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Complexity of Simple Nonlogarithmic Loss Functions

Jorma Rissanerkellow, IEEE

Abstract—The loss complexityfor nonlogarithmic loss functions ~ functions differs drastically from that of the bounded ones, and
is defined analogously to the stochastic complexity for logarithmic  these bounds appear to be new.
loss functions such that its mean provides an achievable lower In order to be able to calculate the loss complexity we con-

bound for estimation, the mean taken with respect to the worst id inlv th lled simole | functi 6l f hich
case data generating distribution. The loss complexity also pro- Sider mainly the so-called simple loss functions, [6], for whic

vides a lower bound for the worst case mean prediction error the normalizing coefficient
for all predictors. For the important a-loss functions|y — §|<, .
where y — ¢ denotes the prediction or fitting error and « is in 7, = —A6(y, h(=;6)) 4
. . A e Y
the interval [1, 2], an accurate asymptotic formula for the loss —oo
complexity is given. ) . ) .
does not depend annord. This class is seen to include the im-

portante-loss functiong(y, 4) = |y — g| for positivea, [13].
Fora intherangd < o < 2, we derive an accurate asymptotic
formula for the loss complexity. We also determine the optimal
I. INTRODUCTION parameten\ as a function of the data, in which case the lower
N [13], Yamanishi defined aextended stochastic complexit)})our_]d for the worst case mean loss is given by the loss com-
for a variety of bounded loss functions as follows: plexity |t_self rather than by |ts_mean_. The formula for the_ loss
complexity provides a convenient criterion for the selection of
1 | AT Sy, b 9)) model classes, in particular for the abso_lutg_value error function,
DY n/“(e)e =t df (1) where the lack of everywhere differentiability has been an ob-
stacle in the past. These results allow us to generalize an earlier
whereg = h(z; #) is a parametric estimate or predictionygf prediction bound for Gaussian autoregressive moving average
andé(y, §) measures the distance betweeand its estimate; (ARMA) processes in [9], which further shows that the lower
7(6) is a prior density function for the parameters ani$ an- bound for prediction and estimation, much as the stochastic
other positive parameter. The main justification for this definicomplexity, is not restricted to a single worst case data gener-
tion is that its estimation with predictor functions was showating distribution, but it actually holds in essence for a wide class
to give effective learning algorithms such as the aggregatinfdistributions.
strategy for computational learning theory introduced by Vovk The loss complexity for simple loss functions turns out to
[12], who also pioneered the mixture of type (1). With Laplaceconsist of the minimized loss and a term that can be viewed
method of integration ,Yamanishi further derived an asymptotis the ideal code length for the optimal parameters, suitably
expansion, which gives an upper bound for the predictive estieighted. The extended stochastic complexity, also, was shown
mation associated with the extended stochastic complexity @nd13] to admit a similar asymptotic upper bound, where the
for the batch-mode loss; i.e., one resulting from estimators cosecond term was a weighted real code length for the optimally
puted from all the data. In [15] and [14], Yamanishi showed fuguantized parameters.
ther that the extended stochastic complexity attains a min-max
cumulative prediction loss under specific restricted loss func-1l. DISTRIBUTIONS INDUCED BY SIMPLE LOSSFUNCTIONS

tions, where the maximum is taken over sequences. Consider a sequence of observed dgta ") = (y1,21) - - -
Inspired by these works, we define an extension of stochastg, z,,), wherez, = z; 1 ..., x¢ m are vectors of real-valued

complexity, which we calloss complexityin a way analogous components and alsg, are real numbers. We are interested

to that of the stochastic complexity [10] and [11], namely, SUGR modeling the data generating machinery with a parametric

that its mean provides a lower bound for the mean accumulaﬁgﬁctiong = h(z; 0) to capture the statistical relationship be-

loss. The mean is taken with respect to the worst case data gefgéen the two data sequence’s andy™, the parameterg =

ating distribution in a class that need not coincide with the clags .. 4, ranging over a subsé? of the k-dimensional Eu-

