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Abstract

In this work, we are interested in the problem of finding maximum a posteriori prob-
ability (MAP) value assignments for a set of discrete attributes, given the constraint
that some of the attributes are permanently fixed to some values a priori. For build-
ing a system capable of this type of uncertain reasoning in practice, we need first to
construct an accurate abstract representation of the problem domain, and then to
establish an efficient search mechanism for finding MAP configurations within the
constructed model. We propose a hybrid Bayesian network-neural network system
for solving these two subtasks. The Bayesian network component can be used for
constructing a compact, high-level representation for the problem domain probab-
ility distribution quickly and reliably, assuming that suitable expert knowledge is
available. The neural network component provides then a computationally efficient,
massively parallel platform for searching the model state space. The main applic-
ation areas for these kinds of systems include configuration and design problems,
medical diagnosing and pattern recognition.

For implementing a hybrid Bayesian-neural system as suggested above, we present
here methods for mapping a given Bayesian network to a stochastic neural net-
work architecture, in the sense that the resulting neural network updating process
provably converges to a state which can be projected to a MAP state on the probab-
ility distribution corresponding to the original Bayesian network. From the neural
network point of view, these mappings can be seen as a method for incorporating
high-level, probabilistic a priori information directly into neural networks, without
recourse to a time-consuming and unreliable learning process. From the Bayesian
network point of view, the mappings offer a massively parallel implementation of
simulated annealing where all the variables can be updated at the same time. Our
empirical simulations suggest that this type of massively parallel simulated an-
nealing outperforms the traditional sequential Gibbs sampling/simulated annealing
process, provided that suitable hardware is available.
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Chapter 1

Introduction

This research deals with methods for developing expert system applications
in real-world problem domains. In these domains — unlike with most arti-
ficial toy problems — the data is typically noisy: imprecise, incomplete or
inconsistent. This means that traditional rule-based system relying on pure
logic suffer from the brittleness of the resulting software: as the programs
are sensitive even to the slightest inaccuracy or incompleteness in their in-
put data [2], the systems tend to grow to have rule bases consisting of tens
of thousands of rules, when trying to provide a specific rule for every pos-
sible situation [28]. Collecting these kinds of large rule bases can be a very
expensive and time-consuming task in practice, and moreover, maintaining
and updating large rule bases (while preserving consistency) appears to be
extremely difficult [93]. Consequently, it is clear that some kind of a com-
putational mechanism capable of handling uncertain data is necessary for
providing expert systems with the robustness required for practical applica-
tions.

Several different frameworks for handling noisy data have been developed
during the last two decades. In this work, we concentrate on numerical ap-
proaches for uncertain reasoning. The first systems of this kind, the most
famous example being the MYCIN [15] system for diagnosing bacterial in-
fections, used uncertainty factors and heuristic rules for manipulating these
factors. It has been later discovered [48] that MYCIN’s original heuristic
computational scheme can actually be interpreted as (Bayesian) probabilistic
reasoning with certain independence assumptions, similar to those used for
constructing the first simple Bayesian schemes for uncertain reasoning, such
as the PROSPECTOR [30] system. Unfortunately, in many problem domains
these independence assumptions are not valid [74]. Recently, uncertain reas-
oning systems based on fuzzy logic [119] have gained popularity, especially in
Japan [72, 94]. However, it has been shown that any consistent computational
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framework representing degree of uncertainty as numbers has to be based on
axioms of probability theory [20, 77]. Consequently, Bayesian probability
theory seems to offer a solid, unifying framework for uncertain reasoning in
general [16, 37, 64].

In this work, we study uncertain reasoning in the probabilistic framework.
We assume that the problem domain probability distribution is modeled by
using a set of discrete attributes (i.e. discrete random variables), and concen-
trate on studying an abductive inference problem, where the goal is to find a
mazimum a posteriori probability (MAP) value assignment for the variables,
given the constraint that some of the variables are instantiated to some fixed
values in advance (a formal description of the MAP problem can be found in
Chapter 2). Obviously, a MAP solver can be used for solving various config-
uration and design problems, where the goal is to find the best combination
of discrete attributes. In addition, many problems in e.g. medical diagnosing,
pattern recognition and natural language processing can be formulated in the
MAP framework [111].

The structure of a generic MAP solver is shown in Figure 1.1. The system
consists of two modules: a model construction module and a query processing
module. The task of the model construction module is to build an accur-
ate model of the problem domain probability distribution, i.e. to select the
most suitable instance within the chosen family of mathematical models. This
selection is done either by using low-level problem domain sample data (in
which case the problem is often referred to as machine learning), or by us-
ing a priori high-level data provided by domain experts, or by using both
types of data. The task of the query processing module is, given a partial
attribute value assignment as the input (“query”), to find a MAP attribute
value configuration among all the possible (i.e. consistent with the given par-
tial instantiation) complete attribute value configurations within the chosen
model.

In Chapters 3 and 4 we describe two different families of models —
Bayesian networks and neural networks — and discuss how they can be used
for building MAP solvers of the type described above. In Chapter 5, we show
how to build a hybrid Bayesian-neural MAP solver, which offers an inter-
esting possibility to avoid the disadvantages that occur when using either of
these two families of models alone.

A Bayesian (belief) network [96, 106] is a graphical high-level represent-
ation of a probability distribution over a set of discrete variables. Intuitively
speaking, a Bayesian network model is constructed by explicitly determin-
ing all the direct (causal) dependencies between the random variables of the
problem domain: each node in a Bayesian network represents one of the
random variables of the problem domain, and the arcs between the nodes
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Figure 1.1: Structure of a generic MAP solver.

represent the direct dependencies between the corresponding variables. In
addition, each node has to be provided with a table of conditional probabil-
ities, where the variable in question is conditioned by its predecessors in the
network (a formal definition of Bayesian networks can be found Section 3.1).
The importance of Bayesian network representations lies in the way such a
structure can be used as a compact representation for many naturally oc-
curring distributions, where the dependencies between variables arise from a
relatively sparse network of connections, resulting in relatively small condi-
tional probability tables. In these cases, a Bayesian network representation
of the problem domain probability distribution can be constructed efficiently
and reliably, assuming that appropriate high-level expert domain knowledge
is available. There exists also several interesting approaches for constructing
Bayesian networks from sample data, and moreover, theoretically solid tech-
niques for combining domain expert knowledge with the machine learning
approach [49].

The Bayesian network theory offers a framework for constructing algorithms
for different probabilistic reasoning tasks (for a survey of probabilistic reason-
ing algorithms, see [52]). In Section 3.2, we discuss the complexity of the MAP
problem within the Bayesian network framework, and review briefly some
attempts to develop algorithms for solving MAP problems in the Bayesian
network framework. Unfortunately, for a general network structure, the MAP
problem can be shown to be NP-hard [19, 112], which means that very prob-
ably it is not possible for any algorithm to solve this task (in the worst case)
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in polynomial time with respect to the size of the network. Consequently,
recently there has been a growing interest in developing stochastic algorithms
for the MAP problem, where instead of aiming at an accurate, determin-
istic solution, the goal is to find a good approximation for a given problem
with high probability. In this study, we shall concentrate on this type of a
stochastic, approximative approach.

From the optimization theory point of view, the task of the query pro-
cessing module of the MAP solver is to solve a constrained global optimization
problem, where the constraints are the initial values for a subset of random
variables, and the function to be maximized is (within the Bayesian network
framework) the probability distribution defined by the given Bayesian net-
work. Markov Chain Monte Carlo (MCMC) algorithms [80, 45] are stochastic
algorithms that can be used in exponentially large search spaces for find-
ing global maxima in feasible time with high probability. In this study, we
are mainly concerned with the most common of the MCMC methods, Gibbs
sampling [40] (for a short survey of other stochastic simulation methods,
see [52]). In Gibbs sampling, a large collection of representative configur-
ations of the problem domain model is generated by iterative local sampling,
and the actual variable-value combination occurrence probabilities can be es-
timated by sample frequencies. On the other hand, combined with a stochastic
technique called simulated annealing (SA) [80, 71], the Gibbs sampling pro-
cess will, with high probability, converge to the global maximum of a given
function consistent with the initial constraints. This iterative process can be
seen as a kind of a stochastic local search, where the probability of finding
the globally optimal solution approaches one as the number of iterative steps
used approaches infinity [40, 1]. Consequently, simulated annealing can be
used for solving the MAP problem stochastically. In Section 3.3 we present
the general theoretical framework for MCMC algorithms and the simulated
annealing technique.

After being introduced to the optimization theory community in [71], SA
has been applied to many different (NP-hard) optimization problems, such
as TSP [71], graph partitioning [65], graph coloring [66], number set parti-
tioning [66] and clustering [105, 14| (for an extensive survey of applications,
see [73] or [1, pp. 89-90]). One of the main difficulties with the SA algorithm
is that the SA theory requires that the objective function to be optimized has
to be representable in a specific Gibbs distribution form. Usually, a suitable
Gibbs distribution has to be constructed manually for each separate optimiz-
ation problem instance using very low-level concepts of the problem domain.
However, there exists a graphical model called a Markov random field (MRF)
[27, 11, 70, 40], which can be used as a formal tool for constructing Gibbs
distributions. Similarly to Bayesian networks, an MRF representation con-



sists of a graphical representation of the dependencies between the variables,
together with a set of parameters, clique potentials. The values of the clique
potentials determine uniquely a Gibbs distribution on the variable value as-
signment space.

Unfortunately, generally the MRF clique potentials cannot be easily de-
termined directly, as they have no semantically clear probabilistic interpreta-
tion. In the Bayesian network framework, however, there is a straightforward
mapping from a given Bayesian network to an MRF, which gives a method
for determining the MRF clique potentials automatically from the conditional
probabilities of the Bayesian network. This means that the problem domain
expert can produce an SA process corresponding to the problem domain prob-
ability distribution by simply determining a Bayesian network structure and
the corresponding conditional probabilities, which can then be mapped to an
Markov random field. The Gibbs distribution corresponding to the resulting
MRF can then be used for constructing an SA process. This transformation
process from the domain expert knowledge to an SA process is described in
Section 3.4.

As noted above, Bayesian network theory offers an elegant solution for the
model construction module of our MAP solver. Furthermore, the concept of
Markov random fields allows us to construct simulated annealing processes
for solving MAP problems in the Bayesian network framework, thus providing
us with a computational mechanism for the query processing module. The
structure of the corresponding Bayesian MAP solver is shown in Figure 1.2.
The main difficulty with this approach in practice lies in the inefficiency
of the standard sequential simulated annealing: sampling of configurations
requires a lot of iterative processing, and consequently implementations of
the algorithm on conventional serial computers can be excruciatingly slow
with large Bayesian networks.

In Chapter 4 we consider another family of models for building MAP
solvers, neural networks (NN). Neural networks are massively parallel com-
putational models consisting of a large number of very simple processing units
(for a survey of neural models, see e.g. the collections [5, 6, 103, 78]). These
models can perform certain computational tasks extremely fast when run
on customized parallel hardware, and hence they have been suggested as a
computationally efficient tool for solving NP-hard optimization problems ap-
proximatively [59, 10]. Especially suitable for these tasks are stochastic neural
network architectures, as these models are based on a stochastic updating pro-
cess very similar to simulated annealing. In Section 4.1 we describe such a
network architecture, called the Boltzmann machine (BM) [57, 58|, and show
how the updating process of a BM provably converges to a state which max-
imizes the consensus function, which is an objective function determined by
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Figure 1.2: Structure of a Bayesian network MAP solver with a stochastic
SA query processing module.

the states of the binary nodes of the network, and by the (constant) paramet-
ers (“weights”) attached to the connecting arcs. In principle the BM model
can be regarded as a massively parallel Gibbs sampler, but in order to ensure
convergence of the updating process, the nodes have to be updated sequen-
tially, which prevents efficient parallel implementations on neural hardware.
In Section 4.2 we present a special case of the BM structure, the harmony
network [114], which consists of two separate layers of nodes. The two-layer
structure of the harmony network model allows us to update all the nodes in
one layer simultaneously, making massively parallel implementations possible.

Boltzmann machines can be used as a computationally efficient tool for
finding maximum points of the consensus function corresponding to a given
network structure (provided that suitable massively parallel hardware is avail-
able). In order to apply these models for building MAP solvers, we need
also an efficient method for constructing neural network structures with the
consensus function having the same maximum points as the probability dis-
tribution of the problem domain (see Figure 1.3).

Boltzmann machines, and neural network models in general, are usually
constructed from sample data by first selecting (more or less arbitrarily)
some network architecture by fixing the number of nodes and the connec-
tions between the nodes, assigning (randomly chosen) weights to the connec-
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Figure 1.3: Structure of a Boltzmann machine MAP solver.

tions, and then using some gradient-based greedy algorithm for changing the
weights until the behavior of the network seems to be consistent with a sample
of training data [58, 35, 36]. There are, however, several serious pitfalls with
this approach, which relate to the ”black box” nature of the functioning of
the resulting models: normally there is no way of finding out what kind of
knowledge a neural network contains after the learning, nor is it possible to
explain the behavior of the model. In particular, as the learning algorithms
start with a randomly chosen initial state, “tabula rasa”’, they are unable
to use any prior knowledge of the problem environment, although in many
cases this kind of information would be readily available. This results in a
very slow and unreliable learning process. Besides, as most of the learning
algorithms are “steepest-descent” type greedy algorithms, they are very likely
to get stuck in local maximum points. It follows that even if the chosen net-
work happens to be structurally suitable for representing the problem domain
probability distribution, the global maximum will not be reached, unless the
initial starting point is chosen near the global maximum point. Even more
disturbingly, even in this case the resulting network may be a poor model for
the problem domain, as the machine learning algorithms tend to overfit the
model with the sample data.

It follows that although Boltzmann machines provide us with an efficient
computational mechanism for processing MAP queries, finding a Boltzmann
machine structure with a suitable consensus function can be very difficult
in practice, so this approach does not offer a satisfactory solution for the
model construction problem. Bayesian networks, on the other hand, can be
used for constructing models efficiently and reliably from high-level a priori
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Figure 1.4: Structure of a hybrid Bayesian-neural MAP solver.

information, and moreover, they offer also a very promising framework for
constructing models from low-level data, but they fail to provide a computa-
tionally attractive solution for the query processing module. We argue that we
can achieve “the best of both worlds” by building a hybrid Bayesian-neural
MAP solver, where the model construction module uses Bayesian network
techniques, while the query processing module is implemented as a neural
network.

For constructing a hybrid Bayesian-neural system as suggested above, we
need a way to map a given Bayesian network to a Boltzmann machine archi-
tecture, so that the consensus function of the resulting Boltzmann machine
has the same maximum points as the probability measure corresponding to
the original Bayesian network (see Figure 1.4). Although in some restric-
ted domains this kind of a transformation is fairly straightforward to con-
struct [57, 39, 75, 62, 90|, the methods presented do not apply to general
Bayesian network structures. In Chapter 5 we present three mappings from
a given Bayesian network to a stochastic neural network architecture, in the
sense that the updating process of the resulting neural network provably con-
verges to a state which can be projected to a MAP solution on the variable
state space. Consequently, a Bayesian network can first be used for con-



structing a model of the problem domain probability distribution, and the
mappings provide a method for constructing a neural network architecture,
which can then be used for processing MAP queries efficiently. In Section 5.1
we present a mapping to a harmony network structure with two layers of
heterogeneous units, and show in Section 5.2 how a similar mapping can be
constructed using a more standard Boltzmann machine architecture, with two
layers of homogeneous units. As both of these mappings require the given
Bayesian network to consist of only binary variables, we discuss in Section 5.3
possible ways to cope with Bayesian networks with multi-valued variables. In
particular, we show a simple extension of the binary-variable case mapping
which makes no assumptions about the number of values of the variables.
The three constructions presented in these sections are published earlier in
reports [84, 81], [82], and [83], respectively.

