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2 An MDL Framework for Data Clustering

We regard clustering as a data assignment problem where the goal is to partition
the data into several non-hierarchical groups of items. For solving this problem,
we suggest an information-theoretic framework based on the minimum description
length (MDL) principle. Intuitively, the idea is that we group together those data
items that can be compressed well together, so that the total code length over all
the data groups is optimized. One can argue that as efficient compression is possible
only when one has discovered underlying regularities that are common to all the
members of a group, this approach produces an implicitly defined similarity metric
between the data items. Formally the global code length criterion to be optimized is
defined by using the intuitively appealing universal normalized maximum likelihood
code which has been shown to produce optimal compression rate in an explicitly
defined manner. The number of groups can be assumed to be unknown, and the
problem of deciding the optimal number is formalized as part of the same theoretical
framework. In the empirical part of the paper we present results that demonstrate
the validity of the suggested clustering framework.

1.1 Introduction

Clustering is one of the central concepts in the field of unsupervised data analysis.
Unfortunately it is also a very controversial issue, and the very meaning of the
concept “clustering” may vary a great deal between different scientific disciplines
(see, e.g., [Jain, Murty, and Flynn 1999] and the references therein). However, a
common goal in all cases is that the objective is to find a structural representation
of data by grouping (in some sense) similar data items together. In this work
we want to distinguish the actual process of grouping the data items from the
more fundamental issue of defining a criterion for deciding which data items belong
together, and which do not.

In the following we regard clustering as a partitional data assignment or data
labeling problem, where the goal is to partition the data into mutually exclusive
clusters so that similar (in a sense that needs to be defined) data vectors are grouped
together. The number of clusters is unknown, and determining the optimal number
is part of the clustering problem. The data are assumed to be in a vector form so
that each data item is a vector consisting of a fixed number of attribute values.

Traditionally this problem has been approached by first fixing a distance metric,
and then by defining a global goodness measure based on this distance metric —
the global measure may for example punish a clustering for pairwise intra-cluster
distances between data vectors, and reward it for pairwise inter-cluster distances.
However, although this approach is intuitively quite appealing, from the theoretical
point of view it introduces many problems.

The main problem concerns the distance metric used: the task of formally
describing the desirable properties of a suitable similarity metric for clustering has
turned out to be a most difficult task. Commonly used distance metrics include the
Euclidean distance and other instances from the Minkowski metric family. However,
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although these types of metrics may produce reasonable results in cases where the
the underlying clusters are compact and isolated, and the domain attributes are all
continuous and have a similar scale, the approach faces problems in more realistic
situations [Mao and A.K. 1996].

As discussed in [Kontkanen, Lahtinen, Myllymäki, Silander, and Tirri 2000],
non-continuous attributes pose another severe problem. An obvious way to try to
overcome this problem is to develop data preprocessing techniques that essentially
try to map the problem in the above setting by different normalization and scaling
methods. Yet another alternative is to resort to even more exotic distance metrics,
like the Mahalanobis distance. However, deciding between alternative distance
metrics is extremely difficult, since although the concept of a distance metric is
intuitively quite understandable, the properties of different distance metrics are far
from it [Aggarwal, Hinneburg, and Keim 2001].

A completely different approach to clustering is offered by the model-based ap-
proach, where for each cluster a data generating function (a probability distribution)
is assumed, and the clustering problem is defined as the task to identify these dis-
tributions (see, e.g., [Smyth 1999; Fraley and Raftery 1998; Cheeseman, Kelly, Self,
Stutz, Taylor, and Freeman 1988]). In other words, the data are assumed to be
generated by a finite mixture model [Everitt and Hand 1981; Titterington, Smith,
and Makov 1985; McLachlan 1988]. In this framework the optimality of a clustering
can be defined as a function of the fit of data with the finite mixture model, not as
a function of the distances between the data vectors.

However, the difference between the distance-based and model-based approaches
to clustering is not as fundamental as one might think at a first glance. Namely, it
is well known that if one, for example, uses the squared Mahalanobis distance in
clustering, then this implicitly defines a model-based approach based on Gaussian
distributions. A general framework for mapping arbitrary distance functions (or
loss functions) to probability distributions is presented in [Grünwald 1998]. The
reverse holds of course as well: any explicitly defined probabilistic model can be seen
to implicitly generate a distance measure. Consequently, we have two choices: we
can either explicitly define a distance metric, which produces an implicitly defined
probability distribution, or we can explicitly define a probabilistic model, which
implicitly defines a distance metric. We favor the latter alternative for the reasons
discussed below.

One of the main advantages of the model-based approach is that the explicit
assumptions made correspond to concepts such as independence, linearity, uni-
modality etc., that are intuitively quite understandable. Consequently, we can ar-
gue that constructing a sensible model is easier than constructing a meaningful
distance metric. Another important issue is that the modern statistical machine
learning community has developed several techniques for automated selection of
model complexity. This means that by explicitly defining the model assumptions,
one can address the problem of deciding the optimal number of clusters together
with the problem of assigning the data vectors to the clusters.

Nevertheless, although the modeling approach has many advantages, it also
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introduces some problems. First of all, the finite mixture model implicitly assumes
the existence of a hidden clustering variable, the values of which are unknown
by definition. Evaluating probabilistic models in this type of an incomplete data
case is difficult, and one needs to resort to approximations of theoretically derived
model selection criteria. Furthermore, it can also be argued that if the fundamental
goal is to find a data partitioning, then it is somewhat counter-intuitive to define
the objective of clustering primarily as a model search problem, since clustering
is a property of the data, not of the model. Moreover, if one is really interested
in the model, and not a partition, then why restrict oneself to a simple finite
mixture model? Bayesian or probabilistic networks, for instance, offer a rich family
of models that extend the simple mixture model [Lauritzen 1996; Heckerman,
Geiger, and Chickering 1995; Cowell, Dawid, Lauritzen, and Spiegelhalter 1999].
A typical survey of users of the Autoclass system [Cheeseman, Kelly, Self, Stutz,
Taylor, and Freeman 1988] shows that they start out using clustering, start noticing
certain regularities, and then switch over to some custom system. When the actual
goal is broader knowledge discovery, model-based clustering is often too simple an
approach.

The model-based approach of course implicitly leads to clustering, as the mixture
components can be used to compute the probability of any data vector originating
from that source. Hence, a mixture model can be used to produce a “soft” clustering
where each data vector is assigned to different clusters with some probability.
Nevertheless, for our purposes it is more useful to consider “hard” data assignments,
where each data vector belongs to exactly one cluster only. In this case we can
compute in practice some theoretically interesting model selection criteria, as we
shall later see. In addition, it can be argued that this type of hard assignments
match more naturally to the human intuition on clustering, where the goodness of
a clustering depends on how the data are globally balanced among the different
clusterings [Kearns, Mansour, and Ng 1997].