of models defined by the loss function. The loss CompleXiuidean space. As a ru|e, we take this as a Compact set and

gives also a lower bound for the worst case mean prediction erginote its interior by2°, which throughout is assumed to be

resulting from any predictor. The analysis of the unbounded laggnempty. To measure the inevitable deviations between the ob-
served values and their predicted or fitted values a loss function
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The loss function defines a probability model, conditioned antegral (4) with respect td we get for ally of typey = h(z; 6)

z, as follows: and all positive\
p(ylz; 6, \) = Z/\_,le(m)ef)“s(y"h(m; %)) 3) Eg 26(Y, 9) = —ZA/ZA (12)
where) is another positive real-valued parameter &hdy(z) WhereZy = dZ,/d\ and Ey, 5 denotes the expectation with
the normalizing constant respect t(y|z; 0, A). That the order of the differentiation and
- integration may be switched can be seen by the very definition
Zx.o(x) = / e~ MW, h(:0) gy (4) of the derivative. We also follow the custom to denote random
’ —0 variables by capital letters while using lower case letters for data
assumed to exist. Extending this model to sequences by inaglngs' Further, lex(y™, 2", 6) minimize the ideal code length
pendence, we obtain for eagha class “lnp(y™l"; 0, X) = AL(y"|z™; 8) + nln Zy (13)
Nl . k . . .
Mk ={p(y"|z"; 0, A): 0 € Q@ C R"} and suppose that for all values¢f andd, the derivative with

of probability models respect to\ vanishes ah = A(y", 2", 0)

p(yn|mn7 9, /\) — Z;lg(mn)ef)\L(y” |z™; 8) (5) L(y |.'l? ; 0) + nZ;\/Zi =0. (14)
Then, because of (12)
where
L(y™|z™; 0) = E,  L(Y"™|2™; 0 (15)
Zy,9(z") =H Zx,0(xt). (6) (y"| ) 0, (Y| )
t

where the expectation is taken for the fixed vallie =
Of particular interest to us are the loss functions, calletble  A(y", -'17",_9)- _ _ .

in [6], whereZ), o(z) = 7, doe§ nol; depend on the parameter Next, differentiate the integral (8) with respecttor he result
# nor onz. For them the estimate= (y", z") that minimizes s for all A
the loss (2) is the same as the maximum-likelihood estimate th B Y n n
minimizes the other loss function for this class, the ideal cod pon LY (2" 6(Y™, %)) = —Bu,A(2")/Bn,A(2") (16)
!enlgtgln 1(]1" (%’TL"”T;; e’b.)‘)' Thg,\ classhpfhs(;gple loss 1Eg.nc_t'OnswhereB,,,, A(@") = dB,, A (z")/d) and the expectation is with
inclu esdt e loss hor inary data whic (I)r nﬁ_ prfe |<_:It|onI respect tgi(\) = p(y"|z"; A). LetA = A(y", z") denote the
error and unity otherwise. More importantly, this family alsQ,. e of \ that minimizes
includes all loss functions of the form

X o AL(y"[&™; 6(y", ")) + In By, z(2") (17)

oy, ) =1ly—91%,  a>0 )

_ _ and assume that at
called a-loss functions, [13], for which a formula for the nor-

malizing coefficient is given below. Notice that the important  L(y" |2"; 6(y", ")) = —B,, 5(z")/B,, 5(z") (18)
quadratic loss function is a special case, giving rise to the normal ) ' '

distribution, and so is the absolute value loss functiomfer 1, for all values ofy™ such tha¥(y", ") € Q°. Then

in which case (3) gives Laplace’ distribution. . Arm ntm. Arom m

If the integral L(y™|z"; 0(y™, 2™)) :Ep(X)L(Y 2" (Y™, 2™))
: o =-B, x(@")/B, x(="). (19)
/ e~ ALW" =" 0(y", =) dy™ = B, A(z") (8) _ _ o
f(ym, zm)eqe To conclude this section, we show that the distributipns