From the neural network point of view, the mapping from a Bayesian
network to a Boltzmann machine can also be seen as a method for incor-
porating high-level, probabilistic a priori information directly into neural
networks, without recourse to the time-consuming and unreliable learning
process. Naturally, the resulting neural network could also be regarded as a
cleverly chosen starting point to some learning algorithm, but this interesting
idea is not studied here further.

Compared to other neural-symbolic hybrid systems (see e.g. [9, 56, 41,
116]), the Bayesian-neural hybrid system suggested here has two clear ad-
vantages. First of all, the mathematical model behind the system is the the-
oretically sound framework of Bayesian reasoning, compared to the more or
less heuristic models of most other hybrid systems (for our earlier, heuristic
attempts towards a hybrid system, see [33, 89, 34]). Secondly, although some
hybrid models provide theoretical justifications for the computations (see e.g.
Shastri’s system for evidential reasoning [109]), they may require fairly com-
plicated and heterogeneous computing elements and control regimes, whereas
the neural network model behind our Bayesian-neural system is structurally
very simple and uniform, and confirms to an already existing family of neural
architectures, the Boltzmann machines. In addition, as the mappings presen-
ted here create a bridge between the symbolic and neural representations,
they can be used to create a “real” modular hybrid system, where two (or
more) separate (neural or symbolic) inference modules work together. An
attempt towards this kind of a hybrid system, consisting of a symbolic Prolog
interpreter and a neural network, is described in [85].

In a sense, the updating processes of the NN component of our Bayesian-
neural system correspond to simulated annealing processes on the Bayesian
network, where all the variables can be updated at the same time. Con-
sequently, with suitable massively parallel hardware, processing time becomes
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independent of the size of the Bayesian network. On the other hand, the NN
updating process works in a state space much larger than the state space
of the original Bayesian network, and in terms of accuracy in sampling the
probability distribution, the NN process is only an approximation of the sim-
ulated annealing process on the Bayesian network. In Chapter 6 we compare
empirically the performance of the Bayesian MAP solver in Figure 1.2 with
the performance of the hybrid MAP solver in Figure 1.4. Our simulation
results indicate that the speedup gained from parallelization compensates
easily for the loss of accuracy in the stochastic process. This means that
the massively parallel SA scheme outperforms the traditional sequential SA
scheme, provided that suitable massively parallel hardware is available.



Chapter 2

The MAP problem

Let U denote a set of N discrete! random variables, U = {Uy,...,Ux}. We
call this set our variable base. In the sequel, we use capital letters for denoting
the actual variables, and small letters uy,...,uy for denoting their values.
The number of possible values for variable U; is denoted by |U;|. The values
of all the variables in the variable base form a configuration vector or a state
vector i = (uy,...,uy), and all the M = [, |U;| possible configuration vectors
form our configuration space 2, & = {us, ..., 4y }. Hence our variable base
U can also be regarded as a random variable U , the values of which are
the configuration vectors. Generally, if X C U is a set of variables, X =
{X1,..., X}, by ()Z" = Z) we mean that & is a vector (z,...,z,), and
Xi=ax; foralli=1,... n.

The set of all the possible subsets of €2, the set of events, is denoted by F.
Let X C U be a set of variables, X = {Xy,..., X,}. By an event {X = 7}
we mean a subset of F which includes all the configurations 4 € €2 that are
consistent with the assignment (X' = Z). This event can also be expressed
using the logical ‘and’-operator:

(X=2}y={ N Xi=uz}
i=1,...,n
If there is no possibility of confusion, we drop the variable names X;, and refer
to an event simply as {z1,...,Z,}, or even more briefly as {Z#}. Furthermore,
let U x denote the set {Y;:Y; € U — X}, and Ux denote the corresponding
random variable. If we want to emphasize that in the set {)Z = £} there are
no restrictions on the variables Y; € U x, we can write
{XZ T} ={ /\ Xi, /\ X = i},

X;eUx X;eX

1'We shall henceforth restrict ourselves to discrete variables, although this restriction is
not necessary for the simulated annealing method in general [43].
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or more briefly as {Ux, Z}.

Let P denote a probability measure defined on Q. The triple (Q, F,P)
now defines a joint probability distribution on our variable base U. Having
fixed the configuration space 2 (and the set of events F), any probability
distribution can be fully determined by giving its probability measure P, and
hence we will in the sequel refer to a probability distribution by simply saying
“the probability distribution is P”.

The general problem we are trying to solve is the following: given a partial
value assignment (E_" =€) on a set E C U of variables as an input, we wish
to determine the values for the variables U; ¢ E. In the Bayesian reasoning
framework we can distinguish two different approaches to this problem: the
mazimum a posteriori probability assignment approach (MAP), and the ex-
pected value estimation (EVE) approach. Asin [1], the former can be defined
formally as follows:

Definition 2.1 (The MAP problem) Let Pp,, denote the maximal prob-
ability in the set Qr = {E = €} consisting of all the configurations consistent
with the given value assignment,

Prax = lggg}g P{i}.
Furthermore, let 4, denote the set of all the configurations #; in the set
Qg with the property P{u;} = Pmax- We say that a probabilistic algorithm
solves the MAP problem if it gives as the solution a configuration u; with the
probability
= 1/‘ﬂopt‘ ) if ﬁz € ﬂopt)
P} = { 0 , otherwise,

where |Qqp| denotes the number of elements in Qqp;.

Hence the purpose in the MAP task is to choose one of the maximal
probability solutions using a uniform probability distribution on the set €2y,
or if |Qqp| = 1 (as often is the case), give as the solution the single MAP
configuration w,p. As in diagnostic applications this kind of a system would
provide the user the best explanation for a given set of symptoms, the solution
is sometimes called the most probable explanation [96], and the process of
obtaining the MAP solution is referred to as abductive inference [92].

In the other, expected value estimation (EVE) approach, the goal is to
compute (estimates of) the probabilities of the form P{X = z | E = &} for
variables X ¢ E. It is easy to see that these two approaches may produce very
different kind of solutions to a given problem. For example, let our variable
base consist of only three binary variables, U = {U;,U,,Us}, and let the
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probability measure P be defined on all the eight possible configurations as
follows:

1. P{U=0,Uy=1,Us=1} = 0.25
2. P{U, =0,U,=1,Us =0} = 0.0
3. P{U,=0,U,=0,Us =1} = 0.25
4. P{U,=0,U,=0,Us =0} = 0.0
5. P{Ulz]. U2:1,U3:1} == OO
6. P{U;=1,U,=1,U;=0} = 0.25
7. P{U; =1,U,=0,U;=1} = 0.0
8. P{U1 =1,U,=0,U; =0} = 0.25

Let us assume that the input assignment set E is empty, and the particular
EVE task we are interested in is to compute probabilities P{U; = 1 | 0}, for
each of the variables Uy, Us and Us. A MAP task solver should now, according
to the apriori probabilities listed above, give one of the configurations 1, 3, 6
or 8 as the answer, whereas an EVE task solver would give us the following
probabilities:

P{U =10} = P{Ui=1} = 025+0.25=05
P{Uy=1|0} = P{T,=1} = 025+0.25=05
P{U; =10} = P{Us=1} = 0.25+0.25=05

Clearly both of the approaches have their disadvantages: in the MAP
approach, we get one and only one configuration as the answer, and may
never be aware of other, equally possible answers (unless we repeat the MAP
solving process several times). On the other hand, in the EVE approach the
user may not get any information of how the variables depend on each other
(for instance, in our example U; = 1 and Uz = 1 never occur at the same
time). Naturally, the suitability of the methods for a specific problem depends
on the application domain: is it more important to get one definite answer, or
is it more important to get a likelihood estimation for a certain variable? It is
also important to notice that there is no direct way of mapping the results of
one approach to the other, and hence methods developed for one of these tasks
do not necessarily apply for the other. In this study, we are only concerned
with the MAP approach.

Let us assume for a moment that we are able to store all the M config-
urations iy, ..., Uy with the corresponding probabilities P{u;}, ..., P{im}
in a huge (imaginary) table structure. To solve the MAP task we need now
to search for a table item consistent with the input assignment, and with a
maximal marginal probability P{u;}. Let t =0, 1,... be a discrete time scale
and let our iterative search algorithm examine one table item in each time
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step t. The solution found by the search algorithm after ¢ iterations, denoted
by S(t), is called the state of our iterative process. A “brute force” solution
to the search problem is given in Algorithm 2.1.

Algorithm 2.1
Brute force solution to the MAP problem

> Praz := 0;

> fort:=1to M do

> if (4 ¢ Qg) then P{u;} := 0;
> if (P{d:} > Pmnag) then
> Prag 1= P{t};
> S(t) =t
else S(t) := S(t —1);

Obviously, there are two main problems with the brute force approach
presented above: first of all, the algorithm needs an exponential size storage
space for storing all the M probabilities P{u;},

N
M=][IUi] > 2%,

i=1

and secondly it uses an exponential time going through all the M config-
urations. In many practical situations, the first problem can be solved by
using the theory of Bayesian belief networks, as can be seen in the next sec-
tion. The time complexity of the MAP problem (within the Bayesian network
framework) is discussed in more detail in Section 3.2.



Chapter 3

Solving the MAP problem by
Bayesian networks

3.1 Bayesian networks

The problem with the brute force approach to the MAP problem (Alg. 2.1) is
not only that the number of parameters needed to be stored is exponential,
but also that in practice they may be very difficult to obtain. If the probability
distribution model of the problem domain is constructed by interviewing do-
main experts, then estimating probabilities of the form P{Ui,..., Uy} goes
very quickly beyond human capacity as the number of variables increases.
On the other hand, estimating simple conditional probabilities of the form
P{X | Y, Z} seems to be relatively easy, especially if there are direct causal
relationships between the variables. To show how to formally utilize this
intuitive argument, let us start by proving the following lemma:

Lemma 3.1 Given an ordering of the random variables Uy, . .., Uy, the joint
probability of a variable assignment can be represented as a product of con-
ditional probabilities P{U; | Fy,}, where Fy, denotes the predecessors of
variable Uj;:

P{Ul :u1,U2 :uz,...,UN :’LLN} =
P{Ul = U]_}P{U2 = U2 ‘ U1 = Ul} .- P{UN = UnN | UN,1 = UN—-1y---, U1 = ul}.
Proof: According to Bayes’ theorem,

P{Ul :Ul,Uzzuz,...,UN :’LLN} =

P{UN = Un | UN_1 = UN—-1y---, U1 = Ul}P{UN_l = UN—-1y---, U1 = ul}.

The lemma is now proved by applying Bayes’ theorem to the second term,
and repeating this procedure recursively N times. [
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In many natural domains, each variable U; may in fact depend, or depend
“directly”, only on a small subset of variables in Fy;,, and not on all the
preceding variables. For example, to be able to determine whether the variable
corresponding to the fact “can fly” is true or not, it seems to be useful to
know whether the object in question is a bird or not, and moreover, knowing
this fact, the values of other variables representing the shape, color, size etc.
of the object seem to be more or less irrelevant. This kind of relationships
between the variables can be expressed formally as follows:

Definition 3.1 Let X,Y, and Z be sets of variables. Then X is condition-
ally independent of Y, given Z, if

PIX =2V =4, Z =2} =P{X =47 = 7}
Z

holds for all vectors &, ¢/, 2 such that 73{}7 =g,

Z} > 0.

Intuitively, the variables in Z intercept any dependencies between the
variables in X and the variables in Y: knowing the values of Z renders
information about the values of Y irrelevant to determining the distribution
of X. Using the concept of conditional independence we can now give the
definition of Bayesian network models:

Definition 3.2 A Bayesian (belief ) network (BN) representation for a prob-
ability distribution P on a set of discrete variables U = {Ui,...,Un} is a
pair (Bs, Bp), where Bs is a directed acyclic graph whose nodes correspond
to the variables in U, and whose topology satisfies the following: each vari-
able X € U is conditionally independent of all its non-descendants in Bg,
given its set of parents Fx, and no proper subset of Fx satisfies this con-
dition. The second component Bp is a set consisting of the corresponding
conditional probabilities of the form P{X | Fx}.

For simplicity, we shall henceforth forget about the nodes, and treat the
random variables U; as if they were actually nodes of a graph. An example
of a simple Bayesian network is given in Figure 3.1.

As the parents of a node X can often be interpreted as direct causes of
X, Bayesian networks are also sometimes referred to as causal networks, or
as the purpose is Bayesian reasoning, they are also called inference networks.
In the field of decision theory, a model similar to Bayesian networks is known
as influence diagrams [60]. Thorough introductions to the Bayesian network
theory can be found in [96, 92].

The importance of a Bayesian network structure lies in the way the net-
work facilitates computing conditional probabilities. To make this precise, let
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P{us | ui,u2}
P{us | G1,u2}
P{us | ul,ﬁz}

'P{u3 | 1_1,1,172}

P P
Plan) Pl | us,uz) Pos)
P{’Es | 17,1,'@}
UL | P{as|u1,82} Us
'P{ﬂs | 17,1,172}

P{us | us} Plus | us}

Us
P{us | @3} / \ P{us | as}
P{as | us} P{as | us}
P{as | s} P{us | as}
Uy Us
Us Uz

P{ur | ua,us}
P{ur | Ga,us}
P{U7 | U4,1_45}
P{ur | 4, a5}
P{ur | ua,us}
P{ar | ta,us}
P{ar | ua,as}
P{ar | @a,as}

Figure 3.1: A simple Bayesian network structure Bs with 7 binary variables
Ui,...,Uyz, and the corresponding conditional probabilities that form the set
Bp. By “u;” we mean here the value assignment (U; = 1), and by “@;” the
value assignment (U; = 0).

us use the following notations: given a variable X in a Bayesian network Bg,
let Fx denote the set of parents (predecessors) of X, Sx the set of children
(successors) of X, and Ux the set of all variables except X. The following
result is then an immediate consequence of Definition 3.2:

Theorem 3.2 Given a variable X in a Bayesian network B, define

szFxLJSXU U FY-
YeSx

Then X is conditionally independent of Ux — By, given Bx.
Proof: See [96, p. 121]. O



18 Solving the MAP problem by Bayesian networks

B
F Y, S
Fl Sl
F2 X Sz >
F3 S3

Y,

Figure 3.2: Markov blanket Bx of a variable X.

Thus, to determine the distribution of a variable X, given the values of
all the other variables, it suffices to consider only the values of the variables
in Bx. A set of variables covering X in this sense is called a Markov blanket
of X [96, p. 97].

Even an explicit formula for computing the distribution of X from its
Markov blanket can be given as follows:

Theorem 3.3 Let B be a Bayesian network over a variable set {Uy,...,Un}.
Given any configuration vector 4 = (uy, ..., uy), the probability distribution
of each variable U; in the network, conditioned on the values of all the other
variables, may then be expressed as:

U;eUx

U;eFx UjESx UkEFUj

where c is a constant independent of wu;.
Proof: See [96, p. 218]. O

In [95], this formula was used for finding an approximate solution to the
EVE task, and in principle the same method could be used for the MAP task
as well. In this study, however, we use another approach which exploits the
following theorem:
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Theorem 3.4 Let B=(Bs, Bp) be a Bayesian network over a variable set
U = {Uy,...,Ux}. The probability for any variable value configuration
vector @ = (uq,...,uy), can be expressed as

P{u} = I:IIP{Uz‘ =uw | N Ui=u;},

UjeFy;

where the conditional probabilities P{U; = u; | Ay,er,, Uj = u;} can be
found in the set Bp, and are defined as the apriori probability P{U; = w;}, if
Fy, =0.