In this paper we propose a model selection criterion for clustering based on the
idea that a good clustering is such that one can encode the clustering together with
the data so that the resulting code length is minimized. In the Bayesian modeling
framework this means regarding clustering as a missing data problem, and choosing
the clustering (assignment of missing data) maximizing the joint probability. As
code lengths and probabilities are inherently linked to each other (see e.g. [Cover
and Thomas 1991]), these two perspectives are just two sides of the same coin.
But in order to formalize this clustering criterion, we need to explicitly define
what we mean by minimal code length / maximal probability. In the Bayesian
setting optimality is usually defined with respect to some prior distribution, with
the additional assumption that the data actually come from one of the models under
consideration.

The main problem with the Bayesian model-based approach for clustering stems
from the fact that it implicitly assumes the existence of a latent “clustering
variable”, the values of which are the missing values that we want to find in
clustering. We claim that determining an informative prior for this latent variable
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is problematic, as the variable is by definition “hidden”! For example, think of a
data set of web log data collected at some WWW site. A priori, we have absolutely
no idea of how many underlying clusters of users there exist in the data, or what
are the relative sizes of these clusters. What is more, we have also very little prior
information about the class-conditional distributions within each cluster: we can of
course compute for example the population mean of, say, the age of the users, but
does that constitute a good prior for the age within different clusters? We argue
that it does not, as what we intuitively are looking for in clustering is discriminative
clusters that differ not only from each other, but also from the population as a whole.

The above argument leads to the following conclusion: the Bayesian approach
to clustering calls for non-informative (objective) priors that do not introduce any
involuntary bias in the process. Formally this can be addressed as a problem for
defining so called reference priors [Bernardo 1997]. However, current methods for
determining this type of priors have technical difficulties at the boundaries of the
parameter space of the probabilistic model used [Bernardo 1997]. To overcome this
problem, we suggest an information-theoretic framework for clustering, based on
the Minimum Description Length (MDL) principle [Rissanen 1978; Rissanen 1987;
Rissanen 1996], which leads to an objective criterion in the sense that it is not
dependent on any prior distribution, it only uses the data at hand. Moreover, it
also has an interpretation as a Bayesian method w.r.t. a worst case prior, and is
thus a finite sample variant of the reference prior. It should also be noted that the
suggested optimality criterion based on the MDL approach does not assume that
the data actually come from the probabilistic model class used for formalizing the
MDL principle — this is of course a sensible property in all realistic situations.

In summary, our approach is essentially model-based as it requires an explicit
probabilistic model to be defined, no explicit distance metric is assumed. This is
in sharp contrast to the information-theoretic approaches suggested in [Gokcay
and Principe 2002; Slonim, Friedman, and Tishby 2002], which are essentially
distance-based clustering frameworks, where the distance metric is derived from
information-theoretic arguments. As discussed above, with respect to the standard
model-based Bayesian approach, our approach differs in that the objectivity is
approached without having to define an explicit prior for the model parameters.

The clustering criterion suggested here is based on the MDL principle which
intuitively speaking aims at finding the shortest possible encoding for the data.
For formalizing this intuitive goal, we adopt the modern normalized maximum
likelihood (NML) coding approach [Shtarkov 1987], which can be shown to lead to a
criterion with very desirable theoretical properties (see e.g. [Rissanen 1996; Barron,
Rissanen, and Yu 1998; Grünwald 1998; Rissanen 1999; Xie and Barron 2000;
Rissanen 2001] and the references therein). It is important to realize that approaches
based on either earlier formalizations of MDL, or on the alternative Minimum
Message Length (MML) encoding framework [Wallace and Boulton 1968; Wallace
and Freeman 1987], or on more heuristic encoding schemes (see e.g. [Rissanen and
Ristad 1994; Dom 2001; Plumbley 2002; Ludl and Widmer 2002]) do not possess
these theoretical properties!
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The work reported in [Dom 1995] is closely related to our work as it addresses
the problem of segmenting binary strings, which essentially is clustering (albeit in
a very restricted domain). The crucial difference is that in [Dom 1995] the NML
criterion is used for encoding first the data in each cluster, and the clustering itself
(i.e., the cluster labels for each data item) is then encoded independently, while
in the clustering approach suggested in Section 1.2 all the data (both the data in
the clusters plus the cluster indexes) is encoded together. Another major difference
is that the work in [Dom 1995] concerns binary strings, i.e., ordered sequences of
data, while we study unordered sets of data. Finally, the computational method
used in [Dom 1995] for computing the NML is computationally feasible only in the
simple binary case — in Section 1.4 we present a recursive formula that allows us
the compute the NML exactly also in more complex, multi-dimensional cases.

This paper is structured as follows. In Section 1.2 we introduce the notation
and formalize clustering as a data assignment problem. The general motivation
for the suggested information-theoretic clustering criterion is also discussed. In
Section 1.3 the theoretical properties of the suggested criterion are discussed in
detail. Section 1.4 focuses on computational issues: we show how the suggested MDL
clustering criterion can be computed efficiently for a certain interesting probabilistic
model class. The clustering criterion has also been validated empirically: illustrative
examples of the results are presented and discussed in Section 1.5. Section 1.6
summarizes the main results of our work.

1.2 The clustering problem

1.2.1 Clustering as data partitioning

Let us consider a data set xn = {x1, . . . ,xn} consisting of n outcomes (vectors),
where each outcome xj is an element of the set X . The set X consists of all the
vectors of the form (a1, . . . , am), where each variable (or attribute) ai takes on
values on some set that can be either a continuum of real numbers, or a finite set
of discrete values. A clustering of the data set xn is here defined as a partitioning
of the data into mutually exclusive subsets, the union of which forms the data set.
The number of subsets is a priori unknown. The clustering problem is the task to
determine the number of subsets, and to decide to which cluster each data vector
belongs.

Formally, we can notate a clustering by using a clustering vector yn = (y1, . . . , yn),
where yi denotes the index of the cluster to which the data vector xi is assigned
to. The number of clusters K is implicitly defined in the clustering vector, as it
can be determined by counting the number of different values appearing in yn. It
is reasonable to assume that K is bounded by the size of our data set, so we can
define the clustering space Ω as the set containing all the clusterings yn with the
number of clusters being less than n. Hence the clustering problem is now to find
from all the yn ∈ Ω the optimal clustering yn.
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For solving the clustering problem we obviously need a global optimization
criterion that can be used for comparing clusterings with different number of
clusters. On the other hand, as the clustering space Ω is obviously exponential
in size, in practice we need to resort to combinatorial search algorithms in our
attempt to solve the clustering problem. We return to this issue in Section 1.5.
In the following we focus on the more fundamental issue: what constitutes a good
optimality criterion for choosing among different clusterings? To formalize this, we
first need to explicate the type of probabilistic models we consider.

1.2.2 Model class

Consider a set Θ ∈ Rd. A class of parametric distributions indexed by the elements
of Θ is called a model class. That is, a model class M is defined as the set

M = {P (·|θ) : θ ∈ Θ}. (1.1)

In the following, we use the simple finite mixture as the model class. In this case,
the probability of a single data vector is given by

P (x | θ,MK) =
K∑

k=1

P (x | y = k, θ, MK)P (y = k | θ, MK), (1.2)

so that a parametric model θ is a weighted mixture of K component models
θ1, . . . , θK each determining the local parameters P (x | y = k, θ, MK) and P (y =
k | θ,MK). Furthermore, as is usually done in mixture modeling, we assume that
the variables (a1, . . . , am) are locally (conditionally) independent:

P (x | y = k, θ, MK) =
m∏

i=1

P (ai | y = k, θ, MK). (1.3)

The above assumes that the parameter K is fixed. As discussed above, the number
of clusters can be assumed to be bounded by the size of the available data set, so
in the following we consider the union of model classes M1, . . . , Mn.

