexity in practice, one needs to find better methods. This issue will
be addressed below.

1.4.1.3 Recursive formula

A practical method for regret computation is derived via a clever recursion trick.
The idea is to find a dependence of Rn

K and regret terms corresponding to a smaller
number of values. It turns out that the double recursive formula (1.23) derived below
offers a solution to this problem. In this formula, Rn

K is represented as a function
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of Rn
K∗ and Rn

K−K∗ , where K∗ can be any integer in {1, . . . , K − 1}. We have

Rn
K =

∑

h1+···+hK=n

n!

h1! · · ·hK !

K
∏

k=1

(

hk

n

)hk

=
∑

h1+···+hK=n

n!

nn

K
∏

k=1

hhk

k

hk!

=
∑

h1+···+hK∗=r1

hK∗+1+···+hK=r2

r1+r2=n

n!

nn

rr1

1

r1!

rr2

2

r2!

(

r1!

rr1

1

K∗

∏

k=1

hhk

k

hk!
·

r2!

rr2

2

K
∏

k=K∗+1

hhk

k

hk!

)

=
∑

h1+···+hK∗=r1

hK∗+1+···+hK=r2

r1+r2=n

n!

nn

rr1

1

r1!

rr2

2

r2!

(

r1!

h1! · · ·hK∗ !

K∗

∏

k=1

(

hk

r1

)hk

·
r2!

hK∗+1! · · ·hK !

K
∏

k=K∗+1

(

hk

r2

)hk
)

=
∑

r1+r2=n

n!

r1!r2!

(r1

n

)r1
(r2

n

)r2

· Rr1

K∗ · Rr2

K−K∗ . (1.23)

This formula can be used in efficient regret computation by applying a combinatoric
doubling trick. The procedure goes as follows:

1. Calculate table of Rj
2 for j = 1, . . . , n using the composition summing

method (1.21). This can be done in time O
(

n2
)

.

2. Calculate tables of Rj
2m for m = 2, . . . , +log2 K, and j = 1, . . . , n using the

table Rj
2 and recursion formula (1.23). This can be done in time O

(

n2 log K
)

.

3. Build up Rn
K from the tables. This process also takes time O

(

n2 log K
)

.

The time complexity of the whole recursive procedure given above is O
(

n2 log K
)

.
As an example of this method, say we want to calculate Rn

26. The process is
illustrated in Figure 1.5. First we form the tables Rj

2m for m = 1, 2, 3, 4 and
n = 1, . . . , N . Formula (1.23) is then applied to get the tables of Rj

10 from Rj
2

and Rj
8 for j = 1, . . . , n. Finally, Rn

26 can be computed from the tables of Rj
16

and Rj
10.
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1.4.2 Multi-dimensional generalization

In this section, we show how to compute NML for the multi-dimensional clustering
model class (denoted here by MT ) discussed in Section 1.2.2. Using (1.21), we have

SC(xn, yn|MT ) = − log

(
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where hk is the number of times y has value k in xn, fikv is the number of times
ai has value v when y = k, and Rn
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Note that we can move all the terms under their respective summation signs, which
gives
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which depends only linearly on the number of variables m, making it possible to
compute (1.24) for cases with lots of variables provided that the number of value
counts are reasonable small.

Unfortunately, formula (1.26) is still exponential with respect to the number of
values K, n1, . . . , nm. The situation is especially bad if the number of clusters K is
big which often is the case. It turns out, however, that the recursive formula (1.23)
can also be generalized to the multi-dimensional case. Proceeding similarly as



1.4 Computing the stochastic complexity for multinomial data 21

in (1.23), we can write
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from which we get the result
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That is, we can calculate multi-dimensional regrets using exactly similar procedures
as described in Section 1.4.1.3.

In clustering applications it is typical that the number of clusters K is unknown.
Therefore, in order to apply NML for clustering, one needs to evaluate multi-
dimensional regrets with varying number of clusters. It follows that the easiest
way to use the recursive formula (1.28) is to start with the trivial case K = 1,
and then always choose K∗ = 1. The resulting procedure is very simple and as
effective as any other, provided that one wants to calculate regrets for the full
range K = 1, . . . , Kmax. On the other hand, if there is only need to evaluate NML
for some fixed K (as is the case if the number of clusters is known), then one should
use similar procedures as described in Section 1.4.1.3.

In practice the recursive NML computation for the clustering case goes as follows.
The goal is to calculate a (n × Kmax) table of multi-dimensional regrets. The
procedure starts with the calculation of another array consisting of one-dimensional
regrets, since these are needed in (1.28). The size of this array is (n × Vmax),
where Vmax is the maximum of the number of values for the variables (a1, . . . , am).
This array is calculated using (1.23). The time complexity of this step is clearly
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O
(

Vmax · N2
)

.
The next step is to determine the starting point for the calculation of the array

of multi-dimensional regrets. When K = 1, formula (1.26) clearly reduces to

Rn
MT ,1 =

m
∏

i=1

Rn
ni

. (1.29)

Another trivial case is n = 0, which gives

R0
MT ,K = 1, (1.30)

for all K. After that, the calculation proceeds by always increasing n by one, and for
each fixed n, increasing K by one up to the maximum number of clusters wanted.