Proof. Follows directly from Lemma 3.1 and Definition 3.2. [

Consequently, having defined a set of conditional independencies in a
graphical form as a Bayesian network structure Bs, we can use the con-
ditional probabilities Bp to fully determine the underlying joint probability
distribution. The number of parameters needed, |Bp|, depends on the density
of the Bayesian network structure:

N
Bp| => (U] 11 [Us])-
i=1 UjeFy;

In many natural situations, this number is much smaller than the size of
the full configuration space, M. Consider for instance the simple example
shown in Figure 3.1: the size of the configuration space is 27 = 128, but the
Bayesian network representation of the same probability distribution uses
only 32 (structurally simple) conditional probabilities.



20 Solving the MAP problem by Bayesian networks

3.2 Complexity of the MAP problem

The nodes of a Bayesian network are usually considered to have a state
which represents the value of the corresponding random variable. As the
nodes represent all the random variables of the problem domain, a vector
of the states of the nodes of the network, an instantiation of the network,
corresponds to one possible configuration vector of the configuration space
Q. An evidence value assignment (E = &) is represented by “clamping”
(permanently setting) nodes corresponding to variables E; € E to a state
corresponding to the value e;, respectively. Consequently, in the Bayesian
network domain the MAP problem can be formulated as a problem of finding
a maximum probability instantiation of a given network, while keeping the
states of the clamped nodes unchanged.

It has been shown that if the probability distribution is represented as a
Bayesian network, both the EVE task [19] and the MAP problem [112] belong
to the class of NP-hard problems with respect to the size of the corresponding
network. These results mean that it is very unlikely that a polynomial-time
algorithm for solving the MAP problem for Bayesian networks could exist..
Even finding an approximation of the EVE solution (in any constant degree of
accuracy) is an NP-hard problem [23, 102]. As the answer to a MAP problem
is a configuration vector, and not a probability, it is not obvious what an
approximative solution in this case means. If we define the approximative
MAP solution (with an accuracy of €) to be any vector @ with the property

Praz — P{u}
— - K
Play

it is easy to see that (in the worst case) this problem is not easier than finding
the exact solution: let us imagine a solution space where there is one MAP
solution vector having probability one, and other solutions have probability
zero. Now the problem of finding a solution which approximates the MAP
solution within any accuracy of € < 1 is identical to the problem of finding
the actual maximum probability solution.

Although the MAP problem seems to be intractable (in the worst case
sense) for Bayesian networks in general, for singly-connected Bayesian net-
work structures (networks with at most one path between any two vari-
ables, disregarding the directions of the connecting arcs), Bayesian reas-

1Strictly speaking, the NP-hardness results show that it is an NP-complete problem to
decide whether there are any configurations @ with the probability P{@} higher than some
given value p. As finding an MAP configuration gives directly the answer to this decision
problem, the MAP problem is said to be NP-hard. (For a good introduction to the theory
of complexity classes, see [38].)
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oning (meaning here both the EVE and MAP tasks) can be done in poly-
nomial time [96, 92]. Consequently, most existing systems for Bayesian
reasoning first transform a given multi-connected BN structure to a singly-
connected network, and then use the existing polynomial-time algorithms
(see e.g. [4, 13]). This transformation can be done either explicitly by clus-
tering several nodes together as in [76, 106] or [96, Ch.4.4.1], or implicitly
by blocking multiply connected paths by conditioning a set of variables as
in [96, Ch.4.4.2] (for a discussion of different transformation techniques, see
[107]). Alternatively, clustering can also be done by introducing new latent
variables which represent separate clusters of original variables [17, 88]. The
latent variable model offers also an interesting opportunity for construct-
ing Bayesian networks from data using unsupervised learning algorithms.
However, it is clear that as the problem is NP-hard, any conditioning method
may in the worst case take exponential time (assuming P # NP), and sim-
ilarly, any clustering method may result in exponentially large conditional
probability tables Bp, which causes exponential execution times with respect
to the size of the original network. Nevertheless, it should be also noted that
Bayesian reasoning process on a singly connected network can be realized on
a massively parallel neural network structure [86, 87|, which allows efficient
implementations of Bayesian reasoning even for large networks, provided that
suitable hardware is available.

In another approach to Bayesian reasoning the structure of the network
is not changed, but the quantitative conditional probabilities are replaced
by a finite set of qualitative measures of uncertainty [117]. It seems that
Bayesian reasoning can in this case be done in polynomial time [29], but
it is not yet clear what is the expressive power of this kind of qualitative
Bayesian networks. For networks with less restricted conditional probabilities
— networks with probabilities bounded by their dependence value, which is,
intuitively speaking, a measure of how much the probabilities differ from
uniform probabilities — the Bayesian reasoning tasks stay NP-hard [24].

As the worst-case analysis of the MAP problem has indicated that there
is not much hope of finding a polynomial time solution (for unrestricted BN
structures), there has been a growing interest to develop algorithms which
could be shown to be able to produce good solutions in the probably ap-
proximately correct (PAC) sense (error is small with high probability). In
Monte Carlo methods the goal is to find a stochastic random process which
will converge to a good solution with high probability. For a special class of
stochastic processes, Markov chains, this kind of behavior can be shown to
occur in the limit. The hope is that this kind of a process would also degrade
gracefully and give with high probability a good approximation of the correct
solution in feasible time. However, very little is known about the quality of
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the solutions produced by the Markov chain models, if a limited amount of
time is available, but some analyses of the convergence speed can be found
in [32, 1, 113, 101, 98, 22]. In particular, for Bayesian networks restricted by
their dependence value (see above), there exists a stochastic polynomial-time
algorithm which solves the EVE problem in the PAC sense [24]. Unfortu-
nately, as the above mentioned convergence results deal mainly with the EVE
problem, the analysis of the probabilistic solution for the MAP task is still
very much an open problem. In Section 3.3, we go briefly through the basic
characteristics of Markov chains and the corresponding Monte Carlo meth-
ods, and show how they can be used for constructing a simulated annealing
process which solves the MAP problem approximately.
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3.3 Simulated annealing

3.3.1 Markov chains

Let us consider a stochastic process S(0), S(1),... in our configuration space
Q, S(t) € Q. In Markov chains the probability of choosing the next state
S(t + 1) depends only on the current state S(t), and not (directly) on the
previous states S(t — 1), S(t — 2),...,S5(0):

Definition 3.3 (Markov chain)
A Markov chain is a sequence {S(t) | t =0,1,...}, where

PS(t+1)=s|S(t)=s,St—1) = st-1,...,5(0) = s9)
=P(S(t+1)=s|S(t) = s).

A Markov chain is finite if it is defined on a finite set. In our model, this
is clearly the case, as our configuration space 2 is finite.

Let ¢ be the state after ¢ time steps, S(t) =14. A transition probability p;;
is the probability that the value of the next state S(t + 1) is j:

_ ] 7 with probability p;;.
St+1) = { ¢ with probability 1 — 7., pi;.

We say that our stochastic process mowves from state i to state j with
probability p;;. In the sequel, we are mainly concerned with homogeneous
Markov chains, where the transition probabilities do not depend on time ¢,
and consequently they can be written as a big transition probability matrix
P:

-P11 Plj PlM-
P: -Pil .P,'j RM 5
| PM1 PMj PMM |

where M is the size of the configuration space 2. The transition probability
matrix is a stochastic matrix, i.e. the sum of all the probabilities on each row
is one.

So far we have only been concerned with the one-step transition probabil-
ities. The following theorem states how we can derive the multi-step transition
probabilities from the one-step probabilities using a single matrix operation:
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Theorem 3.5 The probabilities of moving from state ¢ to state j in n steps,

denoted by Pi(jn), are the elements of the matrix P™:

P = (P"),;.

Proof: See [69, p. 58]. O

Definition 3.4 A Markov chain with transition matrix P is ¢rreductble, if

Vi,j 3n>1: P > 0.

Definition 3.5 The period of a state ¢ is the greatest common divisor of all
integers n > 1 for which Pi(in) > 0. If the period is 1, then the state is said to
be aperiodic. A Markov chain is aperiodic, if all of its states are aperiodic.

From the theory of Markov chains, it is known that under certain con-
ditions, the probability of finding the system in state j after n iterations
convergences to a certain probability m; as n approaches infinity:

m; = lim P{Y = lim P(S(t) = j|S(0) = 9), for all 4,j = 1,..., M.
The convergence is independent of the initial state S(0). The probabilit-
ies w1, ...,y form a limiting probability distribution 7 called the station-
ary probability distribution. The following theorem shows how the stationary
probability distribution can be calculated:

Theorem 3.6 Let P be the transition matrix of a finite, irreducible and
aperiodic homogeneous Markov chain. Then there exists a stationary distri-
bution 7 which is uniquely determined by the set of equations

Wj:Zﬂ'iPij, j:]-a"')Ma
i

under the constraints m; > 0, Y, m = 1.
Proof: See [69, p. 85]. O
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3.3.2 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are stochastic algorithms that
are based on Markov chain processes (for a survey of using MCMC methods in
the Bayesian reasoning framework, see [91]). As pointed out in the previous
section, under certain conditions, Markov chains will converge to a unique
stationary distribution. In the MCMC framework, this kind of a converging
Markov chain process is usually produced by forming transition probabilities
P;; consisting of two parts: a generation probability G;; and an acceptance
probability A;;. The generation probability G;; represents the probability that
we consider moving from state ¢ to state j, and the acceptance probability
A;; expresses the probability that we accept this move. Hence the transition
probability is the product of these two probabilities:

p._ | G4y if 4 7 7,

A generic MCMC algorithm is defined as follows:

Algorithm 3.1
Markov chain Monte Carlo (MCMC)

> S(0) := RandomState(#y,. . . , i );
> for t := 1 to oo do

> ;= S(t—1);

> /* generate a candidate for the next state */
S(t) := u; with probability G;;;

then S(t) :=S(t); /* accept */
else S(t) :=S(t — 1); /* reject */

Under certain conditions, the probability of finding the MCMC process
(Algorithm 3.1) in state #; converges to P{;}. Sufficient conditions for
this kind of behavior are usually given as the following requirements for the
matrices G and A :

Theorem 3.7 Let us define a MCMC process with the generation and ac-
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ceptance matrices fulfilling the following requirements:

(G1) Vi,je{l,...,.M}: 3Fp> 1,3y, b, ..., 0, € {1,..., M}
(where ly = i,1, = j)
and Gy, > 0,k=0,1,...,p— L
(G?) VZ,_]E{L,M} G,]:G]z
(A1) Vi,je{l,...,M}: Ay=1ifP{g}> P}
A;; € (0,1),if P{u;} < P{u;}

The limiting distribution of the resulting stochastic process is P.

Proof: See [1, p.42]. O

For the acceptance probability matrix A, the original choice suggested by
Metropolis et al. in [80] was the following:

) { 1 if %ﬁi > 1, 52)
i = Pla;y . Pla; :
Py 0 L@y <L

This is still perhaps the most commonly used method in MCMC applications.

The Metropolis method clearly fulfills the conditions (Al) and (A2) in
Theorem 3.7. In an alternative model, Barker’s method [8], these require-
ments are not met:

P{u;} . 1

" Plag P 1+ 2

Nevertheless, existence of a unique limiting distribution can still be proved:

Theorem 3.8 Let ® = {S(t);t = 0,1,...} be a stochastic simulation process
with the generation probabilities fulfilling the conditions (G1) and (G2) of
Theorem 3.7, and let the acceptance probabilities be computed according
to the formula (3.3), with all the state probabilities P{#;} assumed to be
positive. Then the unique limiting distribution of ® is P.

Proof: As P{u;} > 0 for all i (and assuming that condition (G1) is met), the
resulting Markov chain is irreducible and aperiodic (see [1, p.39]). Moreover,
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using assumption (G2) we get

- Pug}
YBLa,) + Pl
_ AN PAas}
= LGy Py

_ e Pldd

= 2Py P
= Zp{ﬁj}Pji

= P{UJ}ZPJZ

= P{u;}.

Z Plu} Py = Z P{u;}G

According to Theorem 3.6, P is now the stationary distribution of the Markov
chain behind the Barker’s method. [J

In practice, the Metropolis algorithm is sometimes preferred over Barker’s
method, as in the case of equally probable states, Barker’s method changes the
state with probability 1/2, whereas Metropolis’ method changes the state with
probability 1, thus offering possibly a better sampling of the states. However,
it should be noted that there is no theoretical preference for either of these
models, but they both lead to the same stationary distribution.

3.3.3 Gibbs sampling

The simplest alternative for the generation probability matrix G fulfilling the
requirements (G1) and (G2) of Theorem 3.7 is to use the uniform distribution,

1
Gij = U foralli,j € {1,..., M}. (3.4)

However, when the uniform generation distribution is used, all the variables
have equal probability of changing their value, which means that when a good
solution is found, it can easily be lost during the simulation process®. In prac-
tice, on the other hand, it has been empirically observed that updating only
one variable or a small group of variables at a time gives better results, as the

2What is more, it is easy to see that this kind of an MCMC sampling can never work
better than simple uniform random sampling, regardless of the acceptance probability
matrix A.
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resulting stochastic process is then a kind of a local search algorithm, pre-
serving (probably) most of the good solutions found. This type of a MCMC
process is usually called Gibbs sampling.

When only one randomly chosen variable is updated at a time, the gener-
ation probabilities of the corresponding Gibbs sampler can be written as

Gy =4 @@ > " ’ 3.5
J { 0 , otherwise, (35)

where (i) C Q denotes the set of states that can be obtained from state
#; by changing the value of one variable, and |€2(7)| denotes the number of
states in €2(¢). This is the most usual form of Gibbs sampling. In the sequel,
we are mainly concerned with the Gibbs sampling type of MCMC processes,
and their variations.

Let us consider a Gibbs sampler based on acceptance probabilities of the
form (3.2) or (3.3), generation probabilities of the form (3.5), and let Uy be
the variable to be updated at some state S(¢) = u; of the stochastic process
by changing its value from uy to uj,. The actual decision of whether to move
to a new state S(¢ + 1) = @, or not is based on the ratio P{u;}/P{u;}. As
this ratio can also be represented as

Pla;y  P{Ui=w,...,Uy=ug,..., Uy = un}
Pli;}  P{Ui=w,...,Us=1u,...,Uy = un}
P{Uk = ur, Nizt Us = i}

P{U, = uy, Nizr, Ui = ui}

P{Ur = ug | Nigr Ui = wi} P{Nipn Ui = wi}
P{Ur = up, | Nigr Us = wi} P{Nisx Us = wi}
P{Ux = ug, | Nigr Ui = wi}

P{Uk = uy, | /\i;ék Ui = Uz'}’

Gibbs sampling can also be regarded as a stochastic local search which
samples from the “local distribution” P{Uy = v | Ajz Ui = w;}. In this
respect, Gibbs sampling can be regarded as a stochastic version of a local
search algorithm belonging to the very general family of expectation maxim-
ization (EM) [26] (or, as they are also called, alternating minimization [21])
algorithms.

A Gibbs sampling process can be made much faster by parallelizing the
state generation-acceptance process. This can be done easily if some variables
are found to be independent of each other: independent variables can then
be updated at the same time without losing the “local search” —property of
the process. A certain class of neural net algorithms can be regarded as
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massively parallel implementations of Barker’s method, as we shall later see
in Chapter 4.

It is easy to see that a Gibbs sampling generation probability matrix of the
form (3.5) fulfills the conditions (G1) and (G2) of theorem (3.7), and hence
the limiting distribution of a Gibbs sampler is P (P being the probability
measure used for computing the acceptance probabilities). Consequently, the
frequency of a variable U; being in state u; converges (in the limit) to the
probability P{U; = u; | E = €}, and hence the Gibbs sampler can be used
for approximating the EVE solution. However, to be able to solve the MAP
problem, we need to change the Gibbs sampling process so that it converges
to a stable state, and what is more, we need to show that this stable state is
the desired MAP state. In the next section, we present a technique for this
purpose.

