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ABSTRACT

The objective of stemmatology is to construct a family-
tree of documents that have been generated by a process
of repeated duplication and modification. In earlier bench-
mark experiments on computer-assisted stemmatology, the
CompLearn software package was found to perform well
on simpler test cases, but it failed to give satisfactory re-
sults in a more complex and realistic data set. This was
surprising, given the excellent results in related phylo-
genetic tasks where it was able to reconstruct accurate
family-trees of biological species based on their genome
sequences. We suggest that the reason for the failure in the
complex stemmatological data set is due to difficulties in
handling missing data. This explains many features in the
incorrect solution produced by CompLearn, and leads to
a simple random imputation strategy to fill in the missing
values. The strategy is shown to improve the performance
by a large margin.

1. INTRODUCTION

A prototypical example illustrating the problem studied
in stemmatology is as follows: A top AI researcher has
finally concluded (after 25 years, see [1]) that the state-
ment “Tweety is a bird” is true. The rumor of this fact
spreads around like wildfire, becoming distorted along the
way. After a while, a set of scientists submit papers to
WITMSE-09 claiming respectively that: “Sweety is a bird,”
“Sweety has a bird,” and “Tweety is a nerd.” Can we de-
duce how the information spread among the scientists?

Drawing a graph where each node corresponds to one
variant of the message, and each variant is a direct de-
scendant of the message from which it originated, its ex-
emplar, gives us a family-tree of the variants. Such a
family-tree, or a stemma, corresponds to i) a clustering
hierarchy, where joined subgroups make subtrees; ii) a di-
rected acyclic graph (DAG) of interdocument (causal) de-
pendencies; iii) a network of information flow among the
documents; iv) a phylogenetic tree; et cetera. The most
widely used tools for inferring such family-trees are based

∗This work is partially based on an unpublished Master’s thesis “Nor-
malisoitu kompressioetäisyys: katsaus sovelluksiin” (in Finnish), Dept.
of CS, Univ. Helsinki, by the first author.
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Figure 1. The most likely family-tree of a most unlikely
set of statements. (In fact the orientation of the edges, or
equivalently the root of the graph, is undetermined by the
texts alone.)

on methods developed for phylogenetic analysis, i.e., dis-
covery of evolutionary trees, see [2, 3].

The natural conclusion about Tweety is that “Sweety
has a bird” is a result of two distinct, consecutive mu-
tations, the first of which has produced the intermediate
form “Sweety is a bird”. Also, it is safe to assume that
“Tweety is a nerd” is a result of another, unrelated muta-
tion of the original statement. Hence, we can draw the
family-tree shown in Fig. 1. In realistic scenarios, the
number of length of the texts is too great to yield to simple
manual solution. Furthermore, to make matters infinitely
worse, many (often most) of the variants are either com-
pletely or partially unknown due to their old age.

The core component of the CompLearn package is the
normalized compression distance (NCD) [4], defined as

NCD(x, y) :=
max{C(x | y), C(y | x)}

max{C(x), C(y)} , (1)

where C(x) is the complexity of string x, and C(x | y)
is the conditional complexity of string x given string y.
The complexity C(·) is defined using a compression algo-
rithm and can be taken as a computable approximation of
Kolmogorov complexity, see [5]. Conditional complexi-
ties C(x | y) are evaluated by subtracting the complexity
of the conditioning string y from the complexity of the
concatenated string xy, i.e., C(x | y) := C(xy)− C(y).

The ideal, yet uncomputable, distance metric defined
by using Kolmogorov complexity instead of an approxi-



mation thereof has certain universality properties. How-
ever, these properties are preserved in the approximation
to a degree that depends on the type of objects it is ap-
plied to, and the used compressor. In most practical ex-
periments, NCD has given at least satisfactory results, see
e.g. [4, 6]. This is remarkable considering that very little
or none fine-tuning is required.

In this paper, we take a closer look at one application
of NCD and CompLearn, namely, stemmatology and in
particular, the artificial data set Heinrichi, constructed by
copying a text several times by hand for the purpose of
evaluating computer-assisted methods [7]. We propose an
explanation for the relatively poor performance of Comp-
Learn in this task, and suggest a partial fix by a simple
random imputation technique.