The interesting thing is that although the multi-dimensional regret formula (1.26)
is rather complicated, the described procedure never uses it directly. The only
things needed are the trivial starting cases K = 1 and n = 0, and the recursive
formula (1.28). It follows that the calculation of multi-dimensional regrets is compu-
tationally as effective as in the single-dimensional case, which is a rather surprising
but important fact.

1.5 Empirical results

1.5.1 Clustering scoring methods

We have presented a framework for data clustering where the validity of a clustering
yn is determined according to the complete data joint probability in Equation (1.4).
Consequently, we obtain different clustering criteria or scoring methods by using
different ways for computing this probability. In the following, the following clus-
tering methods were empirically validated:

NML The NML criterion given by Equation (1.9).

UNI The Bayesian criterion given by the marginal likelihood (1.5) over the uniform
prior distribution.

JEF The Bayesian criterion given by the marginal likelihood (1.5) over the Jeffreys
prior distribution (1.6).

ESS(r) The Bayesian criterion given by the marginal likelihood (1.5) over the
prior distribution (1.7). The parameter r is the equivalent sample size required for
determining this prior.

The above means that ESS(r) is actually a continuum of methods, as the
equivalent sample size can be any positive real number. In the following the following
alternatives were tested: ESS(0.01), ESS(0.1), ESS(1.0), ESS(10.0) and ESS(100.0).
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1.5.2 Empirical setup

In the following we wish to study empirically how the NML clustering criterion
compares with respect to the Bayesian scores UNI, JEF and ESS(r). The problem
is now to find an empirical setup where these different criteria can be compared
objectively. However, this turns out to be a most difficult task. Namely, at first
sight it seems that an objective empirical scenario can be obtained by the following
setup:

1. Choose randomly K probability distributions P (x | Θ1), . . . , P (x | ΘK).

2. i:=1.

3. Generate data xn by repeating the following procedure n times:

(a) Choose a random number zi between 1 and K.

(b) Draw randomly a data vector xi from distribution P (x | Θzi
).

(c) i:=i+1.

4. Cluster the generated data xn in order to get a clustering yn.

5. Validate the clustering by comparing yn and the “ground truth” zn.

We claim that the above procedure has several major weaknesses. One issue is
that the setup obviously requires a search procedure in step 4, as the clustering space
is obviously exponential in size. However, any heuristic search algorithm chosen for
this purpose may introduce a bias favoring some of the criteria.

More importantly, one can argue that the “original” clustering zn is not necessar-
ily the goal one should aim at: Consider a case where the data was generated by a
10-component mixture model, where two of the components are highly overlapping,
representing almost the same probability distribution. We claim that in this case a
sensible clustering method should produce a clustering with 9 clusters, not 10! On
the other hand, consider a case where all the 10 component distributions are not
overlapping, but only one sample has been drawn from each of the 10 components.
We argue that in this case a sensible clustering criterion should suggest a relatively
small number of clusters, say 1 or 2, instead of the “correct” number 10, since with
small sample sizes the variation in the data could not possibly justify the use of so
many clusters (meaning a high number of parameters).

This means that the above scenario with artificial data makes only sense if the
mixture components are non-overlapping, and the amount of data is substantial.
Obviously it can now be argued that this unrealistic situation hardly resembles
real-world clustering problems, so that the results obtained in this way would not
be very relevant. What is more, if the data are generated by a finite mixture of
distributions, which means that the local independence assumptions we made in
Section 1.2.2 do indeed hold, then this setup favors the Bayesian approach as in
this unrealistic case the marginal likelihood criterion is also minimax optimal. A
more realistic setup would of course be such that the assumptions made would not
hold, and the data would not come from any of the models in our model class.



24 An MDL Framework for Data Clustering

The above scenario can be modified to a more realistic setting by changing the
data generating mechanism so that the assumptions made do not hold any more.
One way to achieve this goal in our local independence model case would be to add
dependencies between the variables. However, this should be done in such a manner
that the dependencies introduced are sensible in the sense that such dependencies
exist in realistic domains. This is of course a most difficult task. For this reason,
in the set of experiments reported here we used real-world data that were gathered
in a controlled manner so that the above testing procedure could be used although
reality was used as a data generating mechanism instead of a manually constructed
mixture model. Before describing the data, let us have a look at the actual clustering
procedure used in the experiments.

1.5.3 The search algorithm

For the actual clustering algorithm, we studied several alternatives. The best results
were obtained with a simple stochastic greedy algorithm, where the number of
clusters K was first fixed, and then the following procedure repeated several times:

1. Choose a random initial data assignment.

2. Choose a random data vector.

3. Move the chosen data vector to the cluster optimizing locally the clustering score.

4. If converged, stop. Otherwise, go to step 2.

This procedure was repeated with all the possible values for K, and with all the
clustering scoring methods listed in Section 1.5.1. At the end, all the clusterings
of different size, produced by all the runs with all the clustering methods, were
put together into a large pool of candidate clusterings. Finally, all the candidate
clusterings were evaluated by using all the clustering criteria. The purpose of
this procedure was to prevent the effect of chance between individual runs of the
stochastic search algorithm with different criteria. It should be noted, however, that
in our experiments almost all the best clusterings were found using NML as the
clustering score. We believe that this tells something important about the shape of
the search space with different clustering criteria, and this interesting issue will be
studied in our future research.