The finite mixture model class is used as an illustrative example in this paper,
but it should be noted that the general clustering framework applies of course for
other model classes as well. The benefit of the above simple mixture model class is
that while it allows arbitrary complex global dependencies with increasing number
of components K, from the data mining or data exploration point of view this
model class is very appealing as this type of local independence models are very
easy to understand and explain.

For the remainder of this paper, we make also the following restricting assump-
tion: we assume that the data are discrete, not continuous, and that the possibly
originally continuous variables have been discretized (how the discretization should
be done is a difficult problem, and forms a research area that is outside the scope
of this paper). One reason for focusing on discrete data is that in this case we can
model the domain variables by multinomial distributions without having to make
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restricting assumptions about unimodality, normality etc., which is the situation
we face in the continuous case. Besides, discrete data are typical to domains such
as questionnaire or web log data analysis, and the demand for this type of analy-
sis is increasing rapidly. Moreover, as we shall see in Section 1.4, by using certain
computational tricks, in the multinomial case we can compute the theoretically de-
rived objective function presented in the next section exactly, without resorting to
approximations. On the other hand, although we restrict ourselves to discrete data
in this paper, the information-theoretic framework presented in this paper can be
easily extended to cases with continuous variables, or to cases with both continuous
and discrete variables, but this is left as a task for future work.

1.2.3 Clustering criterion

Our optimality criterion for clustering is based on information-theoretical argu-
ments, in particular on the Minimum Description Length (MDL) principle [Ris-
sanen 1978; Rissanen 1987; Rissanen 1996]. This also has a perspective from the
Bayesian point of view, discussed in more detail in Section 1.3. In the following we
try to motivate our approach on a more general level.

Intuitively, the MDL principle aims at finding the shortest possible encoding for
the data, in other words the goal is to find the most compressed representation of
the data. Compression is possible by exploiting underlying regularities found in the
data — the more regularities found, the higher the compression rate. Consequently,
the MDL optimal encoding has found all the available regularities in the data; if
there would be an “unused” regularity, this could be used for compressing the data
even further.

What does this mean in the clustering framework? We suggest the following
criterion for clustering: the data vectors should be partitioned so that the vectors
belonging to the same cluster can be compressed well together. This means that those
data vectors that obey the same set of underlying regularities are grouped together.
In other words, the MDL clustering approach defines an implicit multilateral
distance metric between the data vectors.

How to formalize the above intuitively motivated MDL approach for clustering?
Let us start by noting the well-known fact about the fundamental relationship
between codes and probability distributions: for every probability distribution P,
there exists a code with a code length − log P (x) for all the data vectors x, and for
each code there is probability distribution P such that − log P (x) yields the code
length for data vector x (see [Cover and Thomas 1991]). This means that we can
compress a cluster efficiently, if our model class yields a high probability for that set
of data. Globally this means that we can compress the full data set xn efficiently,
if P (xn | M) is high. Consequently, in the finite mixture framework discussed in
Section 1.2.2, we can define the following optimization problem: Find the model
class MK ∈ M so that P (xn | MK) is maximized.

As discussed in the Introduction, the above model-based approach to clustering
poses several problems. One problem is that this type of an incomplete data
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probability is in this case difficult to compute in practice as the finite mixture
formulation (1.3) implicitly assumes the existence of a latent clustering variable y.
What is even more disturbing is the fact that actual clustering yn has disappeared
from the formulation altogether, so the above optimization task does not solve the
clustering problem as defined in Section 1.2.1. For these reasons, we suggest the
following general optimality criterion for finding the optimal clustering ŷn:

ŷn = arg max
yn

P (xn, yn | M), (1.4)

where M is a probabilistic model class.
It is important to notice here is that in this suggested framework, optimality with

respect to clustering is defined as a relative measure that depends on the chosen
model class M . We see no alternative to this: any formal optimality criterion is
necessarily based on some background assumptions. We consider it very sensible
that in this framework the assumptions must be made explicit in the definition of
the probabilistic model class M . In addition to this, although we in this approach
end up with an optimal data partitioning ŷn, which was our goal, we can in this
framework also compare different model classes with respect to the question of how
well they compress and partition the data.

From the coding point of view, definition (1.4) means the following: If one uses
separate codes for encoding the data in different clusters, then in order to be able to
decode the data, one needs to send with each vector the index of the corresponding
code to be used. This means that we need to encode not only the data xn, but also
the clustering yn, which is exactly what is done in (1.4).

Definition (1.4) is incomplete in the sense that it does not determine how the joint
data probability should be computed with the help of the model class M . In the
Bayesian framework this would be done by integrating over some prior distribution
over the individual parameter instantiations on M :

P (xn, yn | M) =
∫

P (xn, yn | θ, M)P (θ | M)dθ. (1.5)

As discussed in the Introduction, in the clustering framework very little can
be known about the model parameters a priori, which calls for objective (non-
informative) priors. Typical suggestions are the uniform prior, and the Jeffreys
prior. In our discrete data setting, the basic building block of the probability
in (1.4) is the Multinomial distribution. As the values of the clustering variable
are in our approach based on (1.4) known, not hidden, it follows that instead of a
sum as in (1.2), the joint likelihood of a data vector x, y reduces to a product
of Multinomials. This means that the (conjugate) prior P (θ) is a product of
Dirichlet distributions. In the case of the uniform prior, all the individual Dirichlet
distributions have all the hyperparameters set to 1. As shown in [Kontkanen,
Myllymäki, Silander, Tirri, and Grünwald 2000], the Jeffreys prior is in this case
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given by

θ ∼ Di

(
1
2

(
m∑

i=1

(ni − 1) + 1

)
, . . . ,

1
2

(
m∑

i=1

(ni − 1) + 1

))

×
m∏

i=1

K∏

k=1

Di
(

1
2
, . . . ,

1
2

)
, (1.6)

where ni denotes the number of values of variable ai, K is the number of clusters,
and m is the number of variables (not counting the clustering variable y). Yet
another possibility is to use the prior suggested in [Buntine 1991], which is given
by

θ ∼ Di
( r

K
, . . . ,

r

K

) m∏

i=1

K∏

k=1

Di
(

r

Kni
, . . . ,

r

Kni

)
. (1.7)

Properties of this prior are discussed in [Heckerman, Geiger, and Chickering 1995].
Parameter r is the so called equivalent sample size (ESS) parameter that needs
to be determined. Unfortunately, as can be seen in Section 1.5, the value of the
equivalent sample size parameter affects the behavior of the resulting clustering
criterion a great deal, and we are aware of no disciplined way for automatically
determining the optimal value.