2. BENCHMARK DATA SET

The main difficulty in evaluating methods for computer-
assisted stemmatology is the fact that as a rule, we do not
have an independent means to determine the correct solu-
tion for real-life data sets. The same applies to phyloge-
netics.

In order to enable objective evaluation, artificial manu-
script collections have been constructed by copying texts
by hand according to a known stemma [7, 8, 9]. Figure 2
shows the correct stemma for the most extensive artificial
collection Heinrichi which contains 67 copies of a text, 37
of which are given as input to the methods, while the re-
maining 30 are hidden in order to make the situation more
realistic1. Furthermore, a variable portion of the words
were deleted from some of the 37 input texts so that the
lengths of the remaining texts are 1329–8135 characters
(symbols).

2.1. Evaluation criterion

To measure the closeness of an estimated stemma to the
correct one, we use the so called average sign similarity
score2, defined as the percentage of triplets (α, β, γ) of
nodes for which the relative order of distances d(α, β)
and d(α, γ) differs in the two stemmata. The distance
d(α, β) is defined as the number of edges along the short-
est path from α to β. In case the inequality d(α, β) >
d(α, γ) holds for any three nodes α, β, γ in the estimated
stemma if and only if it holds in the correct stemma, then
the score is 100 %, otherwise less. In particular, if the
estimated stemma is identical to the correct one the score
is 100 %. Usually the score is not less than 50 %. For
details, see [7].

2.2. CompLearn’s result

Figure 3 shows the result of applying CompLearn to the
artificial data set Heinrichi. We use the default gzip com-
pressor in all the presented results; similar outcomes are

1The data is freely available in several formats (plain text,
symbolic, numeric, Nexus) at http://www.cs.helsinki.fi/
teemu.roos/casc/stemma.html.

2In [7], the score was called average sign distance but since the score
measures the similarity, not distance, of the stemmata, we adopt the
present terminology.
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Figure 4. Schematic illustration of the pattern of missing
text in strings A, B, and C. The length of the substring
that is missing in both A and B is kAB . The lengths of the
substrings that are missing in either A or B, but not both,
are kA and kB , respectively.

obtained by other compressors. The average sign simi-
larity score is 53 %, a modest result given that a random
guess gives the score of about 50 %, and the best known
result is 76 %, see [7].

By looking at the fraction of missing text in each vari-
ant (see the bars under each node in Fig. 3), and the lo-
cation of the variants in the CompLearn stemma, we ob-
serve that the variants from which a large portion of text
is missing tend to be grouped together even though they
are not necessarily closely related in the correct stemma.
Although this only explain the errors in the middle branch
of the estimated stemma, and there are several other er-
rors in the left-most branch as well, the trend appears to
be strong.

3. WHERE AND WHY DOES IT GO WRONG?

The tendency of CompLearn to place variants with much
missing text together can be explained in terms of the
properties of the NCD metric, Eq. (1), by considering the
amount of text that is missing in more than one variant
at the same position. Roughly, if a sufficient amount of
text is missing in two variants, then these two variants will
be judged to be more similar to each other than a variant
where the text is not missing. This is all quite natural and
cannot be taken as a problem as such, but as we will see
below, this appears to explain at least some of the prob-
lems CompLearn’s result in the Heinrichi data.

3.1. Patterns of missing text

Consider three variants, A, B, and C, as depicted in Fig. 4,
that are otherwise similar to each other except that a sub-
string of length kA is present in both B and C but missing
in string A, and a substring of length kB is missing in
B but present in both A and C, and finally, a substring
of length kAB is missing in both A and B but present in
C. The total length of string C is n. We assume that the
strings are labeled so that kB ≤ kA.