1.5.4 The data

In this set of experiments, the data consisted of measured signal strength values of
radio signals originating from eight WLAN access points (transmitters) located in
different parts of our laboratory. As the measured signal strength depends strongly
on the distance to the transmitting access point, the distribution of the data
collected at some fixed point depends on the relative distances of this point and the
locations of the eight access points. This means that the measurement distributions
at two locations far from each other are very likely to be very different. Furthermore,
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as the access points are not affecting each other, the eight measured signals are at
any fixed point more or less independent of each other.

Consequently, the data collected in the above manner are in principle similar
to artificial data generated by a finite mixture model. Nevertheless, in real-world
environments there is always some inherent noise caused by factors such as mea-
surement errors, position and angle of reflecting or damping surfaces, air humidity,
presence or absence of people and so on. This means that this type of data resemble
artificial data in the sense that the overlap between the component distributions
can be controlled by choosing the locations where the measurements are made, but
at the same time the data contain realistic type of noise that was not artificially
generated.

1.5.5 The results

For this set of experiments, data were gathered at different locations situated as far
from each other as possible. This means that the data generating mechanisms were
rather different, and partitioning the unlabeled data into clusters corresponding
to the measurement locations was relatively easy with all the clustering methods
used, if a sufficient number of data was available. However, as we in this setup were
able to control the amount of data available, we could study the small sample size
behavior of the different clustering scores. A typical example of the behavior of
different clustering criteria can be seen in Figures 1.6 and 1.7.
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Figure 1.6 An example of the behavior of different clustering scores in the task of
finding a four cluster data partitioning, as a function of sample size per cluster.

In Figure 1.6 we see a typical example of how the NML, UNI and JEF clustering



26 An MDL Framework for Data Clustering

2

3

4

5

6

7

8

9

10

5 10 15 20 25 30 35 40 45 50

Su
gg

es
te

d 
nu

m
be

r o
f c

lu
st

er
s

Samples / cluster

ESS(0.01)
ESS(0.1)
ESS(1.0)

ESS(10.0)
ESS(100.0)

Figure 1.7 An example of the behavior of different ESS clustering scores in the task of
finding a four cluster data partitioning, as a function of sample size per cluster.

criteria behave as a function of the sample size. In this case, the correct number
of clusters was four (data were gathered at four different positions), and the X-
axis gives the number of data vectors collected at each of the 4 locations. The
Y-axis gives the number of clusters in the best clustering found with each of the
three clustering criteria, where the pool of candidate clusterings were generated
as described in Section 1.5.3. In this simple case, whenever the best clustering
contained 4 clusters, the actual clustering yn was perfectly consistent with the
way the data were collected, i.e., the clustering suggested was “correct”. Obviously,
whenever the suggested number of clusters was other than 4, the correct clustering
was not found. The values on the Y-axis are averages over several repeats of the
sequential procedure consisting of data gathering, construction of the clustering
candidate pool and validation of the clustering candidates with different clustering
criteria.

From Figure 1.6 we can see that with very small sample sizes (with fewer than 10
samples from each cluster), NML tends to suggest less clusters than there actually
is. However, as discussed above, this is a sensible behavior as very little data sets
do not justify very complex models. After sample size of 10, the NML always finds
the correct number of clusters (and as explained above, also the correct clustering).
The behavior of the UNI and JEF scores is very similar, but they need more data
in order to find the correct clustering.

The behavior of the ESS scores is rather interesting, as we can see in Figure 1.7.
In this particular case, a relatively small equivalent sample size seems to work well:
ESS(1) converges rather quickly (after seeing 20 samples per cluster) to the right
level. However, the behavior is somewhat counter-intuitive with very small sample
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sizes as the suggested number of clusters is first close to 4, then goes down as the
sample size increases to 15, after which it goes up again. A similar, but even more
disturbing pattern is produced by the ESS scores with small equivalent sample
size: with very small samples (under 10 samples per cluster), they tend to suggest
clusterings with much too high number of clusters. This of course would lead to
poor results in practice.

The ESS scores with a high equivalent sample size increase the suggested number
of clusters with increasing data size up to a point, after which they start to converge
to the right level. As a matter of fact, after a sufficient number of samples from
each cluster, all the clustering criteria typically suggest a clustering identical or
very close to the correct clustering. Consequently, this example shows that the
interesting differences between the different clustering methods cannot be seen in
low-dimensional cases if a large number of data is available. Real world problems
are typically very high-dimensional, which means that the amount of data available
is always relatively low, which suggests that the small sample size behavior of the
clustering criteria observed here is of practical importance.

1.6 Conclusion

We suggested a framework for data clustering based on the idea that a good
clustering is such that it allows efficient compression when the data are encoded
together with the cluster labels. This intuitive principle was formalized as a search
problem, where the goal is to find the clustering leading to maximal joint probability
of the observed data plus the chosen cluster labels, given a parametric probabilistic
model class.

The nature of the clustering problem calls for objective approaches for com-
puting the required probabilities, as the presence of the latent clustering variable
prevents the use of subjective prior information. In the theoretical part of the pa-
per, we compared objective Bayesian approaches to the solution offered by the
information-theoretic Minimum Description Length principle, and observed some
interesting connections between the Normalized Maximum Likelihood approach and
the Bayesian reference prior approach.