In the next section we discuss an information-theoretic framework where the
joint probability of the data and the clustering can be determined in an objective
manner without an explicit definition of a prior distribution for the model parame-
ters. Section 1.4 (see Equation (1.24)) shows how this framework can be applied for
computing the clustering criterion (1.4). In Section 1.5 this information-theoretic
approach to clustering is studied empirically and compared to the Bayesian alter-
natives.

1.3 Stochastic complexity and the minimum description length principle

The information-theoretic Minimum Description Length (MDL) principle developed
by Rissanen [Rissanen 1978; Rissanen 1987; Rissanen 1989; Rissanen 1996] offers
a well-founded theoretical framework for statistical modeling. Intuitively, the main
idea of this principle is to represent a set of models (model class) by a single model
imitating the behavior of any model in the class. Such representative models are
called universal. The universal model itself does not have to belong to the model
class as often is the case.

The MDL principle is one of the minimum encoding approaches to statistical
modeling. The fundamental goal of the minimum encoding approaches is compres-
sion of data. That is, given some sample data, the task is to find a description
or code of it such that this description uses the least number of symbols, less than
other codes and less than it takes to describe the data literally. Intuitively speaking,
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in principle this approach can be argued to produce the best possible model of the
problem domain, since in order to be able to produce the most efficient coding of
data, one must capture all the regularities present in the domain.

The MDL principle has gone through several evolutionary steps during the last
two decades. For example, the early realization of the MDL principle (the two-
part code MDL [Rissanen 1978]) takes the same form as the Bayesian information
criterion (BIC) [Schwarz 1978], which has led some people to incorrectly believe
that these two approaches are equivalent. The latest instantiation of MDL discussed
here is not directly related to BIC, but to the formalization described in [Rissanen
1996]. The difference between the results obtained with the “modern” MDL and
BIC can be in practice quite dramatic, as demonstrated in [Kontkanen, Buntine,
Myllymäki, Rissanen, and Tirri 2003].

Unlike some other approaches, like for example Bayesianism, the MDL principle
does not assume that the model class is correct (technically speaking, in the
Bayesian framework one needs to define a prior distribution over the model class
M , yielding a zero probability to models θ outside this set). It even says that
there is no such thing as a true model or model class, as acknowledged by many
practitioners. This becomes apparent in Section 1.3.3: the MDL principle can be
formalized as a solution to an optimization problem, where the optimization is
done over all imaginable distributions, not just over the parametric model class M .
Consequently, the model class M is used only as a technical device for constructing
an efficient code, and no prior distribution over the set M is assumed.

1.3.1 Stochastic complexity as normalized maximum likelihood

The most important notion of MDL is the Stochastic Complexity (SC). Intuitively,
stochastic complexity is defined as the shortest description length of a given data
relative to a model class. In the following we give the definition of stochastic
complexity, before giving its theoretical justification in the next subsection.

Let θ̂(xn) denote the maximum likelihood estimate of data xn, i.e.,

θ̂(xn) = arg max
θ∈Θ

{P (xn|θ, M)}. (1.8)

The stochastic complexity is then defined in terms of the likelihood evaluated at
its maximum P (xn | θ, M)|θ=θ̂(xn) as

SC(xn | M) = − log
P (xn | θ, M)|θ=θ̂(xn)

Rn
M

= − log P (xn | θ, M)|θ=θ̂(xn) + log Rn
M , (1.9)

where Rn
M is given by

Rn
M =

∑
xn

P (xn | θ,M)|θ=θ̂(xn), (1.10)

and the sum goes over all the possible data matrices of length n. The term log Rn
M
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is called the regret and since it depends on the length of data, not the data itself, it
can be considered as a normalization term, and the distribution in (1.9) is called the
normalized maximum likelihood (NML) distribution proposed for finite alphabets
in [Shtarkov 1987]. The definition (1.9) is intuitively very appealing: every data
matrix is modeled using its own maximum likelihood (i.e. best fit) model, and
then a penalty for the complexity of the model class M is added to normalize the
distribution.

1.3.2 Normalized maximum likelihood as a two-part code

A two-part code is such that one first encodes the model to be used for coding,
and then the data with the help of the model. Consequently, the total code length
consists of a sum of two terms, both of which are lengths of codes produced by
proper codes. In its definitional form in (1.9), NML is not a two-part code because
the (minus) log regret term is subtracted from the first term.

To make this a two part code, we use the following interpretation: the statistical
event xn can be broken down into two parts: the first part is the event θ̂(xn) which
means we are supplied with the data maximum likelihood but not the data itself;
the second part is the event xn | θ̂(xn) which then supplies us with the full data. For
a simple one dimensional Gaussian model, this means receiving the sample mean
first, and then secondly receiving the full set of data points. For distributions with
sufficient statistics, the first part θ̂(xn) is generally all that is interesting in the data
anyway!

The stochastic complexity (1.9) can now be manipulated as follows:

SC(xn | M) = − log
P (xn, θ̂(xn) | θ, M)

∣∣∣
θ=θ̂(xn)

Rn
M

= − log P (θ̂(xn)|n, M)− log P (xn | θ̂(xn), θ,M)
∣∣∣
θ=θ̂(xn)

(1.11)

where

P (θ̂(xn)|n,M) =
P (θ̂(xn) | θ, M)

∣∣∣
θ=θ̂(xn)

∑
θ̂ P (θ̂(xn) = θ̂ | θ,M)

∣∣∣
θ=θ̂(xn)

. (1.12)

The normalizing term of P (θ̂(xn)|n,M) is just the regret (1.10) with the summation
rearranged.

The NML version of stochastic complexity is now a two-part code. The first part
encodes the maximum likelihood value θ̂(xn) according to the prior

P (θ̂(xn)|n,M) ∝ max
θ

P (θ̂(xn) | θ, M) . (1.13)

Thus the parameter space Θ has been discretized to values achieving a maximum
likelihood for some sample of size n, and the prior distributed so each has its
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highest possible likelihood. This construction is given in Figure 1.1 for the binomial
model with sample size n = 10. Each dashed curve gives a likelihood for a different
number of, say 1’s, in the data, yielding 11 curves in all. The stochastic complexity
is then computed for θ̂ = 0, 1/10, 2/10, . . . , 9/10, 1, which before scaling by regret
yields the solid curve. NML at the discretized points θ̂ for different sample sizes
n = 2, 4, . . . , 128 is given in Figure 1.2. Notice since this is a discrete distribution,
the probability at the points sums to one, and thus the values decrease on average
as 1/(n + 1).

The second part of the two-part code encodes the remainder of the data given
the maximum likelihood value θ̂(xn) already encoded. Thus this is no longer a
standard sequential code for independent data. In the one dimensional Gaussian
case, for instance, it means the sample mean is supplied up front and then the
remainder of the data follows with a dependence induced by the known mean.

The ingenious nature of the NML construction now becomes apparent: One is in
effect using a two part code to encode the data, yet no data bits have been wasted in
defining the parameters θ since these also form part of the data description itself.
This two part code appears to be a complex codelength to construct in pieces.
However, one computes this two-part codelength without having to explicitly compute
the codelengths for the two parts. Rather, the regret is computed once and for all
for the model class and the regular sequential code for data (− log P (xn | θ, M)) is
the basis for the computation.