(y|z; 6, A) are maximum-entropy distributions. The simple

is finite, we can define the normalized maximum—likelihootgroof is similar to that given in [3, Ch. 11]. Consider the problem

(NML) model, [2], [10]

) AL " B(y™, =) mgax E,In1/g¢(Y) (20)
ply"E™; A) = B (o C) o
A (") where the maximization is over gllsuch that
_ 2l 9%;}” LN ) Eyb(Y, h(; 6)) < B,8(Y, his; ).
n, A

We have first by this restriction on the density functigns
where

E,In1/p(Y|z; 0, \) = \E,6(Y, h(z; 0)) +InZ\ < H
Cor (&) = Bu A(2")) 20 any /p(Y] ) g0(Y, h(z; 0)) x < H(p)
) ] ) where H(p) denotes the entropy af(y|z; 6, A). Then, by
We derive next a few important properties of the models ighannon'’s inequality, the entrogy(g) of ¢ satisfies
the classM _, for a simple loss function, which are shared by

the exponential family of densities. First, by differentiating the H(g) < E;lnl/p(Y|z; 0, \)
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the right-hand side being upper-boundedfbfp). The equality stronger inequality bounds we should not let them be just any
is reached withy = p. This result generalizes the familiar factdistributions, and in light of (16), we restrict them to the set

that the normal distribution with variane€ has the maximum

entropy among all distributions whose variance does not eX{}, ") = {gi E,L(Y"a"; §(Y", z"))

ceedo?.

. LossCOMPLEXITY

< =By A(3")/Ba a3} (30)

where the right-hand side of the inequality by (16) equals

In[11], we showed that the NML density function solves thés; ) L(Y™ |z"; g(y™, z")). This restriction for the data

min-max problem

p(Y"|&"; 6(Y", "), )
q(Y™)

(21)

min max FgIn
g g

whereq andg range over a wide class of distributions, in pal
ticular, not restricted to independent and identically distribute

(i.i.d.) distributions, and the min-max valleC,, »(z"), (11),

is reached foy = g = p(y™|z™; \). Consider the analogous

min-max problem
min max E Ly (Y"|2") — L(Y"|2"; 6(Y", 27))] (22)
g9
where

Ly(y"[&") = 6(yes G) (23)

and; is obtained either by a predictgy = fi(y'~ !, "),
f1(»°, =) = 0, or a more generagstimatorfunction j; =

r_

generating distributions is quite natural if we bear in mind
the role of the parametek, which in case of the normal
density functions is inversely proportional to the variance; it is
characteristic of the size of the typical loss functions modeled
for the data. For a large value af the bulk of the probability
ass modeled is for data with small loss ainck versaHence,
in the setG(\, ™) we want to include only the data generating
density functions that we consider to be “relevant” for the
data we have selected to model. This is also analogous to the
restrictions taken in the maximum entropy problem (20), where
the data generating distributions are restricted not to exceed the
mean loss.

We have the following theorem.

Theorem 1: For all positive) and for all estimatorg € F
of the form (24),
E,Ly(Y"™z™) + X nCy 2 (2™)

max
gEG(A, z™)

> By L(Y™ 2™ (Y™, 2)) + A" In G, 5 (2™).  (31)

ft(y™, ™). Specifically, we consider estimator functions of the
formg = f(=; ), where the parameter ranging over a subset The equality is reached for

¥ C R™, hasm componentsy < n. With77(y™, ™) denoting
any estimate of the parameter we then write

9 = f(ze; n(y", ")) (24)

Denote byF the set of all such estimator functiorfis
We have

/\EgLf(Yn|.'l?n) +In Bf7 n, )\(.'L‘n)

— (AE,L(Y"|z"; O(Y™, 2)) + ln B, A(z"))  (25)

= D(gllps) — D(gllp(})) (26)
whereD(-||-) denotes the Kullback—Leibler distance
w23, for f a predictor

Bynal@") = {Of,n,,\(a:")Z’;? for f an estimator ?")

and
Crnr@) =2 [ T gy (28)
(yn, zn)ew

assumed to be finiteg° denotes the interior of). Further,
p(A) = B(y"|z™; A), (10), and

o= ALy (y"[a")
By a(2")

The role of the data generating distributiopss to model

pr= (29)

the statistical restrictions in the data, all of which may not be
captured by the models in the class, . Hence, we should not

f(@e; n(y", 27)) = h(z; 0(y", z7)).