To make things more concrete, we instantiated the general data clustering
approach for the case with discrete variables and a local independence assumption
between the variables, and presented a recursive formula for efficient computation
of the NML code length in this case. The result is of practical importance as the
amount of discrete data is increasing rapidly (in the form of WWW pages, WWW
log data, questionnaires, and so on). Although the approach can be easily extended
to more complex cases than the one studied in this paper, we argue that the local
independence model is important as the resulting clusters are in this case easy to
analyze. It can also be said that the local independence model assumed here is
complex enough, as one can obviously model arbitrarily complex distributions by
adding more and more clusters.
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In the empirical part of the paper we studied the behavior of the NML clustering
criterion with respect to the Bayesian alternatives. Although all the methods
produced reasonable results in simple low-dimensional cases if sufficient amount
of data was available, the NML approach was clearly superior in more difficult
cases with insufficient number of data. We believe that this means that NML
works better in practical situations where the amount of data available is always
vanishingly small with respect to the multi-dimensional space determined by the
domain variables.

The difference between NML and the Bayesian approaches was especially clear
when compared to the “parameter-free” approaches with either the uniform or
the Jeffreys prior. The equivalent sample size prior produced good results if one
was allowed to manually choose the ESS parameter, but this of course does
not constitute a proper model selection procedure, as no general guidelines for
automatically selecting this parameter can be found.

In this paper the clustering framework was restricted to flat, non-overlapping
and non-hierarchical clusterings. The approach could be obviously extended to
more complex clustering problems by introducing several clustering variables, and
by assuming a hierarchical structure between them, but this path was left to be
explored in our future research.
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Abstract - Clustering can be defined as a prob-
lem of partitioning a given data into non-hierarchical
groups of items. In our previous work, we suggested an
information-theoretic criterion for defining the goodness
of a clustering of data. The basic idea behind this frame-
work is to optimize the total code length over the data
by encoding together data items belonging to the same
cluster. Formally the global code length criterion to be
optimized is defined by using the theoretically and intu-
itively appealing universal normalized maximum likeli-
hood (NML) code. In this paper, we focus on the op-
timization aspect of the clustering problem, and study
five algorithms that can be used for efficiently searching
the exponentially-sized clustering space. The number of
clusters is not known beforehand and determining it is
part of the optimization process. In the empirical part of
the paper we compare the performance of the suggested
algorithms using several real-world datasets.

Keywords: minimum description length, normal-
ized maximum likelihood, clustering, EM algorithm, K-
means algorithm

1 Introduction

Although clustering is one of the central concepts in
the field of unsupervised data analysis, it is also a very
controversial issue, and the very meaning of the con-
cept “clustering” may vary a great deal between differ-
ent scientific disciplines (see, e.g., [1] and the references
therein). However, a common goal in all cases is that the
objective is to find a structural representation of data by
grouping (in some sense) similar data items together. In
the following we regard clustering as a partitional data
assignment or data labeling problem, where the goal is
to partition the data into mutually exclusive clusters so
that similar data vectors are grouped together. The num-
ber of clusters is unknown, and determining the optimal
number is part of the clustering problem. The data are

assumed to be in a vector form so that each data item is
a vector consisting of a fixed number of attribute values.
We can now identify two fundamental problems

within this framework: how to define the goodness of a
clustering (data partitioning) and how to find good clus-
terings with respect to the chosen scoring criterion. The
focus in this paper is on the latter problem.
Traditionally, the scoring problem has been ap-

proached by first fixing a distance metric, and then by
defining a global goodness measure based on this dis-
tance metric, However, although this approach is intu-
itively quite appealing, from the theoretical point of view
it introduces many problems, such as choosing a suitable
distance metric and the handling of non-continuous at-
tributes. A completely different approach to clustering
is offered by the model-based approach, where for each
cluster a data generating function (a probability distribu-
tion) is assumed, and the clustering problem is defined as
the task to identify these distributions (see, e.g., [2, 3, 4]).
In other words, the data are assumed to be generated by a
finite mixture model [5, 6, 7]. In this framework the opti-
mality of a clustering can be defined as a function of the
fit of data with the finite mixture model, not as a func-
tion of the distances between the data vectors. See [8]
for more discussion on the differences between the tradi-
tional and the model-based approaches.
In [8] we proposed a scoring criterion for cluster-

ings, based on the idea that a good clustering is such
that one can encode the cluster labels together with the
data so that the resulting code length is minimized. The
clustering criterion suggested was based on the MDL
principle [9, 10, 11] which intuitively speaking aims
at finding the shortest possible encoding for the data.
For formalizing this intuitive goal, we adopt the mod-
ern normalized maximum likelihood (NML) coding ap-
proach [12], which can be shown to lead to a criterion
with very desirable theoretical properties (see Section 2
and e.g. [11, 13, 14, 15, 16, 17]). It is important to re-
alize that approaches based on either earlier formaliza-
tions of MDL or on more heuristic encoding schemes



(see e.g. [18, 19, 20]) do not possess these theoretical
properties.
This paper is a direct continuation of [8], where we

introduced the NML clustering approach and derived an
efficient algorithm for computing the NML criterion. In
the empirical tests of [8] we concentrated on a special
data consisting of measured signal strength values of ra-
dio signals originating from WLAN access points. In
this paper, we will extend this work by using several real-
world datasets from the UCI repository [21]. Moreover,
we will present and empirically compare five different
optimization algorithms that can be used for finding good
clusterings with respect to the NML scoring criterion.
This paper is structured as follows. In Section 2 we

discuss the basic properties of the MDL framework in
general and also shortly review the optimality properties
of the NML distribution. In Section 3 we introduce the
notation and formalize clustering as a data assignment
problem. We also show how the NML criterion can be
computed efficiently for the clustering model class. In
Section 4, we empirically compare several algorithms for
finding good clusterings. Section 5 summarizes the main
results of our work.