One is tempted to continue this construction to interpret P (θ̂|n,M) based on
some reduction to a prior P (θ|M) over the full parameter space Θ, not just the
maximum likelihood values for samples of size n. But this is apparently not possible
in the general case. Moreover, in many cases no unique such prior exists. For typical
exponential family distributions, for instance, the dimensionality of P (θ̂|n,M) is
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less than P (θ|M) and no unique prior will exist except in a limiting sense when
n →∞. We discuss this situation next.

1.3.3 Normalized maximum likelihood as an optimization problem

There have been a number of different alternatives for NML proposed in the
literature over the years. We compare some of these here. They provide us with
theoretical counterparts to our experimental results.

There are different standards one might use when comparing codelengths on data.

Best case: The optimal possible value for encoding the data xn according to
model M is log 1/P (xn|θ̂(xn),M), which is unrealizable because θ̂ needs to be
known.

Average of best case: Assuming a particular θ for model M holds, the average
of the best case is EP (xn|θ,M) log 1/P (xn|θ̂(xn),M).

Barron, Rissanen, and Yu [1998] summarize various optimization problems with
respect to these. First, one needs the codelength that will actually be used, Q(xn),
which is the length we are optimizing.

NML is sometimes derived as the following: find a Q(·) minimizing the worst case
(for xn) increase over the best case codelength for xn:

min
Q(·)

max
xn

log
P (xn | θ̂(xn), M)

Q(xn)
. (1.14)

Stochastic complexity SC(xn) is the minimizing distribution here [Shtarkov 1987].
Notice this requires no notion of truth, only a model family used in building a code.

A related definition is based on the average best case codelength for θ: Find a Q(·)
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minimizing the worst case (for θ) increase over the average best case codelength for
θ,

min
Q(·)

max
θ

EP (xn|θ,M) log
P (xn|θ̂(xn),M)

Q(xn)

= min
Q(·)

max
P (θ|M)

EP (θ|M)EP (xn|θ,M) log
P (xn|θ̂(xn),M)

Q(xn)

= max
P (θ|M)

EP (θ|M)EP (xn|θ,M) log
P (xn|θ̂(xn), M)

P (xn|M)
= log Rn

M − min
P (θ|M)

KL (P (xn|M)‖SC(xn|M)) . (1.15)

The first step is justified changing a maximum maxθ into maxP (θ|M) EP (θ|M), the
second step is justified using minimax and maximin equivalences [Barron, Rissanen,
and Yu 1998] since

P (xn|M) = arg min
Q(xn)

EP (xn,θ|M) log
P (xn|θ̂(xn),M)

Q(xn)
, (1.16)

and the third step comes from the definition of SC(xn|M).
This optimization then yields the remarkable conclusions for the average best

case:

Finding a Q(xn) minimizing the worst case over θ is equivalent to finding a prior
P (θ|M) maximizing the average over θ, although the prior found may not be unique.
One could call this a “worst-case Bayesian” analysis that is similar to the so-called
reference prior analysis of Bernardo [Bernardo 1997]: a maxP (θ|M) term has been
added to a standard formula to minimize a posterior expected cost. However, it
applies to the finite sample case, and thus is surely more realistic in practice.

The minimizing Q(xn) must be a valid marginal P (xn|M) for some joint
P (θ|M)P (xn|θ, M). Otherwise it is the closest in Kullback-Leibler divergence to
the NML distribution. If for some prior P (θ|M) the induced marginal P (xn|M) ap-
proaches the NML, then that prior must approach the optimal. Thus NML provides
the gold standard for this average case.

In particular, for exponential family distributions the likelihood for the sufficient
statistics of the data and the likelihood for their maximum likelihood value θ̂(xn)
are closely related. When the Fisher Information is of full rank, a prior P (θ|M)
with point mass on the set { θ : ∃xn such that θ = θ̂(xn) } can sometimes be found
to make the marginal P (xn|M) equal to the NML distribution. We claim this holds
for the multinomial case. The minimizing Q(xn) will thus be the NML in many
cases.

Under certain regularity conditions, the optimizing prior approaches Jeffreys
prior when n →∞. Boundaries cause problems here because they mean part of the
parameter space is of a lower dimension. For finite n in the case of the multinomial
model when the boundaries are included, Xie and Barron [Xie and Barron 2000]
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argue for a mixture of Jeffreys priors corresponding to different dimensions being
fixed. For the binomial case, this corresponds roughly to mixing a Jeffreys prior
with point mass at the two end points (θ = 0, 1). NML versus the Jeffreys prior for
the binomial is given in Figure 1.3 for the case when n = 16.

For the multinomial for different dimension K and sample size n, NML corre-
sponds closely to Jeffreys prior off the boundaries. The boundaries have signifi-
cant additional mass. An approximate proportion for Jeffreys prior in the NML
distribution is given in Figure 1.4 for the multinomial model with sample sizes
n = 10, . . . , 1000 and K = 2, . . . , 9. This records the ratio of NML over the Jeffreys
prior at a data point with near equal counts (i.e., off the boundaries). It can be
seen that the proportion very slowly rises to 1.0 and for the section here at least is
sub-linear in convergence. Xie and Barron use O(1/n1/8) for their convergence rate
to the Jeffreys prior for the general multinomial. This indicates just how dangerous
it is to use the Jeffreys prior as a substitute for the NML distribution in practice.

1.4 Computing the stochastic complexity for multinomial data

1.4.1 One-dimensional case

In the following we instantiate the NML for the one-dimensional multinomial
case. Extension to the multi-dimensional model class discussed in Section 1.2.2
is relatively straightforward and is given in Section 1.4.2.
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1.4.1.1 Multinomial maximum likelihood

Let us assume that we have a multinomial variable X with K values. The parameter
set Θ is then a simplex

Θ = {(θ1, . . . , θK) : θk ≥ 0, θ1 + · · ·+ θK = 1}, (1.17)

where θk = P (X = k). Under the usual i.i.d. assumption the likelihood of a data
set xn is given by

P (xn|θ) =
K∏

k=1

θhk

k , (1.18)

where hk is the frequency of value k in xn. Numbers (h1, . . . , hK) are called the
sufficient statistics of data xn. Word “statistics” in this expression means a function
of a data and “sufficient” refers to the fact that the likelihood depends on the data
only through them.

To instantiate the stochastic complexity (1.9) to the single multinomial case, we
need the maximum likelihood estimates of the parameters θk, i.e.,

θ̂(xn) = (θ̂1, . . . , θ̂K) = (
h1

n
, . . . ,

hK

n
). (1.19)

Thus, the likelihood evaluated at the maximum likelihood point is given by

P (xn | θ̂(xn)) =
K∏

k=1

(
hk

n

)hk

. (1.20)
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1.4.1.2 Multinomial regret

Since the maximum likelihood (1.20) only depends on the sufficient statistics hk,
the regret can be written as

Rn
K =

∑

h1+···+hK=n

n!
h1! · · ·hK !