3.3.4 Gibbs distributions and simulated annealing

The stochastic simulation algorithm presented in the previous section was
first introduced by Metropolis et al. [80] in the context of condensed matter
physics. It can be shown that the probability of a heated solid being in state
@ at a given temperature T obeys the following Gibbs distribution:

Definition 3.6 A Gibbs distribution on a configuration space 2 is a prob-
ability measure of the form

where Z; is a normalizing constant called the partition function,

Zp= Y el-B@/kaT)

ue
E(1) is the energy of the system, and kp is the Boltzmann constant.

As kg is a constant, it is usually omitted from the formulas, and a single term
T = kgT is used instead to denote the scaled temperature.

As mentioned earlier, originally the acceptance probabilities were based
on the Metropolis formula (3.2), resulting in the following acceptance prob-
abilities:

wm= | SR - o) 2,

exp(w) , otherwise.
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where F is the energy function of the Gibbs distribution, and 7" is the tem-
perature. When applying Barker’s method (3.3) with the Gibbs distribution,
the resulting acceptance probabilities become of the form

1
eXp(—E@)/T)

1+ &xp=m@,)/m)

- - (3.6)
T+ exp((B (%) — B(@)/T) '

Ai(T) =

As we shall see in Section 4, this latter form of Gibbs sampling is equivalent
to the updating rule of certain neural network models. It is also important
to notice that Gibbs sampling uses only differences of state energies, not the
actual probabilities. In particular, the method does not need the value of the
partition function Z7 of the Gibbs distribution, which is usually not feasibly
computable.

The limiting distribution of a Gibbs sampling process is in the context of
physics often called the thermal equilibrium. Annealing is a physical process
where a solid is first heated up, and the temperature is then slowly decreased
to zero. Empirically it has been known for a long time that if the temperature
is decreased slowly enough, the particles of the matter are arranged in a highly
structured manner, producing a stable low-energy ground state of the matter.
The following theorem proves that Gibbs sampling combined with annealing
will find one of the minimal energy states of the physical system:

Theorem 3.9 Let €,,; denote the set of maximal probability (minimal en-
ergy) configurations with respect to the Gibbs distribution in Definition 3.6,
and let S(0),S(1),... be a stochastic sampling process fulfilling the require-
ments in Theorem 3.7, with the additional temperature parameter added to
the acceptance probabilities as shown in (3.6) above. As the temperature of
the Gibbs sampler converges to zero, the probability of finding the annealing
process in state u; converges to the uniform distribution in the set Qp:

lim lim Pr(S(t) = ;) :{ 1/|Qope| , if T € Qopy

T]0 t—o0 0 otherwise,

Proof: See [1, p.18]. O

The sampling/annealing procedure presented above applies naturally also
outside the actual statistical physics environment, and hence it is usually re-
ferred to as simulated annealing (SA). As SA in principle finds the global
minimum of any energy function, the algorithm is applicable to combinator-
ial optimization problems in general. This possibility was brought to general
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attention of the optimization theory community by Kirkpatrick et al. in [71],
and SA has since been widely applied for many different optimization prob-
lems (see the references in [1]). Simulated annealing is also widely used in
image processing, in particular due to the pioneering theoretical work done
by Geman & Geman (see [40]). In Section 3.4 we show how to represent
a Bayesian network probability distribution in the Gibbs distribution form,
which allows us to use simulated annealing for finding MAP configurations
on Bayesian networks.
A generic simulated annealing algorithm can be defined as follows:

Algorithm 3.2
Simulated annealing (SA)

> S(0) := RandomState(y, ..., 4 );
> T := InitTemp();
> Repeat until convergence criterion is satisfied

> Repeat until equilibrium criterion is satisfied
> = S(t—1);
> /* generate a candidate for the next state */
S(t) := j with probability G;;;
> if (Ra,ndom(O,Al) < Aij (T))
then S(t) := S(t); /* accept */
else S(t) := S(t —1); /* reject */

> T := NewTemperature();

Theorem 3.9 states that the annealing process will, with probability one,
find one of the MAP configurations of the given Gibbs distribution in the
limat:

lim lim Pr(S(t) € Qppt) = 1.

T]0 t—o0

However, in practice we are not able to run the algorithm infinitely long at
infinitely many temperatures, as the theorem assumes. We define a cooling
schedule as a set of rules that determine how the temperature is decreased
during a finite-time simulation:

Definition 3.7 A cooling schedule specifies

e the initial value of the temperature,
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e an equilibrium criterion, which defines the number of iterations to be
performed at each temperature,

e a decrement function, which defines how fast the temperature decreases,
and

e a convergence criterion, which defines the final value of the temperature.

The following theorem of Geman & Geman shows that if the temperature
is lowered sufficiently slowly, then the convergence of the simulated annealing
is guaranteed in a finite number of steps.

Theorem 3.10 Let I denote the product NA, where

A = max E(#) — min E(#),
aen e
and N is the number of random variables. At time ¢, let a new state S(t)
be generated by considering changing the value of only one variable, and let
I(t) denote the index of the variable under consideration. Assume that there
exists an integer 7 > NN such that for every t = 0,1, ... we have

{1,...,N}C{I(t+1),...,I(t+ 1)},
and let T'(t) be a decreasing sequence of temperatures for which
1. T(t) - 0 as t — oo.
2. T(t) >T/log(t + 2), for all t =0,1,...

Now the convergence result of Theorem 3.9 applies.
Proof: See [40].

From the implementational point of view, Theorem 3.10 has two major
drawbacks. First of all, although the number of steps required in the the-
orem is not infinite, it is still exponential with respect to time ¢ and hence
impractical for most applications. Secondly, in many cases good estimates
for the value of the parameter A are not available, making the determina-
tion of a suitable initial temperature very difficult. It is also important to
notice that this theorem states nothing about the convergence of simulated
annealing if the cooling schedule is faster than what is required in Theorem
(3.10). However, with certain additional constraints to the problem it can be
shown that exponential time is not only sufficient, but also necessary [44]. In
the light of the complexity of the MAP problem (see Section 3.2), it seems
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probable that a similar kind of result could be proven for the general case
also, although this has not been done. In contrast to the negative theoretical
results, it has been empirically observed that in many cases good quality
solutions can be found quite reliably with polynomial time cooling schedules
[1]. Nevertheless, the task of finding a suitable cooling schedule seems to be
a very difficult problem.

The condition concerning the constant 7 in Theorem 3.10 is used only
to ensure that the Gibbs sampling process is fair, i.e. no variables are going
to be ignored during the sequential variable updating process. Actually, as
noted later by several researches (see the list of references in [1, Ch. 3.4.]),
the assumption of changing only one variable at a time is not necessary at
all. This fact is very important when considering parallel implementations of
simulated annealing, as we shall see in Chapter 4.
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3.4 Simulated annealing for Bayesian networks

Gibbs sampling and simulated annealing are an appealing method for solving
MAP problems approximatively, offering a possibility to avoid the exponential
time required for solving the problems exactly. To be able to use SA in
our Bayesian network framework, we need a method for representing the
Bayesian network probability distribution P in the Gibbs distribution form
(Definition 3.6). In the following, we show how this can be done by exploiting
the equivalence between the graphical Markov Random Field models and
Gibbs distributions.

3.4.1 Markov random fields

As before, let U denote a variable base of N variables Uy, ..., Uy, and let G
denote a binary neighborhood relation on U, consisting of pairs (U;, U;). As
with Bayesian networks, we can view this relation graphically by drawing a
network where for each variable U; there is a corresponding node S; in the
network, and two nodes S; and S; are connected if and only if (U;,U;) € G. In
this case the neighborhood relation G is symmetric, resulting in an undirected
graph. As with Bayesian networks, we shall henceforth forget about the nodes
Si, and treat the random variables U; as if they were actually nodes of a graph.
For each variable U;, we define a set of neighbors G;:

G ={U; | (Us,Uj) € G}-

Using the concept of neighborhood we can now give the definition for a
Markov Random Field (MRF) [27, 11, 70, 40]:

Definition 3.8 (Markov Random Field) A family of random variables
U is a Markov Random Field with respect to a relation G and a probability
distribution P, if

1. P{U =@} > 0 for all 7 € Q.
2. P{Ui=u; | NU;j =u;} =P{Ui=u; | )\ U; = u,} for all the variables

J#i JEG;
U; € U, and for all the configurations « € (2.

A subset C' C U is called a clique, if all the variables in C' are neighbors
to each other. Let C denote a set of cliques in U, and let V¢ denote a function
on 2 that depends only on the values of the variables in clique C € C, and
maps each state vector to a real number, according to the value configuration
on the clique C. The value of the function V(%) is called the clique potential
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Figure 3.3: A simple Markov random field with three maximal cliques,
{XI’X2aX3’X4}, {X4’X5’X6} and {X4’X7}'

of a clique C. The following theorem proves an important relation between
Markov random fields and Gibbs distributions:

Theorem 3.11 Let G denote a neighborhood relation on U. Then U is a
MRF with respect to G and a probability distribution P if and only if P can
be represented as a Gibbs distribution of the form

— 1 —
P{U =u} = Eev(“)/T,

where the potential function V is the sum of the values of all the clique
potentials in the network:

and Z7 is a normalizing constant.

Proof: See [40]. O

Consequently, any Gibbs distribution can be defined by using a graph-
ical Markov random field representation, and correspondingly, for each MRF
there exists a corresponding Gibbs distribution (and a corresponding Gibbs
sampler).

In practice, the set of the cliques of a graph is usually taken to be the set
of the the maximal cliques of the graph. However, sometimes it can be more
convenient to define a Gibbs distribution by using a slightly different set of
cliques, as we shall see in the next section.

For notational convenience, we prefer to use in the sequel the Gibbs dis-
tribution formulation given above with a negative potential function function
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Figure 3.4: Moralization of a Bayesian network.

V, instead of the positive energy function E used in Definition 3.6 (naturally,
V(@) = —E(4), so the difference is only syntactical). In this case, Barker’s
acceptance function (3.3) becomes

1
eXP(V(@)/T)
1+ &xpwia,)m)

1
1+ exp((V(4;) — V(4;))/T)

1
= 15 e (V@) — V(@)/T) (3.7)

Ay(T) =

In Chapter 5 we see that this probability is equal to the node updating prob-
ability of certain stochastic neural network models.

3.4.2 Mapping Bayesian networks to Markov random
fields

Let B be a Bayesian network representing a probability distribution P. As
noted earlier by several authors [61, 75, 76, 115], we can construct for any
given Bayesian network a corresponding MRF having the same probability
distribution, by using a transformation called moralization of a Bayesian
network. In the moralizing process, a given Bayesian network is transformed
to a MRF by first making all the existing arcs undirected, and then adding
new undirected arcs between any two variables that have a common child in
the Bayesian network (“moralizing” the relationship). For each variable U;
without any predecessors in the Bayesian network, there is a one node clique
{U;} (see Figure 3.4).
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In the resulting MRF, we distinguish N cliques, one for each of the vari-
ables Uj, ..., Uy, so the corresponding probability distribution is a Gibbs
distribution of the form

hd 1 -
Pr{U = @} = ——eXica i@/T (3.8)
Zr
The following theorem shows how to choose the clique potentials of the mor-
alized MRF so that the corresponding probability distribution is equal to the
original Bayesian network distribution P:

Theorem 3.12 Let B be a Bayesian network with a probability distribution
P, and let M denote the corresponding MRF with a Gibbs probability distri-
bution Q of the form (3.8). If we set the potential of a clique C;, corresponding
to a variable Uj;, to

U; EFUi
where the constants K; fulfill the condition

IIe% = Zr, (3.10)

Zr being the partition function of the Gibbs distribution Q, then, at temper-
ature 1, Q@ = P.

Proof. According to Theorem 3.4, the probability distribution P can be rep-
resented as a product of conditional probabilities, one for each variable U;:

P} =[[PU=u| A Uj=u)

UjeFy;

On the other hand, from (3.9) and (3.10) it follows that, at temperature 1,

Q{i} = %ezimﬁ) = %H’P{Ui =u | N Uj=u}[[e¥ =P{a}.O

UjeFy, i

It should be noted, that as in Gibbs sampling we are only concerned with
the proportions P{u;}/P{u;} = exp(V (4;) — V(i;)), the values of constants
K; are actually irrelevant.

If we wish to sample a Bayesian network probability distribution P for
EVE problem tasks, we can map the Bayesian network to a MRF and use
the corresponding Gibbs distribution for constructing a Gibbs sampling pro-
cess at temperature 1. On the other hand, if we wish to solve a given MAP
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problem, we need to run the Gibbs sampler at different temperatures 7', with
T decreasing towards zero. In Section 6.1 we present one possible realiza-
tion of this type of a simulated annealing process. In Chapter 5, we present
how this type of a sequential process can be replaced by a massively parallel
neural network updating process, in the sense that the neural network updat-
ing process provably converges to the same final state as the sequential SA
process.



Chapter 4

Solving the M AP problem by
stochastic neural networks

“A neural network is a parallel, distributed information processing
structure consisting of processing elements (which can possess a
local memory and carry out localized information processing op-
erations) interconnected via unidirectional signal channels called
connections. Each processing element has a single output connec-
tion that branches (“fans out”) into as many collateral connec-
tions as desired; each carries the same signal — the processing
element output signal. The processing element output signal can
be of any mathematical type desired. The information that goes
on within each processing element can be defined arbitrarily with
the restriction that it must be completely local; that is, it must
depend only on the current values of the input signals arriving
at the processing element via impinging connections and on val-
ues stored in the processing element’s local memory.” — Robert
Hecht-Nielsen [47].

The processing elements (units, nodes or “neurons”) of a neural network
are usually based on a simple artificial neuron model, inspired originally [79]
by the structure of a real biological neuron. In this model, the local memory
of a node S; consists of two real-valued parameters: a constant parameter 6;
called the threshold or bias, and a variable parameter s;, the activity value or
the state of the node. In addition, each connection (i, j) between two nodes
S; and §; is provided with a real-valued parameter w;; called the weight of
the connection.

As the output signal, each node sends its state to other nodes through the
connecting arcs. The total net input to a node is the weighted sum of the
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>—> si = f(X; wis; + 0;)

Figure 4.1: An artificial neuron.

incoming output signals of other nodes, plus the threshold. The new state of
a node is computed by using an actiwvation function or transfer function f,
with the net input as the parameter (see Figure 4.1).
The most commonly used form for an activation function is the sigmoid
function,
1

f(w)zm,

where [ is some positive constant (see Figure 4.2). Note that the sigmoid
function becomes in the limit a two-value threshold function as 3 approaches
infinity. One of the main reasons for using the sigmoid function is the fact
that it has a very simple derivative, f'(z) = f(z)(1 — f(z)), and besides,
efficient implementations of sigmoid function elements have been developed
for analogical and digital circuits [47, Ch. 8],[51, Ch. 3].

The interconnected nodes form a network structure, a neural network.
Neural network architectures can be divided into two main categories: feed-
forward models and feedback models. In feedforward neural networks the
network can be partitioned into hierarchical layers of nodes, where each node
on one layer is connected only to nodes on layers situated higher in the layer
hierarchy. The computational model for feedforward neural networks is a
one-pass feedforward propagation of signals, starting from the first layer, and
ending at the last layer. In feedback neural networks, on the other hand, the
connections between the nodes can form loops, and the computational mech-
anism is an iterative relaxation process. For a good introduction to neural
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Figure 4.2: The sigmoid function.

computing, see e.g. the collections [5, 6, 103, 78], or the books [46, 54, 47]. In
the following, we are mainly concerned with one of the most common of the
feedback models, the Boltzmann machine [57, 58] neural network architecture,
and its variants.
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4.1 Boltzmann machines

A Boltzmann machine (BM) [57, 58] is a neural network consisting of a set
of binary nodes {Si,...,S,}, where state s; of node S; is either 1 (“on”),
or 0 (“off”). Let C' denote the set of all connections (7, j) in a network. In
BM models, all the connections are symmetric, i.e. if (¢,5) € C then also
(4,7) € C, and w;j = w;.