2 Properties of MDL and NML
The MDL principle has several desirable properties.
Firstly, it automatically protects against overfitting in the
model class selection process. Secondly, there is no
need to assume that there exists some underlying “true”
model, while most other statistical frameworks do. The
model class is only used as a technical device for con-
structing an efficient code for describing the data. MDL
is also closely related to the Bayesian inference but there
are some fundamental differences, the most important
being that MDL is not dependent on any prior distribu-
tion, it only uses the data at hand. For more discussion
on the theoretical motivations behind the MDL principle
see, e.g., [11, 13, 16, 17, 22, 23].
MDL model class selection is based on minimization

of the stochastic complexity. In the following, we give
the definition of the stochastic complexity and then pro-
ceed by discussing its theoretical properties.
Let xn = (x1, . . . , xn) be a data sample of n out-

comes, where each outcome xj is an element of some
space of observations X . The n-fold Cartesian product
X × · · · × X is denoted by Xn, so that xn ∈ Xn. Con-
sider a set Θ ⊆ Rd, where d is a positive integer. A
class of parametric distributions indexed by the elements
of Θ is called a model class. That is, a model classM is
defined as

M = {P (· | θ) : θ ∈ Θ}, (1)

and the set Θ is called a parameter space.
One of the most theoretically and intuitively appeal-

ing model class selection criteria is the stochastic com-
plexity. Denote first the maximum likelihood estimate
of data xn for a given model class M by θ̂(xn,M),
i.e., θ̂(xn,M) = arg max

θ∈Θ

{P (xn | θ)}. The normal-

ized maximum likelihood (NML) distribution [12] is now
defined as

PNML(x
n | M) =

P (xn | θ̂(xn,M))

C(M, n)
, (2)

where the normalizing term C(M, n) in the case of dis-
crete data is given by

C(M, n) =
∑

yn∈Xn

P (yn | θ̂(yn,M)), (3)

and the sum goes over the space of data samples of
size n. If the data is continuous, the sum is replaced by
the corresponding integral.
The stochastic complexity of the data xn given a

model classM is defined via the NML distribution as

SC(xn | M) = − logPNML(x
n | M)

= − logP (xn | θ̂(xn,M))

+ log C(M, n), (4)

and the term log C(M, n) is called the (minimax) re-
gret or parametric complexity. The regret can be in-
terpreted as measuring the logarithm of the number of
essentially different (distinguishable) distributions in the
model class. Intuitively, if two distributions assign high
likelihood to the same data samples, they do not con-
tribute much to the overall complexity of the model class,
and the distributions should not be counted as different
for the purposes of statistical inference. See [24] for
more discussion on this topic.
The NML distribution (2) has several important theo-

retical optimality properties. The first one is that NML
provides a unique solution to the minimax problem

min
P̂

max
xn

log
P (xn | θ̂(xn,M))

P̂ (xn | M)
, (5)

as posed in [12]. The minimizing P̂ is the NML distri-
bution, and the minimax regret

log P (xn | θ̂(xn,M)) − log P̂ (xn | M) (6)

is given by the parametric complexity log C(M, n). This
means that the NML distribution is the minimax optimal
universal model. The term universal model in this con-
text means that the NML distribution represents (or mim-
ics) the behaviour of all the distributions in the model



classM. Note that the NML distribution itself typically
does not belong to the model class.
A related property of NML involving expected regret

was proven in [17]. This property states that NML also
minimizes

min
P̂

max
g

Eg log
P (xn | θ̂(xn,M))

P̂ (xn | M)
, (7)

where the expectation is taken overxn and g is the worst-
case data generating distribution. The minimax expected
regret is also given by log C(M, n).

3 NML clustering
Let us assume that our problem domain consists of m
discrete variables X1, . . . , Xm and that the variable Xi

has Ki values. The data xn = (x1, . . . ,xn) consists of
observations xj = (xj0, xj1, . . . , xjm) ∈ X , where

X = {1, 2, . . . , K1} × · · · × {1, 2, . . . , Km}. (8)

We assume that the possibly originally continuous vari-
ables have been discretized. One reason for focusing on
discrete data is that in this case we can model the domain
variables by multinomial distributions without having to
make restricting assumptions about unimodality, normal-
ity etc., which is the situation we face in the continuous
case.
A clustering of the data set xn is here defined as a par-

titioning of the data into mutually exclusive subsets, the
union of which forms the data set. The number of sub-
sets is a priori unknown. The clustering problem is the
task to determine the number of subsets, and to decide to
which cluster each data vector belongs.
Formally, we can notate a clustering by using a clus-

tering vector zn = (z1, . . . , zn), where zj denotes the
index of the cluster to which the data vector xj is as-
signed to. Denote the clustering variable by Z so that zn

is a sample from the distribution of Z . The number of
clusters, say K0, is implicitly defined in the clustering
vector, as it can be determined by counting the number
of different values appearing in zn. It is reasonable to
assume that K0 is bounded by the size of our data set,
so we can define the clustering space Z as the set con-
taining all the clusterings zn with the number of clusters
being less or equal to n. Hence the clustering problem is
now to find from all the zn ∈ Z the optimal clustering
zn.
For solving the clustering problem we obviously need

a global optimization criterion that can be used for com-
paring clusterings with different number of clusters. To
formalize this, we first need to explicate the type of prob-
abilistic models we consider.