K∏

k=1

(
hk

n

)hk

, (1.21)

where the summing goes over all the compositions of n into K parts, i.e., over all
the possible ways to choose non-negative integers h1, . . . , hK so that they sum up
to n.

The time complexity of (1.21) is O (
nK−1

)
, which is easy to see. For example,

take case K = 3. The regret can be computed in O (
n2

)
time, since we have

Rn
K =

∑

h1+h2+h3=n

n!
h1!h2!h3!

(
h1

n

)h1
(

h2

n

)h2
(

h3

n

)h3

=
n∑

h1=0

n−h1∑

h2=0

n!
h1!h2!(n− h1 − h2)!

·
(

h1

n

)h1
(

h2

n

)h2
(

n− h1 − h2

n

)n−h1−h2

.

(1.22)

Note that slightly more efficient way for computing the regret would be to sum
over partitions of n instead of compositions. A (restricted) partition of integer n

into K parts is a set of K non-negative integers whose sum is n. For example,
compositions h1 = 3, h2 = 2, h3 = 5 and h1 = 2, h2 = 5, h3 = 3 (with n = 10)
correspond to the same partition {5, 3, 2}. Since the maximum likelihood term
in (1.21) is clearly different for every partition (but not for every composition),
it would be more efficient to sum over the partitions. However, the number of
partitions is still O (

nK−1
)
, so this more complex summing method would not lead

to any improvement of the time complexity. Therefore, in order to compute the
stochastic complexity in practice, one needs to find better methods. This issue will
be addressed below.

1.4.1.3 Recursive formula

A practical method for regret computation is derived via a clever recursion trick.
The idea is to find a dependence of Rn

K and regret terms corresponding to a smaller
number of values. It turns out that the double recursive formula (1.23) derived below
offers a solution to this problem. In this formula, Rn

K is represented as a function
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Figure 1.5 Recursive computation of Rn
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of Rn
K∗ and Rn

K−K∗ , where K∗ can be any integer in {1, . . . ,K − 1}. We have

Rn
K =

∑

h1+···+hK=n

n!
h1! · · ·hK !

K∏

k=1

(
hk

n

)hk

=
∑

h1+···+hK=n

n!
nn

K∏

k=1

hhk

k

hk!

=
∑

h1+···+hK∗=r1
hK∗+1+···+hK=r2

r1+r2=n

n!
nn

rr1
1

r1!
rr2
2

r2!

(
r1!
rr1
1

K∗∏

k=1

hhk

k

hk!
· r2!
rr2
2

K∏

k=K∗+1

hhk

k

hk!

)

=
∑

h1+···+hK∗=r1
hK∗+1+···+hK=r2

r1+r2=n

n!
nn

rr1
1

r1!
rr2
2

r2!

(
r1!

h1! · · ·hK∗ !

K∗∏

k=1

(
hk

r1

)hk

· r2!
hK∗+1! · · ·hK !

K∏

k=K∗+1

(
hk

r2

)hk
)

=
∑

r1+r2=n

n!
r1!r2!

(r1

n

)r1
(r2

n

)r2 ·Rr1
K∗ ·Rr2

K−K∗ . (1.23)

This formula can be used in efficient regret computation by applying a combinatoric
doubling trick. The procedure goes as follows:

1. Calculate table of Rj
2 for j = 1, . . . , n using the composition summing

method (1.21). This can be done in time O (
n2

)
.

2. Calculate tables of Rj
2m for m = 2, . . . , blog2 Kc and j = 1, . . . , n using the

table Rj
2 and recursion formula (1.23). This can be done in time O (

n2 log K
)
.

3. Build up Rn
K from the tables. This process also takes time O (

n2 log K
)
.

The time complexity of the whole recursive procedure given above isO (
n2 log K

)
.

As an example of this method, say we want to calculate Rn
26. The process is

illustrated in Figure 1.5. First we form the tables Rj
2m for m = 1, 2, 3, 4 and

n = 1, . . . , N . Formula (1.23) is then applied to get the tables of Rj
10 from Rj

2

and Rj
8 for j = 1, . . . , n. Finally, Rn

26 can be computed from the tables of Rj
16

and Rj
10.
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1.4.2 Multi-dimensional generalization

In this section, we show how to compute NML for the multi-dimensional clustering
model class (denoted here by MT ) discussed in Section 1.2.2. Using (1.21), we have

SC(xn, yn|MT ) = − log

(
K∏

k=1

(
hk

n

)hk m∏

i=1

K∏

k=1

ni∏
v=1

(
fikv

hk

)fikv
)
· 1
Rn
MT ,K

, (1.24)

where hk is the number of times y has value k in xn, fikv is the number of times
ai has value v when y = k, and Rn

MT ,K is the regret

Rn
MT ,K =

∑

h1+···+hK=n

∑

f111+···+f11n1=h1

· · ·
∑

f1K1+···+f1Kn1=hK

· · ·

∑

fm11+···+fm1nm=h1

· · ·
∑

fmK1+···+fmKnm=hK

n!
h1! · · ·hK !

K∏

k=1

(
hk

n

)hk

·
m∏

i=1

K∏

k=1

hk!
fik1! · · · fikni !

ni∏
v=1

(
fikv

hk

)fikv

. (1.25)

Note that we can move all the terms under their respective summation signs, which
gives

Rn
MT ,K =

∑

h1+···+hK=n

n!
h1! · · ·hK !

K∏

k=1

(
hk

n

)hk

·
m∏

i=1

K∏

k=1

∑

fik1+···+fikni
=hk

hk!
fik1! · · · fikni !

·
ni∏

v=1

(
fikv

hk

)fikv

=
∑

h1+···+hK=n

n!
h1! · · ·hK !

K∏

k=1

(
hk

n

)hk m∏

i=1

K∏

k=1

Rhk
ni

, (1.26)

which depends only linearly on the number of variables m, making it possible to
compute (1.24) for cases with lots of variables provided that the number of value
counts are reasonable small.

Unfortunately, formula (1.26) is still exponential with respect to the number of
values K, n1, . . . , nm. The situation is especially bad if the number of clusters K is
big which often is the case. It turns out, however, that the recursive formula (1.23)
can also be generalized to the multi-dimensional case. Proceeding similarly as
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in (1.23), we can write

Rn
MT ,K =

∑

h1+···+hK=n

(
n!

h1! · · ·hK !

K∏

k=1

(
hk

n

)hk m∏

i=1

K∏

k=1

Rhk
ni

)

=
∑

h1+···+hK=n

(
n!
nn

K∏

k=1

hhk

k

hk!

m∏

i=1

K∏

k=1

Rhk
ni

)

=
∑

h1+···+hK∗=r1
hK∗+1+···+hK=r2

r1+r2=n

[
n!
nn

rr1
1

r1!
rr2
2

r2!

(
r1!
rr1
1

K∗∏

k=1

hhk

k

hk!
· r2!
rr2
2

K∏

k=K∗+1

hhk

k

hk!