Let §= (s1,...,5,) € {0,1}" denote a global state vector of the nodes in
the network. The consensus of state § is defined as

0(5‘) = i i W;;S8iS5, (41)

i=1i=j

where w;; denotes the bias 0; of node S;, and the weight w;; is defined to be
0 if S; and S; are not connected.

The nodes of a BM network are updated stochastically according to the
following probabilistic rule:

1
(=1 = o (4.2)

where T is a real-valued parameter called temperature, which decreases with
time towards zero. Consequently, each node is able to update its state locally,
using the information arriving from the connecting neighbors as the input
for a sigmoid function, thus offering a possibility for a massively parallel
implementation of this algorithm.

Theorem 4.1 If the nodes of a Boltzmann machine are updated by changing
one randomly chosen unit at a time, then the network will converge to a
maximal consensus state almost surely.

Proof: Let s denote the current state vector, and let Sj be the node to be
updated. The new state vector § is obtained by flipping the state s; of node
Sy while the other nodes remain unchanged:

s Liti#k,
5TV 1-s L ifi=k
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The difference in consensus between the states §' and § is now

n n n n
C(E) - C3) = (Z Zwiﬁ;s;‘) - (Z Zwijsisj)
j=li=j j=li=j
n n
= (Z Z Wij5;5; it Zwk]sks Z Z W;j8;Sj + Zwk]sks]
i=11i=j,i#k j=1 j=li=j,i#k

n
!
WgjSEpSj — E WgjSkSj
=1

<
Il
—

|
= .

n

= (sh — s8) D_ Wiy
j=1

In the BM updating scheme, if s;, = 0 (and hence s}, = 1), then it follows that
C(8') — C(5) = X7_, ww;sj, and hence the probability of accepting the new
state §' is

1
14 e 2= vt /T

1
1+ e—(C(E)-CE)/T

P(3) =P(sp=1) =

On the other hand, if s;, = 1 (and hence s}, = 0), then it follows that C(5") —
C(8) = — X}_, wk;8;, and the probability of accepting the new state §' is

1
P g = ]_ — P = 1 == 1 - n
(S ) (Sk ) 1+e Ej:l wijs5/T
= 1 1
T T 14 elc@-cE)/T

1
1+ e (CE)-CE/T

Consequently, in both cases the updating probability is identical to that pro-
posed by Barker (3.7), and hence the BM updating process can be regarded
as a Gibbs sampling-simulated annealing process, which according to The-
orem 3.9 converges almost surely to a state which maximizes the following
Gibbs distribution:

1
P{g} = 260(5‘)7

where Z is a normalizing constant. As this distribution has the same max-
imum points as the consensus function C', the BM updating process converges
to a maximal consensus state. [J
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It follows that in principle any BM updating scheme could be seen as a
massively parallel implementation of the general Gibbs sampling algorithm
with respect to the consensus function (4.1) and acceptance probability (4.2),
provided that the generating probability matrix used fulfills the requirements
(G1) and (G2) of Theorem 3.7. However, the acceptance probability (4.2) sets
here implicitly some additional requirements to the generation probabilities,
since the difference in consensus is calculated by keeping all nodes except one
constant. For this reason, if two or more adjacent nodes of the BM network
are to be updated at the same time, the corresponding transition probability
matrix is no more stochastic, and hence convergence of the algorithm can not
be guaranteed. On the other hand, if we allow only one node to be updated
at a time, we can apply Theorem 3.7, but then the parallel nature of the
algorithm is lost. To solve this dilemma, it has been suggested [25] that the
nodes of a BM network should be divided into clusters, where no two nodes
inside of a cluster are connected to each other. Using this kind of a clustered
BM we can maintain some parallelism and update all the nodes in one cluster
at the same time, while a convergence theorem similar to 4.1 can be proved:

Theorem 4.2 Let the nodes of a Boltzmann machine be divided into separ-
ate clusters (independent sets), where no two nodes in the same cluster are
connected to each other. At time ¢, update simultaneously all the nodes in
a randomly chosen cluster using the formula (4.2). Let S(0), S(1),... denote
the resulting states of the network and let C,,, denote the set of states with
globally maximal consensus. Now it follows that

lim lim Pr(S(t) € C.,.) = 1.

T]0 t—o0

Proof: As Theorem 4.1, but instead of Theorem 3.7, apply Theorem 8.2 in [1].
O

Obviously, as all the nodes in a cluster can be updated simultaneously,
the degree of parallelism depends on the number of clusters in the network.
Unfortunately, the problem of finding a minimal set of clusters in a given
network is identical to the graph coloring problem and is hence NP-complete.
However, in the sequel we deal with a special class of two-layer BM architec-
tures which have by definition only two clusters, being in this sense optimal
BM architectures.
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4.2 Harmony networks

A basic difficulty with understanding Smolensky’s theory of harmony net-
works [114] lies in the fact that Smolensky uses two disturbingly similar,
structurally identical models on different levels of abstraction. The first
model, the conceptual harmony network can be used for defining a function
(the harmony function) on a set of binary variables, conceptually in same
way as the MRF model is used for defining a Gibbs distribution. There are
some interesting cognitive questions related to harmony network representa-
tions, but they are not to be addressed in this study. The second model, the
computational harmony network, is a two-layer neural network which can be
used for finding the maximum of the harmony function, and it is function-
ally very close to the Boltzmann machine model. We shall first introduce the
conceptual model and the definition of the harmony function in Section 4.2.1,
and the computational model is then presented in Section 4.2.2.

4.2.1 The harmony function

Let our problem domain be defined on a set of N binary random variables
Ui,...,Uy. For notational convenience, the variables U; are here assumed
to be bipolar, i.e. they have either value -1 or 1, instead of 0 and 1. A
harmony network consists of two layers of nodes: a set of NV feature nodes
Xi,..., Xy corresponding to the variables Uy,...,Uy, and a set of R pat-
tern nodes {Y7,...,Yg} (Smolensky’s “knowledge” nodes). Each node in a
harmony network has an activity level, which can have two values: the pos-
sible activity values for the feature nodes are {—1,+1}, and the values for
the pattern nodes are {0,1}. The activity values of the feature nodes form
a feature vector r, and the activity values of the pattern nodes, denoted by
Y1,---, YR, form a pattern activation vector y. These two vectors combined
form the global state of the harmony network.

To each pattern node Y}, we attach a pattern potential )\;, which is a real
number assumed to be computed from a feature vector # € {—1,+1}" using
a potential function V: \; = V(&). We express this in a graphical form by
drawing a positive arc between the pattern node Y; and a feature node U;
if the value of the variable U; in the feature vector & is 1; a negative arc if
the value is -1; and we make no connection between the nodes if the value of
the variable is irrelevant for determining the value of the potential A;. The
incoming arcs to a pattern node Y; can be represented as a pattern vector
@; € {—1,0,+1}", where +1 denotes a positive connection, -1 a negative
connection, and 0 stands for a missing connection (see Figure 4.3).

For each state of the harmony network, we attach a global measure called
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=(1,1,1,0)
@ = (1,-1,1,0)
@3 = (—1,1,1,0)
@ = (—1,-1,1,0)
@5 = (1,1,-1,0)
@ = (1,-1,-1,0)
@ = (~1,1,-1,0)
Jg = (—1,—-1,-1,0)
@y = (0,0, 1, 1)

= (0,
@1 = (0, 1)
wlz = ( -1 —1)

Figure 4.3: A simple harmony network with the corresponding pattern vec-
tors. Nodes with activity level 1 are shown in black: the current fea-
ture vector & is (1,-1,1,-1), and the current pattern activation vector ¥ is
(0,1,0,0,0,0,0,0,0,1,0,0) Solid lines represent positive arcs, negative arcs
are printed with dashed lines.

the harmony function. Given a feature vector &, we first define the local
harmony h for a pattern node Y; as

- K, (4.3)

where &; - £ is the normal vector inner product, &; is the pattern vector
corresponding to node Y;, |&;| is the size of the pattern vector &; (the number
of nonzero connections at node Y;),

N

&l =D lwijl,
j=1
denoting &; = (wi1, .. .,w;n), and k < 1 is a constant fulfilling the condition
YT ket o (4.4)
Wi Wi
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It is easy to see, that if we, for instance, choose

2
K=1—-——"
max; ||
condition (4.4) is always met: Let |&J; | denote the number of consistent ele-
ments between Z and &; (number of vector components w;; with the prop-
erty w;;z; = 1), and let |&J; | denote the number of inconsistent elements,
|57 | = |&] — |&;F|. Now we can write

R A

@l @ @]
&G = (@] = 1@5)
a (a4

2| — @l _ [ 1, if @] = @i,
| | r, otherwise (—1 <r <1).

il < ;< 1, which is guaranteed by

We wish to have %

(4.5)

We now define the harmony function H for a state (&, ) as
Z Uzyz _‘a _’z (46)

where y; is the activation value of pattern node Y; in pattern activation vector

¥, h(Z,d;) is the local harmony as defined in (4.3), and o;, the strength of a

pattern node Y, is obtained by scaling the potential by a constant:
Ai

1—k

Intuitively speaking, the harmony function is a measure of how consistent
the feature vector & and the pattern activation vector ¢ are with each other,
weighted by the strengths of the pattern nodes, which can be seen as some
kind of a priori measures.

4.2.2 Maximizing the harmony function

For finding the maximum of the harmony function H, Smolensky proposed the
following Boltzmann machine type architecture. Consider a network consist-
ing of two layers of stochastic binary-valued units, where the structure of the
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network and the activation levels of the nodes are identical to the conceptual
harmony network structure presented in the previous section. The weight of
the connection between pattern node Y; and feature node X is given by

Wi; = wz’jai/|65i|a (4-8)

where w;; is the value (-1 or +1) of the arc in the corresponding harmony
network; |&J;| is the size of the pattern vector &;; o; is the strength of the node
Y;, as defined in (4.7), and  is a parameter that can be given any value
satisfying condition (4.5). As the undirected arcs are symmetric, wj; = w;;.
The nodes in the network are updated according to the following rules: if
the node selected for updating is a pattern node Y;, and the current states of
the feature nodes are given by & = (x1,...,2y), then a net input value of

N
Ii = Zw,-ja:j — O;K
j=1

is computed, and the node obtains value 1 with probability

1

Plu=1) = fiemmy

(4.9)
where T denotes the value of a temperature parameter, which decreases to-
wards zero as the temperature in simulated annealing. For a feature node X;
the net input is computed as

R
I; =2 wiy;,

Jj=1

where ¥ = (y1,...,yr) are the current states of the pattern nodes; the node
then obtains value 1 with probability

1

(4.10)
We use the term harmonium Boltzmann machine (HBM) to denote a neural
network architecture corresponding to the definitions (4.8), (4.9), and (4.10).
The following proposition shows that the HBM model provably maximizes
the harmony function with high probability:

Proposition 4.3 Given a harmony network, let us construct a corresponding
HBM model with weights defined as in (4.8). Assuming that the nodes are
updated as defined in (4.9) and (4.10), and assuming that all the nodes at
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the same level are updated simultaneously and the two levels are updated
alternately, the HBM model will converge to a maximal harmony state with
probability one as T approaches zero.

Proof: Let i denote an arbitrary activation vector of the pattern nodes with
y; = 0, and Z denote an arbitrary activation vector of the feature nodes. We
now change the activation value of the node Y; of 4 to 1, and denote the new
vector by . The difference in harmony between these two situations is

= (1-oh(Z, &) + D _yjo;h(Z,&;)) — (0 0:h(Z, &) + D yjo;h(F, &;))
J#i J#i
N ..
= oh(E @) = 0y(>) 24T _ )
j=1 |
N .. . . N
= Z w”fzu] — Ok = Zw,-juj — Ok = Ii,
j=1 i j=1

which is the net input to pattern node Y;. Similarly, let & denote the activation
vector for the feature nodes with the node X; set to —1, and #’ the vector
with the node set to 1. Now the difference in harmony between these two
situations is

H(&,§) — H(Z,9)
R
= > oy (h(&, ;) — h(Z,d))
j=1
_ i uil( Zk;éz wiplg +wji - 1 k) — (Ek;éi Wikl + wyi - =1 0]
= 0;Yj —
= |WJ| |wj|
R 2w,
= Z Jy]| U‘ _2201% 4] _22'“)1]%
= ] j=1

As in the case of Boltzmann machines, we can now regard the HBM model
updating scheme as a stochastic simulation process. Since the net input to
a pattern node Y; is I; = H(Z,y') — H(Z,¥), and the net input to a feature
node X; is I; = H(¥, §) — H(Z, ¥), the updating probabilities (4.9) and (4.10)
can be regarded as acceptance probabilities identical to those proposed by
Barker (3.7), with respect to a Gibbs distribution

R
Pr{} = Z—TeHWT. (4.11)
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Moreover, as the net inputs to the feature nodes are independent of the feature
vector Z, and similarly, as the net inputs to the pattern nodes are independent
of the pattern activation vector ¢, all the nodes on one layer can be updated
simultaneously without affecting the convergence process. According to The-
orem 4.2, the resulting HBM updating process will find a maximum of the
Gibbs distribution (4.11), which has the same maximum points as the har-
mony function H. [J

In [114], Smolensky gives no formal method for determining the number
of harmony network pattern nodes, or for choosing the network structure. In
Section 5.1, we show how Bayesian networks can used as a tool for construct-
ing harmony networks from a priori knowledge: given a Bayesian network
representation for a probability distribution P, we show how to construct an
equivalent HBM representation, in the sense that the harmony function of the
resulting HBM has the same maximum points as P.



Chapter 5

Mapping Bayesian networks to
stochastic neural networks

As noted in [86, 87], singly connected Bayesian networks offer a possibility for
implementing Bayesian reasoning on massively parallel architectures. In this
study, however, we are concerned with general BN structures, and we wish to
apply the stochastic simulated annealing method for solving the MAP task.
Given a Bayesian network, our goal is to construct a massively parallel simu-
lated annealing process for solving MAP problems by using a stochastic neural
network which has the same maximum points as the probability distribution
corresponding to the given Bayesian network. To prevent theoretically valid,
but practically unrealistic models, we restrict ourselves to standard neural
network structures with structurally simple and homogeneous processing ele-
ments. It should also be noted that the methods developed here apply only for
massively parallel neural network implementations — parallelization of simu-
lated annealing using more conventional computing architectures is discussed
in [42].

In Chapter 4 we saw how the two stochastic neural network models, BM
and HBM, can be regarded as massively parallel implementations of simu-
lated annealing, being capable of finding the optimum of the given objective
function. On the other hand, in Section 3.4.2 it was shown how any Bayesian
network probability distribution can be expressed as a Gibbs distribution,
utilizing the concept of Markov random fields. Consequently, if we find a
way to represent a given Gibbs distribution as an objective function of a
stochastic neural network, we have accomplished our goal: massively parallel
architecture for solving the the MAP task.