As in [8], we use the finite mixture model family here.
The corresponding model class with K0 components is
denoted byM(K0) and

M(K0) = {PFM(· | θ) : θ ∈ ΘK0
}. (9)

The basic finite mixture assumption is that given the
value of the clustering variable Z , the primary variables
(X1, . . . , Xm) are independent. Consequently, we have

PFM(Z = z, X1 = x1, . . . , Xm = xm | θ)

= P (Z = z | θ) ·
m
∏

i=1

P (Xi = xi | Z = z, θ). (10)

Furthermore, we assume that the distribution of P (Z |
θ) is multinomial with parameters (π1, . . . , πK0

), and
each P (Xi | Z = k, θ) is multinomial with parameters
(σik1, . . . , σikKi

). The whole parameter space is then

ΘK0
= {(π1, . . . , πK0

),

(σ111, . . . , σ11K1
), . . . , (σmK01, . . . , σmK0Km

) :

πk ≥ 0, σikl ≥ 0, π1 + · · · + πK0
= 1,

σik1 + · · · + σikKi
= 1,

i = 1, . . . , m, k = 1, . . .K0}, (11)

and the parameters are defined by πk = P (Z =
k), σikl = P (Xi = l | Z = k).
Our optimality criterion for clustering is based on

information-theoretical arguments, in particular on the
Minimum Description Length (MDL) principle. Intu-
itively, the MDL principle aims at finding the shortest
possible encoding for the data, in other words the goal is
to find the most compressed representation of the data.
Compression is possible by exploiting underlying regu-
larities found in the data — the more regularities found,
the higher the compression rate. Consequently, the MDL
optimal encoding has found all the available regularities
in the data; if there would be an “unused” regularity, this
could be used for compressing the data even further.
What does this mean in the clustering framework? We

suggest the following criterion for clustering: the data
vectors should be partitioned so that the vectors belong-
ing to the same cluster can be compressed well together.
This means that those data vectors that obey the same set
of underlying regularities are grouped together. In other
words, the MDL clustering approach defines an implicit
multilateral distance metric between the data vectors.
In [8], we suggested the following formalization of

general optimality criterion for finding the optimal clus-
tering ẑn:

ẑn = arg max
zn

P (xn, zn | M(K0)). (12)



From the coding point of view, definition (12) means the
following: If one uses separate codes for encoding the
data in different clusters, then in order to be able to de-
code the data, one needs to send with each vector the
index of the corresponding code to be used. This means
that we need to encode not only the data xn, but also the
clustering zn, which is exactly what is done in (12).
There are, naturally, several ways to define the joint

probability P (xn, zn | M(K0)). In [8], we compared
the MDL and Bayesian approaches and the conclusion
was that the MDL approach has several advantages over
the Bayesian one. Firstly, the MDL principle does not as-
sume that the chosen model class is correct. It even says
that there is no such thing as a true model or model class,
as acknowledged by many practitioners. The model class
is only used as a technical device for constructing an
efficient code. Secondly, there is no need to define a
prior distribution for the parameters. The choice of the
prior has a major effect on the quality of the results, as
shown in [8]. Since there is no automatic way to choose
the optimal prior, the Bayesian approach has a disadvan-
tage here. Finally, the empirical results of [8] clearly fa-
vored the MDL approach, especially in the more com-
plex cases. For these reasons, in the following we will
only concentrate on the MDL approach.
As mentioned in Section 2, MDL model selection is

based on the minimization of the stochastic complexity,
which is the minus logarithm of the NML distribution.
Assuming i.i.d., the NML distribution for the finite mix-
ture model can be written as (see [8])

PNML(x
n, zn | M(K0))

=

∏K0

k=1

(

hk

n

)hk
∏m

i=1

∏Ki

l=1

(

fikl

hk

)fikl

CFM(M(K0), n)
, (13)

where hk is the number of times Z has value k in zn,
fikl is the number of times Xi has value l when Z has
value k, and CFM(M(K0), n) is given by (see [8])

CFM(M(K0), n) =
∑

h1+···+hK0
=n

n!

h1! · · ·hK0
!

K0
∏

k=1

(

hk

n

)hk

·
m
∏

i=1

CMN(Ki, hk), (14)

and CMN(K, n) is given by

CMN(K, n) =
∑

h1+···+hK=n

n!

h1! · · ·hK !

K
∏

k=1

(

hk

n

)hk

.