We make the following two simplifying assumptions:
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Figure 2. The correct stemma of the artificial data set Heinrichi [7]. Labeled nodes denote texts that are given as input to
the methods, and the unlabeled internal nodes denote texts that are hidden (not given). Dotted edges denote cases where
parts of more than one exemplar have been included in a new copy, a problem known as contamination. Three main
branches are colored in green, blue, and red, respectively.
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Figure 3. The stemma obtained by CompLearn for the data set Heinrichi. The tree is manually rooted. Average sign
similarity 53% (best score is 76%, see [7]). The bar under each node shows the fraction of observed (non-missing) text in
each variant. There is not much resemblance with the correct tree of Fig. 2; the green, blue, and red branches are mixed
together. Note that variants from which a large portion is missing (Be, Ca, V, Cf, R, ...) tend to be grouped together in the
middle branch.



(A.1) information content is evenly distributed along the
strings so that the complexity of any substring is
approximately equal to its length, C(x) ≈ l(x), and

(A.2) the strings are sufficiently similar in the parts that
they share that we can write C(x | y) ≈ 0 for any
two substrings at the corresponding positions in two
strings.

Both approximations are assumed to hold up to o(n) er-
ror terms, i.e., terms that are sub-linear in the length of
the whole string. Assumption (A.2) implies, for instance,
C(A | C) ≈ C(B | C) ≈ 0, and C(B | A) ≈ kA.

Proposition 1. Under the above assumptions (A.1) and
(A.2), we have

kA < kAB ≤ n/4⇒ NCD(A, B) / NCD(A,C),

where the inequality / holds up to o(n) error terms.

Proof. We need to show that kA < kAB ≤ n/4 implies

NCD(A,B) =
max{C(A | B), C(B | A)}

max{C(A), C(B)}
<

max{C(A | C), C(C | A)}
max{C(A), C(C)} = NCD(A,C). (2)

Under assumptions (A.1) and (A.2), this is approximately
equivalent to

kA

n− kB − kAB
<

kA

n
+

kAB

n
. (3)

Since the error terms in the numerator and denominator
are by assumption (A.2) sub-linear, the equivalence of (2)
and (3) holds up to o(n) error terms. The condition kA <
kAB ≤ n/4, together with the assumption kB ≤ kA, thus
implies n− kB − kAB > n/2 which in turn gives

kA

n− kB − kAB
<

kA

n
+

kA

n
.

The required inequality (3) now follows by upper-bounding
the second kA on the right-hand side by kAB .

The proposition implies that if the part missing in both
A and B is larger than the part missing only in A (and as
we assumed kB ≤ kA, also the part missing only in B),
then A and B are judged to be closer to each other than A
is from the whole string C.

By essentially the same proof, we get the following
similar proposition concerning distances NCD(A,B) and
NCD(B, C).

Proposition 2. Under assumptions (A.1) and (A.2), we
have

kA + (kA − kB) < kAB ≤ n/4
⇒ NCD(A,B) / NCD(B,C). (4)

.

Furthermore, even if assumption (A.2) is weakened by
letting the three strings A,B, C differ from each other by
a non-negligible amount, similar results can be obtained
by having the gap between kA and kAB sufficiently large
(see statement of Propositions 1 & 2).
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Figure 5. Left: The CompLearn tree incorrectly connect-
ing F with Ab and C with R, and NCD distances between
the four variants. The numbers indicate pair-wise NCD
distances. Right: The result of CompLearn after random
imputation, see Sec. 4. The tree is now correct.

3.2. Empirical evidence

We note that if we remove words at random, then it is very
unlikely that the conditions in Propositions 1 & 2 are re-
alized, and the problem doesn’t usually arise. However,
the patterns of missing text in real and artificial manu-
scripts are not random, and hence, the problem may occur
in practice more often than would be expected by chance.

We can in fact observe the kind of behavior described
above empirically in the Heinrichi data. Let us consider
manuscripts Ca, F, V and W, of which the first two be-
long to the blue (middle) subtree in the correct stemma of
Fig. 2, and the latter two belong to the green (left-most)
subtree. The patterns of missing text of the Heinrichi data
are shown in Figure 6. Each row corresponds to a manu-
scripts, and white indicates missing text at a particular lo-
cation. Looking at the patterns of Ca and V it is obvious
that both are missing a lot of text, mostly in the begin-
ning. Based on the above theoretical considerations, it is
expected that these two variants will be judged to be close
to each other in terms of NCD.