Let B=(Bs,Bp) be a Bayesian network corresponding to a probability
distribution P. In Section 3.4.2 we showed how P can be expressed as a
Gibbs distribution of the form (3.8). For finding the maximum of P, it is
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now sufficient to maximize the potential function V,
N
V(a) =) Vi(a), (5.1)

where the clique potentials V; are of the form (3.9). Let us now consider a
clique C; = {U;} U{U; | U; € Fy,} corresponding to a variable U;, let the

vectors Wiy, . . . , Wim,; denote the m; possible value combinations on the set C;,
m; = |U;| I 1U;l,

and let A;1,..., Ay, denote all the possible values of the clique potential V;,
Aij = Vi(&i;). We can now express the clique potential V; as a sum

m;
Vi(@) = Y Aijx (@, dij),
j=1
where the characteristic function x expresses whether two vectors &;; and %
are consistent or not:

N o 1, ifid e {Qij},
X (1, @iy) = { 0, otherwise. (5.2)

The potential function (5.1) now becomes

N m;

V(d) = Nijx(@, dij).

i=1j=1

What is more, by re-indexing all the m = |Bp| = E?Ll m; possible clique as-
signments {11, -« -, Dimyy -« -y ON1y - - - s ONmy | @S {D1, - .., Dm }, we can forget
about the cliques C; altogether, and write the potential function V' as

m
V(@) = Aix(@, ). (5.3)
i=1
To solve the MAP problem by neural networks, it is now sufficient to find
a neural network with an objective function which has the same maximum
points as the potential function (5.3).

Let us first consider an MRF with a maximal clique size of 2. As the
consensus function (4.1) of the basic BM model is defined by using a sum of
parameters depending on only two variables, a BM network with a consensus
function equal to the potential function of a given MRF can be easily con-
structed by assigning one node in the BM network to each random variable
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in the MRF [57, 39]. However, in this case the parallelism of the resulting
BM is lost, as no two adjacent nodes (variables) can be updated at the same
time. Moreover, the Bayesian network structure corresponding to this kind
of a simple MRF is a tree, which means that there is no need for approximate
stochastic methods since polynomial time exact algorithms for solving the
MAP problem exist in the first place [96, 92].

Let us then consider Markov random fields with an unrestricted clique
size, corresponding to general BN structures. In the noisy-OR approximation
model, only a linear number of simple two-member conditional probabilities
(one for each incoming arc) are stored for each variable in the BN structure,
and the missing parameters are approximated as a function of the combina-
tion of the stored parameters (see e.g. [96, 92]). In this case, a BM structure
corresponding to a given MRF can be constructed in a similar way as in
the 2-variable clique MRF case [90]. However, using only basic two-member
conditional probabilities, it is generally not possible to find any function cap-
able of approximating the missing probabilities accurately, or even to obtain
informative upper or lower bounds for the missing values [92, p.138]. As
a result, the noisy-OR model is usually not accurate enough for practical
applications [50].

For an accurate representation for general BN structures, it seems at a
first glance that binary connections are not sufficient, but higher-order con-
nections (arcs connecting three or more nodes to each other) are needed. As a
matter of fact, this kind of a generalization of the basic BM model, containing
also higher-order hyper-arcs, has been suggested earlier [39]. However, as in
this study we do not allow such extensions of the basic neural network mod-
els, this approach is not examined here. Nevertheless, in Section 5.1 we show
how to map a given Bayesian network B=(Bs, Bp) to a two-layer HBM net-
work structure, in the sense that the resulting harmony function has the same
maximum points as the potential function of the MRF corresponding to the
Bayesian network (and hence has the same maximum points as the probability
distribution on B). The nodes in the first layer of the harmony network (“vis-
ible” nodes) correspond to the nodes in the given Bayesian network structure
Bs, while the nodes in the second layer (“hidden” nodes) correspond to the
conditional probabilities Bp (in a sense, the hidden nodes can be regarded
as a type of higher-order hyper-arcs suggested above). This means that the
harmony network updating process provably converges to a state where the
activity levels of the visible nodes can be projected to a MAP solution on
the original BN structure. Consequently, any given MAP problem, given as
a partial instantiation on B, can be solved by permanently fixing the activ-
ity levels of the corresponding visible nodes in the HBM structure, and by
letting the HBM run until converged. In Section 5.2 we present a similar
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two-layer construction using the basic BM model. Of these two solutions,
the BM model can be considered more preferable as it is more homogeneous,
containing only one single type of processing elements, thus being easier to
implement in hardware. Moreover, as the BM model is more widely known
than the harmony network model, it may be easier to find suitable hardware or
software for practical implementations of standard Boltzmann machines than
of harmony networks. Both of these constructions allow only binary variables
in the original Bayesian network, but in Section 5.3 we discuss different ways
of handling multi-valued variables, and show a straightforward extension in
which the number of variable values does not have to be restricted.
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5.1 Mapping Bayesian networks to harmony
networks

Let B=(Bs, Bp) be a Bayesian network with N binary variables {Uy, ..., Un},
let {p1,...,pm} denote the conditional probabilities forming the set Bp, and
let the corresponding probability distribution P be of the form (3.8). As
noted in the previous section, the potential function V' can be represented in
the form (5.3), where the parameters A, ..., A, are of the form (3.9),

Corresponding to this Bayesian network, we construct a harmony network
with N feature nodes Xi,..., Xy, one for each variable U;, and m pattern
nodes Vi, ..., Y,,, one for each parameter )\;. The pattern potential of a node
Y; is set to \;, and hence according to formula (4.6), the harmony function of
the resulting harmony network is now

H(f, 27) = Z Uz'yih(f, Qi)a

i=1

where 0; = A\;/(1 — k), and & is a constant fulfilling the condition (4.4). In
the sequel, we use HBM, to denote this type of a two-layer HBM network.

The bipolar feature units of an HBM, network are associated with the
corresponding binary Bayesian network variables in the obvious way: an
HBM, state with X; = 1 corresponds to a configuration vector with U; = 1,
and a state with X; = —1 to vector with U; = 0. Consequently, each feature
vector £ = {z1,...,xn} represents an instantiation of the corresponding
Bayesian network. Using this binding, we can now redefine the potential
function (5.3) as

V(@) = V(&) = f;Aix(f, &), (5.5)

where

i) { /G (5.6)

X(, @) = 0, otherwise.

Proposition 5.1 The HBM; network updating process maximizes the po-
tential function (5.3), provided that all the parameters ); are nonnegative.
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Proof. Using a clever trick presented by Smolensky in [114], we can express
the function (5.6) as

&l

if @i
) @i
0, if «&

>
<K

Hl—

Lt _
X(@3) = e by {

||
Now the potential function (5.5) can be expressed as

I
wi-z

— K
V(@) = Ai i(———
(#) Z ¢ max [yi(= (5=
Ai J; - T
- max [yi(2= " — k)]
~ 1 — K ye{01} |cds|
= Zaz max _[y;h(Z, d;)]

vi€{0, 1}
= mgx Z oy h(Z, &;)
i

= max H(Z, ),
]

provided that all the parameters o; are non-negative. Consequently, we can
find the maximum of the potential function V' by maximizing the harmony
function H,
max V(%) = maxmax H (&, 7).
z z Y

As the HBM updating process provably maximizes the harmony function H
(see Proposition 4.3), it also maximizes the potential function (5.5), which is
equal to the potential function (5.3). O

The potential function (5.3) has the same maximum points as the original
Bayesian network probability distribution P, so a given MAP instantiation
problem can be solved by mapping the BN to the corresponding HBM, struc-
ture, permanently fixing the activity levels of the feature nodes corresponding
to the instantiated variables of the BN to the given values, and running the
HBM,; network with decreasing temperature until converged. The final fea-
ture vector, when mapped back to the Bayesian network, is the MAP solution.
A simple example of the BN—MRF—HBM transformation is given in Fig-
ure 5.1.

If we set in (5.4) all the constants K;,i = 1,..., N to zero, the result-
ing harmony function is equal to the potential function corresponding to the
probability distribution P. However, it is important to notice that Proposi-
tion 5.1 applies only if all the parameters A; are nonnegative, so the constants
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A =InPla} + K,

A =InP{a} + K,

A = InP{b} + K,

A =InP{b} + K,

A =InP{c|a,b}+ K,

A2 =InP{c|a,b}+ K.

A3 =InP{c|a,b}+ K,

M =InP{c|a,b}+K.

Xs =InP{c | a,b} + K,

X¢ =InP{¢| a,b} + K.

Az =InP{c|a,b}+ K,

Xs =InP{c|a,b}+ K.

Ao =InP{d|c}+ K4

O Ao =InP{d|c}+ Ky

\\\\\\O A1 =InP{d|c}+ Ky
0 A =InP{d| &} + K,

OO O0OO0OO0OO0OO0OO0OO0OO0OO

O O

Figure 5.1: A simple Bayesian network with four binary variables, the cor-
responding MRF, and the resulting HBM network with the corresponding
pattern node parameters ;.

K; have to be chosen appropriately.! We suggest the following simple method
for determining the parameters:

bj . A .
Aj zlnm =Inp; — Inkp(C(j)), (5.7)

where C(j) is the index of the clique corresponding to the parameter A;, p(7)
denotes the minimal probability within clique ¢, and k£ < 1 is some constant.
After this scaling all the parameters )\; are nonnegative, and moreover, as
noted in Section 3.4.2, the scaling does not affect the convergence of the
sampling process.

!This means that we cannot construct a harmony network with a harmony function
exactly identical to the given potential function — we are only able to construct a harmony
function with the same maximum points as the potential function.
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To verify this fact in the harmony network framework, let us consider the
behavior of the network at temperature 7" with T' decreasing towards zero. As
T approaches zero, the probability of exactly one pattern node for each of the
cliques to be “on” approaches one, and at the final (ideal) zero temperature,
the number of pattern nodes to be “on” becomes constant. Let H be a
harmony function corresponding to the situation where all the constants K;
are set to zero (in which case A; = Inp,;), and let H* denote a harmony
function with the parameters A; set as in formula (5.7). Assuming that the
number of active pattern nodes is constant, the scaled harmony function H*
can be expressed as

“ Inp; — nkp(C ()

H*(‘f’g) = Z 1_ Jh(fa(ﬁ])
j=1 K
o Inp; . Wkp(CGH)) oL
= ; 1— ;ajh(:c, ]') — 2 ﬁ&jh(fﬂ,w]‘)
J= J=
& Inp; .. N Inkp(s)
= ; l_na]h(x,w]) ; T

where N is the number cliques (the number of variables). This is the original
harmony function plus a constant, H*(Z, ) = H(Z, §) + K, where

In kp(7)

K=Y 2

= 1—k

This new function has the same maximum points as the original one, so (in the
limit) the scaling does not affect the convergence of the simulation process.
In Chapter 6, we also verify this fact empirically.
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5.2 Mapping Bayesian networks to two-layer
Boltzmann machines

As in the previous section, let B=(Bs, Bp) be a Bayesian network with N
binary variables, and V' the corresponding potential function of the form (5.3).
Let us now consider a two-layer Boltzmann machine network with a structure
identical to the HBM, network presented in the previous section (with N
feature units and m pattern units). It is easy to see that the consensus of
such a network can be written as

0(5‘) = i Sj Zwﬁsi = Z SjIj, (58)

where I; = 37, wj;s; is the net input to pattern node Y;. The main idea here
is to choose the weights in the network in such a way that the net input I;
to a pattern node Y} is positive, and, what is more, exactly A; only when the
corresponding value assignment &; is consistent with the given feature vector
Z. This ensures that the updating process converges to a state where only one
pattern node for each clique is on, and thus the consensus of such a final state
is equal to potential V. In [82] we suggested one possible way of choosing the
weights; here we present an alternative solution, which seems to work better
in practice.

Let us consider a pattern node Y corresponding to a parameter \;, and
let P{U; = u; | Av,er,, Uv = ux} be the conditional probability used for
computing A;,

)\j = ln’P{U, = Uy | /\ Uk = Uk} + K. (59)

UxeFy,

We now set the weights of the arcs between the pattern node Y; and the
features nodes Xj, ..., X, in the following way:

1. The weights of all the arcs connecting the node Y; to feature nodes
representing variables not in {U;, Fy,} are set to zero.

2. The weight from the pattern node Y; to a feature node corresponding
to a variable Uy € {U;, Fy, } is set to A; if u, =1, and to —); if up, =0
3. The bias 6; of the pattern node Yj is set to —(nj — 1)A;, where n] is
the number of positive arcs leaving from node Y;. However, if nj =0,

we set §; = 0.

Following this construction for each of the pattern nodes Y}, we get a structure
which we call a two-layer Boltzmann machine (BMs).
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Lemma 5.2 Provided that all the parameters )\; are nonnegative, the net
input I; to a pattern node Y; of a BM; network is positive only if the feature
vector & is consistent with the value assignment &;. Moreover, in this case
Ij == )‘j'

Proof: Let n;H denote the number of incoming signals on positive arcs (arcs
with a weight A; and let n;+ denote the number of incoming signals on
negative arcs (arcs With a weight —)\;). As defined above, the bias 6; is

—( — 1)), where n is the number of positive arcs coming to node Y;. A
feature vector Z is consistent with the assignment &; if and only if n] " = n*
and n; " = 0. On the other hand, the net input [; can be written as

Ij = n;L+)\j—nJ-_+)\j+9j = n;+)\j—nj_+)\j—n;)\j+)\j = )\](nj+—nj—n]_++1)

As nf" < nf and n;" > 0, this can be made positive only by setting

ni* =n] and n; " =0, and in this case I; = ;. O

Now we can prove the following result:

Proposition 5.3 The BM, network updating process maximizes the poten-
tial function V| provided that all the parameters \; are nonnegative.

Proof. By exploiting Lemma 5.2, we can write the potential function (5.3) as

=1 yje{o 1}
Now it follows that
max V(%) = max » , max (y;I;) = maxmany]I = maXC( 5).
° 3 y;€{0,1} A

Consequently, the BM, updating process converges (with high probabil-
ity) to a state, where the feature vector represents a MAP state on the original
Bayesian network. As with the HBM5 model, the nodes on one layer are not
connected to each other, and therefore do not affect the net input of each
other, so they can all be updated at the same time (see Theorem 4.2).
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5.3 Coping with multi-valued variables

As the neural networks models used in this study have binary processing
elements, the BN-MRF-NN transformation scheme described in the previous
sections applies directly only to Bayesian networks with binary variables.
However, in many problem domains the probability distribution is represen-
ted in the most natural way by using networks with multi-valued variables.
There are now at least two alternative paths we might consider when extend-
ing our mapping scheme to multi-valued variables. Firstly, we could work
on the Bayesian network level, and modify the Bayesian network structure in
such a way that the mappings developed earlier can be applied. Alternatively,
we could work on the neural network level, and construct mappings which are
not restricted to binary variables. In the following, we first discuss briefly
some obvious drawbacks of the first approach, and present then a relatively
straightforward extension to the mappings presented in the previous sections,
which allows also multivalued variables.

In principle, a Bayesian network with multi-valued variables can be trans-
formed to a binary-variable network as follows: each non-binary variable X
with k values z1,...,x is replaced by k new binary variables Xi,..., Xy,
and each of these new variables is connected to all the successors of X, and
similarly all the predecessors of X are connected to all the new k£ binary vari-
ables. In addition, each new binary variable X; (for i < k) is connected to
variables X;1,..., X} (see Figure 5.2).