(15)

The stochastic complexity for the finite mixture model

can now be written as

SC(xn | M(K0))

= −
K0
∑

k=1

hk · log
hk

n

m
∑

i=1

Ki
∑

l=1

fikl · log
fikl

hk

+ CFM(M(K0), n), (16)

While the terms CMN(K, n) can be computed in linear
time in n (see [25]), the sum (14) is clearly exponential
and thus computationally infeasible. In [8], however, we
presented an efficient recursive formula for computing
this sum,

CFM(M(K0), n) =
∑

r1+r2=n

n!

r1!r2!

(r1

n

)r1
(r2

n

)r2

· CFM(M(K∗
0 ), r1) · CFM(M(K0 − K∗

0 ), r2), (17)

where 1 ≤ K∗
0 ≤ K0 − 1. A straightforward quadratic-

time algorithm based on this formula presented in [8] al-
lows the use of NML for practical clustering problems.
The clustering space Z , however, is obviously expo-

nential in size, which means that in practice we need to
resort to combinatorial search algorithms in our attempt
to solve the clustering problem. The search algorithm
used in the empirical tests in [8] was a simple stochastic
greedy algorithm. In the next section, we will compare
five different algorithms for finding good clusterings us-
ing several real-world datasets from the UCI repository.

4 Empirical results
In this section, we will present two sets of results. The
first set concentrates on finding the number of clusters
and the actual clustering minimizing the stochastic com-
plexity (16). In the second set of experiments, we will
test how long it takes for each of the five algorithms to
find the minimum SC value.
The first search algorithm candidate is a simple

stochastic greedy (SG) algorithm, which was suggested
in our previous paper [8]. The details of SG are described
in Algorithm 1.

Algorithm 1 The stochastic greedy algorithm.
Choose a random initial clustering
repeat
Choose a random data vector
Move the chosen data vector to the cluster locally optimiz-
ing the SC score

until converged

Since our definition of clustering is based on the finite
mixture model, the standard mixture learning algorithm,



EM (Expectation-Maximization) is a natural choice as a
clustering search algorithm. The EM algorithm is itera-
tive and consists of two alternating steps. In the E-step,
the current parameters of the mixture model are used to
fractionally assign each data vector to the clusters. In the
M-step, the parameters are updated based on the frac-
tional assignments. See [26, 27] for more details on the
EM algorithm. To obtain an actual clustering from the
fractional assignments, in this work the most probable
cluster for each data vector is chosen after the EM algo-
rithm has converged.
Our third candidate algorithm is the K-means algo-

rithm (KM), sometimes called the CEM algorithm [28],
is a simple modification to the EM algorithm. The dif-
ference is that in the E-step, each data vector is fully as-
signed to the most probable cluster, i.e., no fractional as-
signments are used.
Each of the described algorithms needs to be initial-

ized prior to the iterative updating procedure. In our
tests, we started each algorithm simply by choosing a
random clustering. To test the importance of the ini-
tialization, we added two hybrid methods to our set of
candidate search algorithms. The first hybrid algorithm
(KMSG) starts by running the K-means algorithm until
convergence and then switches to the stochastic greedy
search. The second algorithm (EMSG) is the same ex-
cept that the EM algorithm is used as an initializer.
It should be noted that we also tested several purely

greedy algorithms, such as bottom-up and top-down
clustering. However, we noticed very early that these
algorithms are very slow and converge to highly subop-
timal local optima and consequently were dropped from
our tests.
Having fixed the set of candidate search algorithms,

the next task is to define a strategy for finding the optimal
number of clusters and the actual clustering. Since all
the five algorithms converge to a local optimum of the
stochastic complexity, the natural strategy is to restart the
algorithms several times from different starting points.
Although the NML scoring criterion can be used for

comparing clusterings with different number of clusters,
the framework does not offer an explicit way to directly
infer the optimal number of clusters (K). Consequently,
the second part of our search strategy is to vary the pa-
rameterK . The complete search strategy is described in
Algorithm 2.
In the first batch of results we tested which of the

five algorithms finds the best clusterings in terms of the
stochastic complexity. Description of the datasets and
the results can be found in Figure 1. For all the five
algorithms, the minimum SC value found and the cor-
responding number of clusters is recorded. For each
dataset, the minimum stochastic complexity over the al-

Algorithm 2 The search strategy used in our tests.
repeat
for allD in datasets do
forK = 1 to 20 do
Choose a random initialK-clustering for datasetD
for all A in {SG, KM, EM, KMSG, EMSG} do
Run the algorithm A until converged

end for
end for

end for
until 50 restarts have been made

gorithms is in boldface.
The first thing to notice about the results is that all

the five algorithms seem to end up choosing a similar
number of clusters. This means that all the algorithms
are useful in the task of choosing the optimal number of
clusters with respect to the stochastic complexity. How-
ever, when we look at the actual SC values, there are
significant differences between the algorithms. Since SC
can be interpreted as a quality of a clustering, these dif-
ferences are important. The SG algorithm and the hybrid
EMSG are clearly the best ones. One interesting observa-
tion is that EMSG beats SG clearly in some of the more
complex cases, i.e., when the size of data and the optimal
number of clusters is bigger, while EMSG is never sig-
nificantly worse than SG. The KMSG algorithm is also
reasonable good, but it is practically always worse than
EMSG.
The traditional KM and EM algorithms are the worst