The left-most stemma in Fig. 5 shows the tree con-
structed by CompLearn for the four texts. Between the
labeled nodes, the figure also shows the NCD distances
of neighboring nodes. From the distances we see that V
and Ca are incorrectly placed next to each other, and their
distance (0.499) smaller than the distance between the two
blue variants, Ca and F, and also very close to the distance
between the two green variants, V and W. In this case, the
short distance between the complete variants, W and F,
breaks the tie and results in the incorrect tree. In Comp-
Learn’s result for the whole data, Fig. 3, we also find Ca
and V next to each other in the middle branch, together
with other incomplete manuscripts.

4. A SIMPLE RANDOM IMPUTATION
TECHNIQUE

Based on the above considerations about missing text and
its effect on NCD, we present a simple random imputation
technique to fill in the missing data. In the Heinrichi data,
the technique improves the performance of CompLearn by
a large margin.
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Figure 6. A graphical display of the Heinrichi data, showing on each row the text of a given variant, indicated by the label
on the right, encoded as colors (each word is mapped to a color). White indicates missing words.

4.1. The algorithm

The algorithm works by imputing randomly sampled words
from the other texts. The texts need to be aligned first
so that at each position, the imputed words can be drawn
from the same position in the other texts.

Algorithm 1 Biased random imputation
Input: Set of aligned incomplete strings {A,B, C, . . .}.
Output: Set of aligned complete strings.

1: for all strings s ∈ {A, B,C, . . .} do
2: for all positions i ∈ {1, . . . , n} do
3: while si = empty do
4: si ← sample({Ai, Bi, Ci, . . .})
5: end while
6: end for
7: end for
8: return {A,B,C, . . .}

In step 4, a missing word si is randomly replaced by a
value sampled uniformly from the words {Ai, Bi, Ci, . . .}
appearing at the same position in all the texts. This is re-
peated until a non-empty word is obtained. The algorithm
is called biased random imputation since the distribution
of the words in the imputation step is the overall distri-

bution at the given position: if a certain word appears in
most of the variants, that word is likely to be drawn as a
result of sampling uniformly over the variants.

In the complete strings thus obtained, the imputed parts
are on the average as similar to each other as they are to
any other variant. Hence, the pattern of missing words
should no longer cause two variants to attract each other
in such a great degree.

In Fig. 5, the right-most stemma shows how the Comp-
Learn tree and the NCD distances change when the data is
imputed: the green and the blue variants are now grouped
in the correct way: note in particular that the V–Ca dis-
tance, 0.321, is now longer than any of the other distances
shown in the figure.

4.2. CompLearn’s result after imputation

Figure 7 shows CompLearn’s result for the imputed data.
The distinctive difference between the new stemma and
the previous one is that now the three main colors are
mostly grouped together, even though they cannot be di-
vided completely into three separate branches. For in-
stance, the nodes Be, Ca, and V—all of which were miss-
ing a lot of text—are now much better placed (cf. Fig. 2).
Also, the group Ad, Z, Ab, G is now correctly placed among
the other red variants. Their earlier incorrect placement
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Figure 7. The stemma obtained by CompLearn for the data set Heinrichi after random imputation. The tree is manually
rooted. Average sign similarity is now 61%. Notice, for instance, the better placement of variants Be, Ca, and V, as well
as Ad, Z, Ab, and G.

in the left-most branch cannot be explained so easily, but
it may well be caused by the lack of attraction between
this group, variant R, and the other red manuscripts due to
missing data. The imputed R may now provide sufficient
pull to move the quadruple into its more or less correct
position.

In terms of the average sign similarity, the score im-
proves from 53% to 61%. A similar improvement also oc-
curs with other compressors (bzip2 and blocksort). This
still leaves a a gap to the best result, 76%, but neverthe-
less provides support for our hypothesis about the reason
of CompLearn’s previous poor performance in stemmatol-
ogy. In order to verify these observations, and to minimize
the effect of chance, we will run more tests on other com-
plex artificial data sets.
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