In practice, however, there are some technical difficulties with the BN
level transformation. First of all, as can be seen in Figure 5.2, many of the
resulting conditional probabilities, corresponding to “impossible” combina-
tions of values (for example the probability P{b;|a,bs,bs}), are zero. This
is unacceptable, as the configuration space €2 would in this case have zero-
probability states, which violates the basic assumptions behind our transform-
ation scheme (see for example Definition 3.8). In particular, as the parameters
A; are computed using logarithms of conditional probabilities (formula (3.9)),
they become undefined if any of the probabilities are zero. A standard trick
to overcome this difficulty is to replace all the zero-valued probabilities by
a small constant € (and, correspondingly, replace all the probabilities equal
to one by a probability 1 — €). As e approaches zero, the binary-variable
Bayesian network approximates the probability distribution of the original
network more and more accurately. However, it has been suggested [18] that
Bayesian networks containing this kind of extreme probabilities are the most
difficult ones to approach by stochastic simulation methods. On the other
hand, MAP problems with extreme probabilities cannot be made easier by
changing the extreme probabilities of the Bayesian network further from 1 or
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A B P{ai}  P{e | b1}
Plaz}  P{er | b2}
P{b1} P{cz | b1}
P{b1}  P{ecz| b2}
P{e1|ai}P{es | b1}
P{c1 | a2}P{cs | b2}

(a) ¢ Plea | a1}P{d1 | ex}
P{c2 | a2}P{d1 | c2}
P{cs | a1}P{d1 | c3}
P{es | az}P{d1 | e1}
P{dz2 | c2}

D 'P{dz | 63}

P{a1} P{ca1 | @,b2,c11} P{ea1 | a,b,c11,c21} P{ea1 | a,b2,c11,c21} P{d1 | c11,¢21,C31}
P{a2} P{cz1 | a,byci1} P{cs1 | az,b,c11,c21}P{e31 | az,b2,c11,c21}P{d1 | c12,¢c21,¢31}
P{b1} P{ca1 | a2,b,c11} P{es1 | a,b,c12,c21} P{ea1 | a,b2,c12,c21} P{d1 | c11,¢22,¢31}
P{b2} P{ca1 | a,b,c12} P{es1 | az,b,c12,c21}P{ca1 | a2, b2, c12,c21}P{d1 | c12,¢22,¢31}
P{ci1 | a1}P{c21 | a2,b,c12} P{c31 | a,b,c11,c22} P{ca1 | a,b2,c11,c22} P{d1 | c11,c21,c32}
P{ci1 | a2}P{ca2 | a,b,c11} P{ea1 | az,b,c11,c22}P{c31 | a2, b2, c11,c22}P{d1 | c12,¢21,c32}
P{ci2 | a1}P{c22 | a2,b,c11} P{c31 | a,b,c12,c22} P{ca1 | a,b2,c12,c22} P{d1 | c11,c22,¢32}
P{ciz | a2}P{co2 | a,b,c12}  P{ca1 | aa,b,c12,c22}P{ca1 | az,b2,c12,c20}P{d1 | c12,ca2,c32}
P{ei1 | b1} P{caz | a2,b,c12} P{ea2 | a,b,c11,c21} P{es2 | a,b2,c11,c21} P{da | c11,¢21,¢31}
P{ci1 | b2} P{c21 | a2,b2,c11}P{c32 | az,b,c11,c21}P{caz | a2, b2, c11,c21}P{d2 | c12,c21,¢31}
P{ciz2 | bi}P{c21 | a,b2,c12} P{cs2 | a,b,c12,c21} P{caz | a,b2,c12,c21} P{d2 | c11,c22,c31}
P{ecia | b2} P{ca1 | a2,b2,c12}P{ca2 | az,b,c12,c21}P{ec32 | a2, bz, c12,c21}P{d2 | c12,¢22,¢31}

P{ca2 | a,b2,c11} P{csz2 | a,b,c11,c22} P{caz2 | a,b2,c11,c22} P{d2 | c11,c¢21,c32}

P{c22 | a2,b2,c11}P{c32 | a2,b,c11,c22}P{c32 | a2, b2, c11,c22}P{d2 | c12,c21,c32}

P{caz | a,b2,c12} P{csz2 | a,b,c12,c22} P{ca2 | a,b2,c12,c22} P{d2 | c11,c¢22,c32}

P{c22 | a2,b2,c12}P{c32 | a2,b,c12,c22}P{c32 | a2, b2, c12, c22}P{d2 | c12,c22,c32}

Figure 5.2: (a) A simple Bayesian network with three binary variables A, B
and D, with possible values {a1,as},{b1,b2} and {d;,d>}, and one multival-
ued variable C' with three possible values {ci, ¢z, c3}. (b) The corresponding
binary-variable Bayesian network representation. The values of the binary
variables C; are denoted by ¢;; and ¢, 7 = 1,2, 3.
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0, since in this case the resulting probability distribution may not approximate
the original distribution very well [31]. Nevertheless, in [81] we experimented
with harmony networks using the transformation scheme suggested above,
and got relatively good results even with extreme probabilities.

Another problem with the Bayesian network level transformation is the
large number of resulting conditional probabilities, as can be noted in Fig-
ure 5.2. However, it is easy to see that there is a large number of conditional
probabilities that are actually irrelevant for the functionality of the network.
This fact was exploited in [81], where the size of the neural network structure
was decreased by pruning the irrelevant pattern nodes.

In the neural network level approach for coping with multivalued attrib-
utes, we might consider modifying our neural network models in such a way
that mappings from multivalued Bayesian networks become straightforward.
Such modifications could include, for example, using winner-take-all subnet-
works as modules of the network, or more complex, multi-state processing
elements, such as the nodes in the generalized Boltzmann machine model
in [110]. However, as we restrict ourselves in this study to standard neural
network processing elements and structures, we do not consider such modi-
fications. Instead, in the following we describe a relatively straightforward
extension to the mapping presented earlier, introduced in [83], which uses the
same simple neural network processing elements as the BMy network in the
previous section.

Let B=(Bs, Bp) be a Bayesian network with N (not necessarily binary)
variables, and let V' be the corresponding potential function of the form (5.3).
The suggested Boltzmann machine has two layers, where the first layer con-
sists of n = X°; |U;| feature nodes X, . .., X,,, one for each value for each of the
variables of the problem domain. The second layer has altogether m = |Bp|
pattern nodes Yi,...,Y,, one node for each of the parameters \; used for
defining the potential function V. Initially, let us assume that each pattern
node is connected to all the feature nodes in the first layer, but no two nodes
in the same layer can be connected to each other. Let Y; be the pattern node
corresponding to a parameter \;, where J); is of the form (5.9). We now set
the weights of the arcs between pattern node Y} and feature nodes X;,..., X,
in the following way:

1. The weights of all the arcs connecting node Y; to feature nodes repres-
enting values of variables not in the set {U;, Fy,} are set to zero.

2. The weight from node Y; to a feature node corresponding to value u;
is set to A;, and the weights of the arcs to feature nodes corresponding
to other values of the variable U; are set to —A;.
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3. The weight from node Y; to feature nodes corresponding to the values
uy, appearing on the right hand side in (5.9) are set to A;, and arcs
to feature nodes representing other values of the predecessors of the
variable U; are set to — ;.

4. The bias 6; of node Y; is set to (n] — 1));, where n is the number of
positive arcs leaving from node Y;. However, if nj =0, we set 6; = 0.

Following this construction for each of the pattern nodes Y}, we get a structure
which we call a general two-layer Boltzmann machine. In the sequel, we use
the notation BMs for this kind of a general BM structure. An example of a
BM, structure in a case of a simple Bayesian network is shown in Figure 5.3.
As arcs with a zero-valued weight are irrelevant to the computations, they
are excluded from the network.

Let us now consider a Bayesian network B, and the corresponding BM,
network /. We say that a feature vector of N is consistent (with B), if there
is exactly one feature node active for each of variables in B, representing one
possible value of that variable. Consequently, a consistent feature vector can
be mapped to an instantiation of B. As before, let Y; be a pattern node
corresponding to a parameter \;, and let P{U; = u; | /\Ukepui U = ug}
be the conditional probability used for computing A;. We now say that the
pattern node Y; is consistent with a feature vector & if Z is consistent with
the assignment (U; = u;, Ay,c Fu, Ur = ug). Moreover, a pattern activation
vector ¥ is said to be comnsistent, if all the consistent pattern nodes are on,
and all the inconsistent pattern nodes are off. Finally, a state § = (Z, %) of
N is called consistent if both # and ¢ are consistent. It is now easy to prove
the following simple lemma:

Lemma 5.4 A BM, network converges to a consistent state.

Proof. Let §= (Z,7) be the final state of a BM, updating process. We know
that §'is a state which maximizes the consensus C(8) = X7, y;1;. It is now
easy too see that if & is a consistent vector, 3 must also be consistent, since
if there were inconsistent pattern nodes active on the second layer in this
case, switching them off would increase the consensus of the network, and
correspondingly, switching any inactive consistent pattern node on would
increase the consensus. On the other hand, & cannot be inconsistent, since in
this case all the pattern nodes connected to inconsistent feature nodes would
be inactive, which means that removing inconsistencies would increase the
number of active pattern nodes, thus increasing the consensus. It now follows
that § = (&, ) must be a consistent state. [J

Using this lemma, we can now show that the BM; structure can be used
for solving the MAP problem:
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Figure 5.3: The BM, structure (with the parameters )\;) corresponding to
the simple Bayesian network in Figure 5.2(a). Solid lines represent arcs with
positive weight, negative arcs are printed with dashed lines. Active nodes
are shown in black, so the particular state in this figure is a (consistent) state

A =InP{a} + K
A2 =InP{as} + K
As =InP{b} + K
Ay =InP{b} + K
A5 = InP{er|ar, b1} + K
X¢ = InP{er]az, b1} + K
A =InP{ei|ar, b2} + K

O X = lnP{cl|a2, bg} + K

Ao = InP{ez|a1, b1} + K
Mo =InP{cz|asz, b1} + K
A1 = InP{eslag,bo} + K
A2 = InP{czlaz, b2} + K
M3 =InP{cslas, b1} + K
A1a = InP{cslaz, b1} + K
Ms =InP{cslas, b} + K
As = InP{cslaz, b2} + K
M7z =InP{dila}+ K
Mg = InP{di|e2} + K
A9 =InP{di|cs} + K
Ao = InP{ds]ei} + K
do1 = InP{ds|e2} + K
Ao2 = InP{dz|es} + K

corresponding to an instantiation (A = a;, B = by, C = ¢3, D = d;).
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Proposition 5.5 The updating process of the general BM, network max-
imizes the potential function V' of the corresponding Bayesian network B,
provided that all the parameters \; are nonnegative.

Proof. According to Lemma 5.4 the network converges to a stable state,
where all the active pattern nodes are consistent with the consistent feature
vector, so each final feature vector Z corresponds to an instantiation #. As in
Lemma 5.2, it is easy to see that the net input to a consistent pattern node
Y; is Aj, and as in Proposition 5.3, it now follows that

m m
max V(%) = max »  max (y;I;) = maxmax »_ y;I; = max C(3).
Uu T S

=

g joviclon} v iz

If the parameters \; were not scaled to nonnegative numbers as sugges-
ted earlier, the potential function would be strictly negative, and the BM,
construction would be useless, since the network would then always have a
trivial maximum point at zero, corresponding to a state where all the nodes
are off.



Chapter 6

Empirical results

To evaluate the feasibility of the BM; construction described in Chapter 5, we
experimented with artificial MAP problems created by generating Bayesian
networks with a randomly chosen structure Bs and randomly chosen con-
ditional probabilities Bp. Each MAP problem, corresponding to a random
initial assignment on a Bayesian network, was processed by using a version
of the general sequential SA algorithm (Algorithm 3.2), and by using the
massively parallel updating process of the BMs network corresponding to the
given Bayesian network. As a reference measure, we used results of a realiza-
tion of the exhaustive brute force algorithm (Algorithm 2.1). A more detailed
description of the algorithms used is given in Section 6.1.

Our primary objective was not to study the efficiency of the sequential and
massively parallel algorithms per se, but to see whether the speedup gained
from parallelization would be enough to compensate for the loss of accuracy in
sampling — in other words, whether the BM, construction would be compu-
tationally practical to use, if suitable hardware was available. Unfortunately
we did not have access to real neural hardware, so the results concerning the
BM, implementation are based on simulations on conventional Unix work-
stations. Illustrative examples of the results of the simulations are shown
in Section 6.3. In Section 6.2, we discuss the cooling schedule used in the
experiments.

6.1 Algorithms

Let us consider a Bayesian network (Bs,Bp), where the graph Bs consists
of N variables and the set Bp = {p1,...,pm} contains m probabilities of the
form P{U; = u; | Nvsery, Uj = u;}, and let &y, . . ., &y, denote the correspond-
ing value assignments of the form (u;, Ay, e Fu, u;). Recall from Chapter 2 that
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the state space €2 has altogether M configuration vectors, and the number of
vectors in the set €2g, consisting of all the vectors consistent with the given
evidence F, is denoted by |[Qg|. As before, by @ € {&;} we mean that the
vector 4 is consistent with the value assignment ;.

A straightforward realization of the brute force algorithm 2.1 for finding
the MAP solution in g can be given as follows:

Algorithm 6.1
Brute force algorithm (BF)

Input: Bayesian network (Bgs, Bp), partial assignment E.

> Pmax = 0;

> For i:= 1 to M do
> 4 := GenNextState(); P := 1;
> If 4 ¢ Qg, then continue;
> for j:=1to m do /* compute the state probability */

> if & € {J;}, then P := P x p;;

> If P > Pmax, then Ppax := P and I :=i;

Output: MAP state 4y, and the corresponding probability Ppax-

Function GenNextState() returns an unevaluated configuration vector .
After running the BF algorithm, I contains the index of a MAP state, and
Prax the corresponding probability (this actually does not solve the MAP
problem as formulated in Section 2, but for simplicity we assume here that
there is only one MAP state). Considering the time requirements of the BF
algorithm, we make the following assumptions:

1. Function GenNextState() requires O(1) time units.

2. Determining whether the current state  is consistent with a given par-
tial assignment or not (checking if @ ¢ Qg or if @ € {&;}) requires O(1)
time units.

It follows that the total running time of the BF algorithm is O(M) + |Q2g| *
O(m). In the sequel, we assume (somewhat unrealistically) to have an efficient
realization of the algorithm, where the inconsistent states can be bypassed
very quickly, and approximate the time requirement for the BF algorithm
simply by |Qg| * m.
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For simulated annealing, we used in our tests the following simple al-
gorithm:

Algorithm 6.2
Sequential Simulated Annealing (SSA)

Input: Bayesian network (Bg, Bp), partial assignment E.
> 4 := RandomState(Bs, F);
> P := P{u}; T := InitTemp(); r := 0;
> while not Converged() do

> Fori:=1toL do

> k := RandomFreeVarldx(Bs, E);
> u := RandomValue(Uy);
> Generate a new candidate state @’ by setting Uy, := u;
> P =1
> for j := 1 to m do /* compute the state probability */
> if @’ € {J;}, then P' := P'xpy;
Compute the acceptance probability A by using the for-
mula (3.3) with probabilities P and P’.
> If RandomNumber()<A, then @ := @’ and P := P’;

> T :=FxT;r:=r+1;

v

Output: MAP state 4, and the corresponding probability P.

Function RandomFreeVarIldx() returns the index of a randomly chosen
variable, which was not instantiated in E. Function Converged() determines
whether the simulated annealing process is converged or not. As in [71, 65],
we consider a SA process converged when the last ¢ generated states have
the same probability. In our tests, we used ¢ = L, where L is the sweepsize
parameter, i.e. the number of iterations performed at each temperature.

In the following, we use the term run for denoting one simulation process,
where the SSA algorithm is completed once, with the temperature going from
its initial value to zero in r iteration steps. As with the BF algorithm, we
assume that one iteration step of the SA algorithm can be completed in O(m)
time units, i.e. in time proportional to the size of the set of probabilities Bp.
It now follows that the total number of time units required for one run is
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approximately O(Lmr). Naturally, the number of iterations completed, r, is
determined by the cooling schedule used, which is in this case determined by
the functions InitTemp() and Converged(), and by the two parameters F' and
L. The annealing factor F' determines how much the temperature is decreased
after processing L iterations at a constant temperature. Although simple,
this type of cooling schedule is very common, and has proven successful in
many applications [1]. It is also empirically observed that more sophisticated
annealing methods do not necessarily produce any better results than this
simple method [65]. The cooling schedule used in our simulations is discussed
in more detail in the next section.