)

·
m∏

i=1

K∗∏

k=1

Rhk
ni

K∏

k=K∗+1

Rhk
ni

]
, (1.27)

from which we get the result

Rn
MT ,K =

∑

h1+···+hK∗=r1
hK∗+1+···+hK=r2

r1+r2=n

[
n!

r1!r2!

(r1

n

)r1
(r2

n

)r2

·
(

r1!
h1! · · ·hK∗ !

K∗∏

k=1

(
hk

r1

)hk m∏

i=1

K∗∏

k=1

Rhk
ni

)

·
(

r2!
hK∗+1! · · ·hK !

K∏

k=K∗+1

(
hk

r2

)hk m∏

i=1

K∏

k=K∗+1

Rhk
ni

)]

=
∑

r1+r2=n

n!
r1!r2!

(r1

n

)r1
(r2

n

)r2 ·Rr1
MT ,K∗ ·Rr2

MT ,K−K∗ . (1.28)

That is, we can calculate multi-dimensional regrets using exactly similar procedures
as described in Section 1.4.1.3.

In clustering applications it is typical that the number of clusters K is unknown.
Therefore, in order to apply NML for clustering, one needs to evaluate multi-
dimensional regrets with varying number of clusters. It follows that the easiest
way to use the recursive formula (1.28) is to start with the trivial case K = 1,
and then always choose K∗ = 1. The resulting procedure is very simple and as
effective as any other, provided that one wants to calculate regrets for the full
range K = 1, . . . , Kmax. On the other hand, if there is only need to evaluate NML
for some fixed K (as is the case if the number of clusters is known), then one should
use similar procedures as described in Section 1.4.1.3.

In practice the recursive NML computation for the clustering case goes as follows.
The goal is to calculate a (n × Kmax) table of multi-dimensional regrets. The
procedure starts with the calculation of another array consisting of one-dimensional
regrets, since these are needed in (1.28). The size of this array is (n × Vmax),
where Vmax is the maximum of the number of values for the variables (a1, . . . , am).
This array is calculated using (1.23). The time complexity of this step is clearly
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O (
Vmax ·N2

)
.

The next step is to determine the starting point for the calculation of the array
of multi-dimensional regrets. When K = 1, formula (1.26) clearly reduces to

Rn
MT ,1 =

m∏

i=1

Rn
ni

. (1.29)

Another trivial case is n = 0, which gives

R0
MT ,K = 1, (1.30)

for all K. After that, the calculation proceeds by always increasing n by one, and for
each fixed n, increasing K by one up to the maximum number of clusters wanted.

The interesting thing is that although the multi-dimensional regret formula (1.26)
is rather complicated, the described procedure never uses it directly. The only
things needed are the trivial starting cases K = 1 and n = 0, and the recursive
formula (1.28). It follows that the calculation of multi-dimensional regrets is compu-
tationally as effective as in the single-dimensional case, which is a rather surprising
but important fact.

1.5 Empirical results

1.5.1 Clustering scoring methods

We have presented a framework for data clustering where the validity of a clustering
yn is determined according to the complete data joint probability in Equation (1.4).
Consequently, we obtain different clustering criteria or scoring methods by using
different ways for computing this probability. In the following, the following clus-
tering methods were empirically validated:

NML The NML criterion given by Equation (1.9).

UNI The Bayesian criterion given by the marginal likelihood (1.5) over the uniform
prior distribution.

JEF The Bayesian criterion given by the marginal likelihood (1.5) over the Jeffreys
prior distribution (1.6).

ESS(r) The Bayesian criterion given by the marginal likelihood (1.5) over the
prior distribution (1.7). The parameter r is the equivalent sample size required for
determining this prior.

The above means that ESS(r) is actually a continuum of methods, as the
equivalent sample size can be any positive real number. In the following the following
alternatives were tested: ESS(0.01), ESS(0.1), ESS(1.0), ESS(10.0) and ESS(100.0).
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1.5.2 Empirical setup

In the following we wish to study empirically how the NML clustering criterion
compares with respect to the Bayesian scores UNI, JEF and ESS(r). The problem
is now to find an empirical setup where these different criteria can be compared
objectively. However, this turns out to be a most difficult task. Namely, at first
sight it seems that an objective empirical scenario can be obtained by the following
setup:

1. Choose randomly K probability distributions P (x | Θ1), . . . , P (x | ΘK).

2. i:=1.

3. Generate data xn by repeating the following procedure n times:

(a) Choose a random number zi between 1 and K.

(b) Draw randomly a data vector xi from distribution P (x | Θzi).

(c) i:=i+1.

4. Cluster the generated data xn in order to get a clustering yn.

5. Validate the clustering by comparing yn and the “ground truth” zn.

We claim that the above procedure has several major weaknesses. One issue is
that the setup obviously requires a search procedure in step 4, as the clustering space
is obviously exponential in size. However, any heuristic search algorithm chosen for
this purpose may introduce a bias favoring some of the criteria.

More importantly, one can argue that the “original” clustering zn is not necessar-
ily the goal one should aim at: Consider a case where the data was generated by a
10-component mixture model, where two of the components are highly overlapping,
representing almost the same probability distribution. We claim that in this case a
sensible clustering method should produce a clustering with 9 clusters, not 10! On
the other hand, consider a case where all the 10 component distributions are not
overlapping, but only one sample has been drawn from each of the 10 components.
We argue that in this case a sensible clustering criterion should suggest a relatively
small number of clusters, say 1 or 2, instead of the “correct” number 10, since with
small sample sizes the variation in the data could not possibly justify the use of so
many clusters (meaning a high number of parameters).

This means that the above scenario with artificial data makes only sense if the
mixture components are non-overlapping, and the amount of data is substantial.
Obviously it can now be argued that this unrealistic situation hardly resembles
real-world clustering problems, so that the results obtained in this way would not
be very relevant. What is more, if the data are generated by a finite mixture of
distributions, which means that the local independence assumptions we made in
Section 1.2.2 do indeed hold, then this setup favors the Bayesian approach as in
this unrealistic case the marginal likelihood criterion is also minimax optimal. A
more realistic setup would of course be such that the assumptions made would not
hold, and the data would not come from any of the models in our model class.
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The above scenario can be modified to a more realistic setting by changing the
data generating mechanism so that the assumptions made do not hold any more.
One way to achieve this goal in our local independence model case would be to add
dependencies between the variables. However, this should be done in such a manner
that the dependencies introduced are sensible in the sense that such dependencies
exist in realistic domains. This is of course a most difficult task. For this reason,
in the set of experiments reported here we used real-world data that were gathered
in a controlled manner so that the above testing procedure could be used although
reality was used as a data generating mechanism instead of a manually constructed
mixture model. Before describing the data, let us have a look at the actual clustering
procedure used in the experiments.