of the candidate algorithms. Especially KM is in some
cases extremely poor, which is alarming since KM is one
of the most frequently used clustering algorithms. Fur-
thermore, the EM algorithm beats KM every time, which
suggests that it is easier to find good quality clusterings
by exploiting the “soft clustering” space than by working
in the “hard clustering” space alone. This observation
was also made in [29].
In the second set of experiments we recorded how

much CPU time (in seconds) each algorithm required for
finding their respective optimal clustering. The results
can be found in Figure 2. For these experiments, we used
otherwise the same search strategy as before except that
the number of restarts was only 10 and the results were
averaged over 5 runs of Algorithm 2.
The most important thing to notice from these re-

sults is that the hybrid EMSG algorithm, which we above
found to produce comparable or better results than SG, is
almost always significantly faster than the SG algorithm
proving the intuitive argument that choosing a good ini-
tial clustering is important. This makes the EMSG al-
gorithm a clear overall winner in our experiments. The
KMSG algorithm is also faster than SG, but slower than



SG KM EM KMSG EMSG
dataset size #attrs K SC K SC K SC K SC K SC
Australian 690 15 2 5834.5 2 5884.6 2 5844.5 2 5833.8 2 5834.5
Balance 625 5 2 3795.0 3 3811.5 2 3800.5 3 3809.3 2 3795.0
Dermatology 366 35 6 8556.0 5 9083.7 5 8792.0 6 8556.0 6 8556.0
Diabetes 768 9 4 5137.7 3 5245.9 3 5182.5 3 5158.0 5 5144.3
Ecoli 336 8 4 2088.8 3 2116.4 3 2090.9 3 2089.0 3 2089.0
Hepatitis 155 20 3 2266.9 3 2294.0 3 2287.8 3 2266.9 3 2266.9
Ionosphere 351 35 15 10011.3 13 10970.6 12 10339.8 17 10013.0 15 10012.7
Iris 150 5 4 632.6 3 634.6 4 633.5 3 633.9 4 632.6
Liver 345 7 2 1689.6 3 1727.4 2 1702.0 3 1702.9 2 1689.6
Lymphography 148 19 5 2057.3 5 2094.8 5 2074.5 5 2057.3 5 2057.3
Vehicle 846 19 13 10722.2 11 11227.0 13 10781.6 13 10712.8 13 10710.0
Tic-Tac-Toe 958 10 18 8921.5 17 9291.0 17 8888.4 19 8939.4 17 8888.4
Wine 178 14 3 2402.2 3 2440.8 3 2403.7 3 2402.2 3 2402.2
Yeast 1484 9 5 9338.3 6 9543.1 4 9385.3 5 9383.0 4 9327.6

Figure 1: The minimum SC scores and the number of clusters chosen by the candidate algorithms for the UCI datasets.

dataset SG KM EM KMSG EMSG
Australian 1.0 0.3 0.2 0.4 0.3
Balance 1.3 3.4 0.2 0.5 0.2
Dermatology 11.0 14.4 19.7 8.2 7.4
Diabetes 2.0 14.3 5.4 3.7 2.7
Ecoli 0.6 3.2 3.3 0.9 0.2
Hepatitis 0.8 2.2 1.5 0.6 0.5
Ionosphere 121.2 11.8 7.2 132.7 103.5
Iris 0.3 0.4 0.3 0.3 0.2
Liver 0.4 2.5 0.2 0.3 0.2
Lymphography 1.2 2.2 2.1 0.6 0.8
Vehicle 52.6 17.7 48.1 59.9 59.6
Tic-Tac-Toe 1428.5 14.0 30.0 1217.4 240.3
Wine 0.3 1.8 4.4 0.3 0.3
Yeast 19.5 25.4 0.9 15.6 3.5

Figure 2: The CPU times (in seconds) spend by the can-
didate algorithms in finding the optimum clusterings.

EMSG. It is also noteworthy that KM and EM are often
much slower than the other algorithms even though they
produce inferior results. This makes the applicability of
KM and EM even more questionable in the setting used
here.

5 Conclusions
In this paper, we have extended our previously suggested
framework for data clustering based on the idea that a
good clustering is such that it allows efficient compres-
sion when the data are encoded together with the clus-
ter labels. As a first extension we introduced five opti-
mization algorithms for minimizing the stochastic com-
plexity. Secondly, using these algorithms, we conducted

an extensive set of experiments with several real-world
datasets. In the first part of the tests we recorded the
number of clusters chosen and the quality of the actual
clusterings found by the algorithms. The idea of the sec-
ond batch of tests was to see how much CPU time each
algorithm requires for finding the best solution.
In the empirical results we found out that all the five

algorithms were useful if the goal is to find the NML
optimal number of clusters. However, the quality of the
individual clusterings found by the more traditional KM
and EM algorithms was questionable. These algorithms
were also found to be slow. The most interesting obser-
vation was that the novel hybrid EMSG algorithm pro-
duced the best results and was also significantly faster
than the SG algorithm used in our previous work.
In these tests, our search strategy was a very simple

one. It is a natural topic of our future research to test
more elaborate strategies, such as trying to find the opti-
mal number of clusters in a more efficient way than what
we did here. Another interesting extension is the de-
velopment of stochastic greedy type of SC optimization
algorithms that would be capable of exploiting the soft
clustering search space in a similar manner EM does.
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