For all positive A and all predictors of the forng, =
ft(yt_1> ‘Tn)> fl(y07 zn) =0

jlmax EyLi(Y"|z") > Epn) L(Y"|z"; O(Y", z))

A" In G, a(z"). (32)

Proof: By (16)p(A) is in G(A, ™), and
E,Li(Y"™2™) > Ey\Ls(Y"|Z"). 33
e

In view of (26), (11), and (27), the inequality (31) is equivalent
with

max
geEG(A,

,{D(gllps) = Digllp(A)} 2 0. (34)
Sincep(A) is in G(\, ™), the left-hand side is lower-bounded
by D(5(N)||ps). which is nonnegative. Clearly, the equality is
reached fop; = p(N).

Further, for predictors

DBMlpy) = AEp) [Ly (Y z")
—L(Y"™z"™; 0(Y™, £"))] —InC,, A(z") >0 (35)
which gives the claim. ]
An

indication of the loss on the data at hand is

restrict the distributiong to the setM ;. However, to obtain L(y™|z"; 9(y”, z™)), and by picking A in view of (19)
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as), the theorem gives lower bounds which are relevant for theAs a final comment, we mention that the inequalities in

observed data; the sét(\, ") gets replaced by Theorem 1 hold not only for the worst case data generating
distribution but for almost all distributions in the family/,,.
Gy, z") = {g: E,L(Y"™z"; (Y™, ")) We prove this later for the-loss functions, which are analyzed

R in detail in the following section.
< Ly"a"s 0", =)} (36)
IV. a-LOSSFUNCTIONS

In view of Theorem 1 we define ) o o o
We begin by giving an explicit formula for the normalizing

~ 1 .. _ . . .
Ly |z") = L(y"|a"; d(y™, £)) + ~ InCp A(z")  (37) coefficient fora-loss functions, obtained from the integral [5]

A
to be theloss complexityf the data(y™, "), relative to the /OO et°=1 dt = [(a)
model classM;, 5. Similarly, relative to the model class 0
M = {py™z"™; 0, \): 0 € 2, A > 0} (38) with the change of variablegs= Au®
the loss complexity is defined to be fus = /oo Al gy /oo M-l g,
~ 1 —oo —o0
I(y"|a") = L(y"|a"; 0(y", 2")) + +~InC, 5. (39) 9

Remarks: The termln C,,, »(z™) in the loss complexity (37)
can be interpreted as the logarithm of the number of “distin;

. - o -~ =~ Here,I'(«) is the gamma function. With such models we write
guishable” models [1]; i.e., models that can be dlStIthIShede_ i = h(z, §), whereh is a function vanishing & = 0.

n i K=
from dataz™ in SU(_:h amanner that_the pr_obaplllty of error 99€H order to simplify matters we take this function as the inner
to zero asn — oo, See also the discussion in [1A1].' Hence, 'broduct&’:ct. A generalization to other functions is possible,
may be viewed as the code Ieng_th for the paramﬂétqsr effect qut for our results it would require assumptions that make them
optimally quantized, .needed tq |mplemer)t the optimal mOd%ehave like the inner product. Extend the so-defined density
The parameteh provides a weight by which the code Iengﬂ}unction
for the model is converted into lossbeing the optimal weight.
In [13], the extended stochastic complexity, too, was shown to Palylz; 6, \) = Z71/\e_x|y_9'm|a
admit an asymptotic expansion as the sum of the minimized ' @
accumulated loss and a term which is upper-bounded by @sequences by independence with the result
explicitly calculated code length for the parameters, written
to an optimal precision and weighted by\. This makes the
extended stochastic complexity afhg(y"|2") close for long
data strings. In [13], no explicitly optimized value far as
a function of the data string was determined. Rather, it wasd denote the family of such models as
replaced by an asymptotic expression.