1.5.3 The search algorithm

For the actual clustering algorithm, we studied several alternatives. The best results
were obtained with a simple stochastic greedy algorithm, where the number of
clusters K was first fixed, and then the following procedure repeated several times:

1. Choose a random initial data assignment.

2. Choose a random data vector.

3. Move the chosen data vector to the cluster optimizing locally the clustering score.

4. If converged, stop. Otherwise, go to step 2.

This procedure was repeated with all the possible values for K, and with all the
clustering scoring methods listed in Section 1.5.1. At the end, all the clusterings
of different size, produced by all the runs with all the clustering methods, were
put together into a large pool of candidate clusterings. Finally, all the candidate
clusterings were evaluated by using all the clustering criteria. The purpose of
this procedure was to prevent the effect of chance between individual runs of the
stochastic search algorithm with different criteria. It should be noted, however, that
in our experiments almost all the best clusterings were found using NML as the
clustering score. We believe that this tells something important about the shape of
the search space with different clustering criteria, and this interesting issue will be
studied in our future research.

1.5.4 The data

In this set of experiments, the data consisted of measured signal strength values of
radio signals originating from eight WLAN access points (transmitters) located in
different parts of our laboratory. As the measured signal strength depends strongly
on the distance to the transmitting access point, the distribution of the data
collected at some fixed point depends on the relative distances of this point and the
locations of the eight access points. This means that the measurement distributions
at two locations far from each other are very likely to be very different. Furthermore,
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as the access points are not affecting each other, the eight measured signals are at
any fixed point more or less independent of each other.

Consequently, the data collected in the above manner are in principle similar
to artificial data generated by a finite mixture model. Nevertheless, in real-world
environments there is always some inherent noise caused by factors such as mea-
surement errors, position and angle of reflecting or damping surfaces, air humidity,
presence or absence of people and so on. This means that this type of data resemble
artificial data in the sense that the overlap between the component distributions
can be controlled by choosing the locations where the measurements are made, but
at the same time the data contain realistic type of noise that was not artificially
generated.

1.5.5 The results

For this set of experiments, data were gathered at different locations situated as far
from each other as possible. This means that the data generating mechanisms were
rather different, and partitioning the unlabeled data into clusters corresponding
to the measurement locations was relatively easy with all the clustering methods
used, if a sufficient number of data was available. However, as we in this setup were
able to control the amount of data available, we could study the small sample size
behavior of the different clustering scores. A typical example of the behavior of
different clustering criteria can be seen in Figures 1.6 and 1.7.
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Figure 1.6 An example of the behavior of different clustering scores in the task of
finding a four cluster data partitioning, as a function of sample size per cluster.

In Figure 1.6 we see a typical example of how the NML, UNI and JEF clustering
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Figure 1.7 An example of the behavior of different ESS clustering scores in the task of
finding a four cluster data partitioning, as a function of sample size per cluster.

criteria behave as a function of the sample size. In this case, the correct number
of clusters was four (data were gathered at four different positions), and the X-
axis gives the number of data vectors collected at each of the 4 locations. The
Y-axis gives the number of clusters in the best clustering found with each of the
three clustering criteria, where the pool of candidate clusterings were generated
as described in Section 1.5.3. In this simple case, whenever the best clustering
contained 4 clusters, the actual clustering yn was perfectly consistent with the
way the data were collected, i.e., the clustering suggested was “correct”. Obviously,
whenever the suggested number of clusters was other than 4, the correct clustering
was not found. The values on the Y-axis are averages over several repeats of the
sequential procedure consisting of data gathering, construction of the clustering
candidate pool and validation of the clustering candidates with different clustering
criteria.

From Figure 1.6 we can see that with very small sample sizes (with fewer than 10
samples from each cluster), NML tends to suggest less clusters than there actually
is. However, as discussed above, this is a sensible behavior as very little data sets
do not justify very complex models. After sample size of 10, the NML always finds
the correct number of clusters (and as explained above, also the correct clustering).
The behavior of the UNI and JEF scores is very similar, but they need more data
in order to find the correct clustering.

The behavior of the ESS scores is rather interesting, as we can see in Figure 1.7.
In this particular case, a relatively small equivalent sample size seems to work well:
ESS(1) converges rather quickly (after seeing 20 samples per cluster) to the right
level. However, the behavior is somewhat counter-intuitive with very small sample
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sizes as the suggested number of clusters is first close to 4, then goes down as the
sample size increases to 15, after which it goes up again. A similar, but even more
disturbing pattern is produced by the ESS scores with small equivalent sample
size: with very small samples (under 10 samples per cluster), they tend to suggest
clusterings with much too high number of clusters. This of course would lead to
poor results in practice.

The ESS scores with a high equivalent sample size increase the suggested number
of clusters with increasing data size up to a point, after which they start to converge
to the right level. As a matter of fact, after a sufficient number of samples from
each cluster, all the clustering criteria typically suggest a clustering identical or
very close to the correct clustering. Consequently, this example shows that the
interesting differences between the different clustering methods cannot be seen in
low-dimensional cases if a large number of data is available. Real world problems
are typically very high-dimensional, which means that the amount of data available
is always relatively low, which suggests that the small sample size behavior of the
clustering criteria observed here is of practical importance.

1.6 Conclusion

We suggested a framework for data clustering based on the idea that a good
clustering is such that it allows efficient compression when the data are encoded
together with the cluster labels. This intuitive principle was formalized as a search
problem, where the goal is to find the clustering leading to maximal joint probability
of the observed data plus the chosen cluster labels, given a parametric probabilistic
model class.

The nature of the clustering problem calls for objective approaches for com-
puting the required probabilities, as the presence of the latent clustering variable
prevents the use of subjective prior information. In the theoretical part of the pa-
per, we compared objective Bayesian approaches to the solution offered by the
information-theoretic Minimum Description Length principle, and observed some
interesting connections between the Normalized Maximum Likelihood approach and
the Bayesian reference prior approach.

To make things more concrete, we instantiated the general data clustering
approach for the case with discrete variables and a local independence assumption
between the variables, and presented a recursive formula for efficient computation
of the NML code length in this case. The result is of practical importance as the
amount of discrete data is increasing rapidly (in the form of WWW pages, WWW
log data, questionnaires, and so on). Although the approach can be easily extended
to more complex cases than the one studied in this paper, we argue that the local
independence model is important as the resulting clusters are in this case easy to
analyze. It can also be said that the local independence model assumed here is
complex enough, as one can obviously model arbitrarily complex distributions by
adding more and more clusters.
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In the empirical part of the paper we studied the behavior of the NML clustering
criterion with respect to the Bayesian alternatives. Although all the methods
produced reasonable results in simple low-dimensional cases if sufficient amount
of data was available, the NML approach was clearly superior in more difficult
cases with insufficient number of data. We believe that this means that NML
works better in practical situations where the amount of data available is always
vanishingly small with respect to the multi-dimensional space determined by the
domain variables.

The difference between NML and the Bayesian approaches was especially clear
when compared to the “parameter-free” approaches with either the uniform or
the Jeffreys prior. The equivalent sample size prior produced good results if one
was allowed to manually choose the ESS parameter, but this of course does
not constitute a proper model selection procedure, as no general guidelines for
automatically selecting this parameter can be found.

In this paper the clustering framework was restricted to flat, non-overlapping
and non-hierarchical clusterings. The approach could be obviously extended to
more complex clustering problems by introducing several clustering variables, and
by assuming a hierarchical structure between them, but this path was left to be
explored in our future research.
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