As a comparison to the SSA algorithm, we experimented with the follow-
ing massively parallel algorithm, where the structure of the BMy network used
is determined by using the given BN architecture, as described in Section 5.3.
In these experiments, the parameters \; were determined by using the for-
mula (5.7). As with the harmony network experiments in [81], we noted that
the constant k is not very relevant for the results, as long as it stays relatively
close to 1. In the sequel, the results are obtained with models constructed by
using k =1 — 10712,

Algorithm 6.3
Boltzmann Machine Simulated Annealing (BMSA)

Input: BMs network corresponding to the BN in question,
partial assignment E.

> Permanently fix the states of the feature units X;
whose value is determined in E.

> Z := RandomState(BMjy, E);
> T := InitTemp(); r := 0;
> while not Converged() do

> Fori:=1toL do

> ¢ := UpdatePatternNodes(BMs);
> & := UpdateFeatureNodes(BM,);

> T:=FxT;r:=r+1;

Output: MAP state Z.
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The probability of the resulting MAP state can be computed by multiply-
ing the conditional probabilities p; corresponding to active pattern units.

The functions UpdatePatternNodes() and UpdateFeatureNodes() corres-
pond to processes where all the nodes on a layer are allowed to update their
state simultaneously. In our simulations, we assumed that all the nodes in
one layer can be updated in parallel, and each node can update its state in
O(1) time, and hence the (simulated) total running time for one run of the
BMSA algorithm was assumed to be approximately O(Lr).
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6.2 Cooling schedule

When considering the performance of the SSA and BMSA algorithms, it is
clear that the most critical issue is finding a suitable cooling scheme. Un-
fortunately, the theoretically correct cooling scheme of Theorem 3.10 can not
be used in practice, since the number of iterations required grows too high
even with relatively low starting temperatures: for instance, starting with the
initial temperature of 2, annealing down to 0.1 would require more than 485
million iteration steps.

The problem with heuristic annealing schemes is that if the annealing is
done too cautiously, an unnecessarily large amount of computing time may
be spent. On the other hand, if the annealing is done too quickly, the results
are unreliable. In statistical mechanics it has been observed that during the
annealing process there is a certain temperature at which the rate of change of
the energy is exceptionally high [71]. This critical temperature can be seen as
a phase transition point which starts the freezing process. It appears that for
successful annealing, the cooling should be done very slowly around the critical
temperature. Therefore, knowing the critical temperature would be useful for
speeding up the convergence as the initial temperature could be chosen just
above this point, and the cooling could be done first slowly near this point, and
later faster with the temperature approaching zero. Some attempts towards
analyzing the critical temperature of harmony networks can be found in [104].
In our tests, we adopted the approach proposed in [71] and selected the initial
temperature by an iterative search process: we start with temperature 1,
compute the acceptance probabilities, and double the temperature until all
the acceptance probabilities are within the range [0.5 — €,0.5 + €]. The final
temperature of this “simulated heating” process is then used as the initial
temperature for a simulated annealing process. Following the suggestions
in [65], we typically set e = 0.1.

The cooling schedule of our version of SA can be made slower by increas-
ing the cooling factor F' or by increasing the sweepsize L. In Figure 6.1, we
plot the average relative error between the probability of the final state of the
BMSA algorithm and the true MAP probability as a function of these two
parameters. Each data point corresponds to 1000 annealing runs on 100 dif-
ferent MAP problems (10 runs/problem). The 100 problems were generated
by constructing 10 random Bayesian networks with 16 binary variables, and
by generating 10 random assignments on each network by randomly clamping
half of the variables to randomly chosen values.

In Figure 6.1, the distance between two tickmarks on the F- or L-axis
corresponds to doubling the time used for SA. It appears that increasing F'
to its square root or doubling the sweepsize L will produce an approximately
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Figure 6.1: Relative error of a single BMSA run as a function of the cooling
factor F' and sweepsize L.

equal improvement in the results.

It should be noted that the results in Figure 6.1 were obtained by comput-
ing the error after each individual annealing run. In the stochastic simulation
community, it is generally assumed that one long simulation run produces
better results than several short runs, since the shorter runs never quite reach
the equilibrium state of the stochastic process [118], [1, p. 94]. However, al-
though this assumption may be true in the EVE problem framework, in our
MAP framework the situation is quite different: as our intention is just to
find the MAP state (or a good approximation of it), it is very probably more
sensible in practice to run several shorter runs, and report the best of the
final states of the completed runs, than to perform only one long run, and
report its final state. In Figure 6.2, we plot the average relative error as a
function of the number of runs allowed. The test set consisted of the same
100 MAP problems as above. In these tests, the cooling factor F' was set to
0.66, and sweepsize L was 16.

In the sequel, we use the BMSA and SSA algorithms for solving a given
MAP problem by starting new annealing runs (with a randomly chosen initial
state) until the relative error between the probability of the final state and the
MAP probability is found to be less than 1 %. The time reported for solving
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Figure 6.2: BMSA error as a function of the number of annealing runs used.

the problem, time before success, is the sum of the times used for completing
each separate annealing run. In Figure 6.3, we plot the time before success
as a function of the parameters F' and L. The test set consists here of the
same 100 MAP problems as before. These results suggest that with the MAP
problem the best technique is to use a relatively fast annealing schedule, and
to repeat the convergence process for several times. What is also important
to notice is that this kind of a repetitive computation is parallelized quite
naturally even using conventional parallel platforms (for example, a network
of workstations), as each of the independent runs can be performed on a
different processor at the same time.

As our intention in this study was not to study the efficiency of the sim-
ulated annealing algorithm per se, we did not spend a lot of time tuning the
parameters of the algorithms, and hence the cooling schedules used here are
by no means optimal. In the empirical tests of Section 6.3 for comparing
the performance of SSA and BMSA, we used the same cooling schedule with
F = 0.66 and L = N for both of these methods. As the optimal cooling
schedules for these two methods are probably different, this type of compar-
ison may not be quite fair for one or the other. However, tuning the cooling
schedule to optimum is a tedious task, and moreover, the optimum is depend-
ent on the complexity of the problem in question. Besides, as our intention
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Figure 6.3: The behavior of the BMSA time with different cooling factors and
sweepsizes.

was only to examine the general tendency of the SSA and BMSA algorithms
with increasing problem complexity, we believe that using the same (more
or less arbitrarily chosen) cooling schedule for both of these methods gives
us enough information for this purpose. For the same reason, we did not
experiment with the more complex cooling schedules listed in [73, 1], or with
any of the elaborate techniques for speeding up the convergence speed of the
simulated annealing process [97, 12, 3, 7, 100, 63], but assumed that the pro-
portional speedup gained from using any of these methods would be roughly
equal with both SSA and BMSA.
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6.3 Results

As noted earlier, the primary objective of the experiments was to study the
behavior of the SSA and BMSA algorithms with increasingly complex MAP
problems. The complexity of these problems can be increased in two ways:
by changing the shape of the probability distribution on the configuration
space in question, or by changing the size of the configuration space. We ex-
perimented with three methods for changing the configuration space probab-
ility distribution: by restricting the conditional probabilities of the Bayesian
networks to small regions near zero or one, by changing the density of the
Bayesian network structure, and by changing the size of the evidence set E,
i.e. by changing the number of clamped variables. The size of the configura-
tion space was increased by allowing more variables in the Bayesian networks,
and allowing the variables to have more values.

It has been noted [18] that solving the EVE problem can become very dif-
ficult if the Bayesian network contains a lot of extreme probabilities (prob-
abilities with values near zero or one). However, as already noted in [81],
in our MAP problem framework this does not seem to be true. We experi-
mented by restricting the randomly generated conditional probabilities Bp in
the regions [0.0,6],[1.0 — 0, 1.0], and varied the value of § between 0.5 and
0.0001, but observed no significant effect on the results with either SSA or
BMSA. It would be an interesting research problem to study (analytically
or empirically) how the Bayesian network probability distribution P changes
with the parameter €, but this question is not to be addressed here.

Increasing the density of Bayesian networks not only changes the shape
of the probability distribution on the configuration space, but it also imposes
a computational problem as it increases m, the number of the conditional
probabilities in the set Bp. Since the BMSA algorithm (or actually its ima-
ginary massively parallel implementation) is independent of m, increasing
the density does not affect the BMSA solution time very much, whereas the
solution time of SSA increases significantly (see Figure 6.4). Nevertheless, it
should be noted that we have here extended our experiments to very dense,
and even fully connected networks. Naturally, this does not make any sense
in practice, since the whole concept of Bayesian networks relies on the net-
works being relatively sparse. For this reason, in the sequel we use in our
experiments relatively sparse networks only (which does not, however, mean
that the networks were singly-connected or otherwise structurally simple).

The test set corresponding to Figure 6.4 consisted of 100 MAP problems
on 10 Bayesian networks with only 8 binary nodes. When considering the
results, it should be kept in mind that although the BF algorithm seems
to work relatively well with these small networks, it does not scale up with
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Figure 6.4: The behavior of the BMSA and SSA algorithms as a function of
the density of Bayesian network.

increasing size of the networks (as we shall see in Figure 6.7). For the same
reason, the exhaustive BF algorithm performs well with a small number of
unclamped variables (in which case the search space is small), but as the
number of unclamped variables increases, the time required for running BF
grows rapidly (see Figure 6.5). Both SSA and BMSA appear to be quite
insensitive to the number of instantiated variables. In these tests, we used
100 MAP problems on 10 Bayesian networks with 16 binary variables.

In Figure 6.6, we plot the behavior of the algorithms as a function of the
increasing configuration space, when the maximum number of variable values
is increased. The test set consisted of 100 MAP problems on 10 10-node
Bayesian networks with half of the variables clamped in advance. With net-
works of this size, the SSA algorithm seems to perform only comparably to
the BF algorithm. However, when the size of the networks is increased, the
general tendency is clear: the exhaustive BF algorithm starts to suffer from
combinatorial explosion, and fails to provide a computationally feasible solu-
tion to the MAP problem (see Figure 6.7). The SSA and BMSA algorithms,
on the other hand, seem to scale up very well. In Figure 6.7, each data point
corresponds to a test set consisting of 100 MAP problems on 10 Bayesian
networks with binary nodes, and as before, half of the variables were clamped
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in advance.

These results strongly suggest that the massively parallel BMSA algorithm
outperforms the SSA algorithm, provided that suitable hardware is available.
As can be expected, the proportional speedup gained from parallelization
seems to increase with increasing problem complexity. However, it must be
emphasized again that our SSA realization of the Gibbs sampling/annealing
method is by no means an optimal one, but there exist several ways to make
the SA much more efficient than in the experiments here, either on just a
standard personal computer or workstation, on a network of computers, or on
other conventional parallel platforms. Nevertheless, we believe that these res-
ults show that if suitable neural hardware is available, the BMSA algorithm
offers a promising basis for building an extremely efficient MAP problem
solver.
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Chapter 7

Conclusion

We considered here two different formalisms for approaching the problem of
finding MAP configurations of discrete random variables. The first of these
approaches, Bayesian networks, provides us with an elegant method for con-
structing probabilistic models from domain expert knowledge. Although the
MAP problem can be shown to be NP-hard within this framework, we showed
how a stochastic simulated annealing method can be used for solving MAP
problems approximatively, in the sense that a MAP state can be found with
high probability. However, the standard version of simulated annealing uses
Gibbs sampling for generating new candidate states, which means that only
one of the variables is updated at a time. Consequently, this kind of a se-
quential simulated annealing process becomes easily impractically slow as
the number of variables increases. To overcome this drawback, we presented
three mappings from a given Bayesian network to a stochastic neural network
architecture, in the sense that the updating process of the resulting neural net-
work provably converges to a state which can be projected to a MAP solution
on the original Bayesian network. The first of these mappings used as the
neural network platform a harmony network, which can be seen as a special
case of the Boltzmann machine architecture. The second mapping used a
more standard two-layer Boltzmann machine structure, with homogeneous
processing units. As both of these mappings assumed the Bayesian network
to be consisted of binary random variables, we showed in our third mapping
how to extend the suggested method to Bayesian networks with multi-valued
variables.

The BN-NN mappings presented here can be used for constructing a hy-
brid BN-NN system, where the NN component provides a massively parallel
search algorithm (BMSA) for finding MAP configurations, corresponding (in
a sense) to a simulated annealing process where all the variables can be up-
dated at the same time. However, although the BMSA algorithm provably
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converges to the same final state as the normal sequential simulated annealing
(SSA) would do, the two stochastic processes follow quite different routes on
their way to the same final destination. In particularly, the BMSA process
works in a state space much larger than the state space for SSA, and hence
some of the states during the BMSA process (the inconsistent NN states) can-
not be mapped to a BN instantiation. This means that, first of all, the hybrid
scheme presented here can be used for solving MAP problems only — the
scheme does not apply directly to the EVE problem framework!. Secondly,
it should be noted that as the BMSA algorithm does not actually sample
the BN probability distribution, but another probability distribution on a
much larger state space with equal maximum points with the BN distribu-
tion, on a conventional serial computer, SSA can probably always be made
more efficient than (a simulation of) BMSA (although it should also be kept
in mind that in some cases adding more parameters may make a problem
actually easier to solve in practice). Nevertheless, our empirical results very
strongly suggest that the speedup gained from parallelization is sufficient to
compensate for the loss of accuracy in the stochastic process, provided that
suitable massively parallel hardware is available. However, as we did not have
access to real neural network hardware, the results are based on relatively
small-scale simulations performed on conventional workstations, not actual
neural implementations.

As noted above, without proper hardware, the hybrid scheme presented
here is mainly of theoretical interest, as on a conventional serial computer,
a sequential SA process can probably be made faster than a simulation of
the corresponding neural network updating process. Nevertheless, several
massively parallel platforms for neural computing already exists: a recent re-
view [51, Ch. 3] lists 9 neural network accelerator boards, 13 neurocomputers
with general purpose processors, and 20 neurocomputers built from neuro-
chips. Although not all of these are commercially available at the moment,
it is already possible to buy hardware with quite an impressive performance
for NN applications. What is more, in the next few years the availability of
neural hardware is likely to improve drastically, as Japan started in 1992 a
new 10-year programme under the name “Real World Computing (RWC)”,
which aims at “developing computational bases incorporating massively par-
allel, neural and optical techniques” [67, 99].

From the Bayesian network point of view, the mappings presented here
can be seen as providing an efficient implementational platform for simu-

!Nevertheless, it could be possible to obtain good estimates of the EVE probabilities
by counting the occurrences of variable-value combinations in the final states during a long
series of BMSA runs. This idea, however, is not pursued here further.
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lated annealing. From the neural network point of view, on the other hand,
the mappings provide a way to incorporate high-level, a priori information
directly into neural networks, without recourse to a time-consuming and un-
reliable learning process. The resulting neural network could also be used
as a (cleverly chosen) initial starting point to some of the existing learn-
ing algorithms [58, 35, 36, 55| for Boltzmann machines, in which case the
learning problem should become much easier than with a randomly chosen
initial state. Moreover, the resulting “fine-tuned” neural network could also
be mapped back to a Bayesian network representation after the learning,
which means the mappings can also be seen as a tool for extracting high-
level knowledge from neural networks. From the Bayesian network point of
view, this kind of a “fine-tuning” learning process could also be useful in de-
tecting mutually inconsistent probabilities, or other inconsistencies with the
underlying Bayesian network representation.

Finally, we would like to point out that as any function on a finite, discrete
space can be represented in the form (5.3), the hybrid scheme presented here
can in principle be used as a computationally efficient, massively parallel tool
for solving optimization problems in general, and not only for solving MAP
problems as formulated here. Naturally, the efficiency of such an approach
would largely depend on the degree to which the function to be maximized
can be decomposed as a linear sum of functions, each depending only on
a small subset of variables (corresponding to the cliques in the Bayesian
network formalism). Further studies on this subject are left as a goal for
future research.
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