In case of the logarithmic loss, the interpretation of the wak = [pa(y|z™; 6, \): 6 € Q C R¥) (42)
stochastic complexity as the sum of the negative logarithm o s -

of the maximum likelihood and the ideal code length for . . P
the parameters is natural, because both are code lengths '4YAEe<? is @ compact subset @™ with nonempty interiof2°.

hence expressed in the same units. Moreover, since the codgPr @-0ss functions, the mean loss (12) can be evaluated for
length for the parameters must satisfy the Kraft inequality aﬁ;') pas

such two-part code length provides a natural requirement for 1

the estimator functiong, = f.(y", ") to be admissible in Eo 0 AlY — pl|* = Y (43)
providing a fair comparison of the losses; the density function

they define must integrate to unity. In case of a nonlogarithmighere the expectation is with respecta(y|z; 6, A).

loss function there is no obvious normalization requirement for Denoting the normalizing constant (11) by, . x(z"), we

the estimator function, and one may wonder why not permit tii@ve with the restriction < « < 2 an accurate asymptotic
“perfect” estimator defined by, = 4, which gives zero loss. formula for it, which permits calculation of the loss complexity.
On intuitive grounds it is reasonable to demand for a fair loddhe result is in the theorem proved in Appendix A.

comparison that the estima_tor function must be described in 8rheorem 2: For the model class/
decodable manner, but adding the code length of the parame
to a non-code length loss appears arbitrary. The inequality (31
provides the required normalization, and we call any estimator n
realizableand its accumulated mean loss, the left-hand side of n ! Z Tz, — X >0 (44)
(31), achievableif it satisfies this inequality. =

Paly"la™; 0. 3) = Z, e 2 =T a)

o,k et Q be a closed
dnded subset gt* with nonempty interio£2°. Further let
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asn — oo. Then for all positive and« in the intervall <
a <2

InC, o A(z")

Eln 22 4+ In(|S]V219)) + o(1), fora =1
na(a—1 a
—{ km [4<2ﬂ ) )2/
r'(1-1/a)|Z|'2|Q
RO 4 o(1),  fora> 1
(45)

where|2| denotes the volume ¢t.

Remark: The condition (44) is typical for regressionstraightforward way.
problems, where the rows of the matfikxare defined by the
inner products of the basis vectors in an infinite—dimension@
space such as the polynomials, sinusoidals in Fourier seriest

wavelets. o
We recall the definition o = A(y™, ™) as the value of

that minimizes (17). By Theorem 2, itis clear thatitis closeto &

the value, say\ = A(y", =), that minimizes

AL(y"|a"; O(y", ™)) + 10 B), , »(z") (46)

whereB,;, , \(z") = Z}C), , \(z")andC; , \(z")denotes
the normalizing coefficien,, . x(z™) in Theorem 2 without
the remainder term(1). In fact, we show in Appendix B that
A=X+6, (47)
wherel6,,| < o(1/v/n).
Our main theorem is as follows.

Theorem 3: Let L(y"|z"; §) be positive, and let
A= (n—k)/(aL(y"|="; §))

whered denotes the fixed parametéfy™, z"). Then for allo
in the intervall < « < 2 and for all estimators (24)

max E,Lg(Y"|z")) + A~ 'in Ctinal s(z™)
geG(ym,z™)
a

n—=k

> Liy"[z"; 6) [1 SN on,a7k<m">]+o(<ln n)/)

(48)
where

Cf,n,a,X(-"’n) = Z;Tn/ e~ (" E™) dy"
n(ym,zn)eve

finite or not, and@(y", z") is defined as

N

G(y", z")
={g B, L0l 60", ) < Lyl B)} . (49)

The equality is reached fof(z,; 7(y", ")) = z'0(y", z").
Further, for all predictorg;,; = f(y?, ") and ally™

max

: E,Lp(Y"|z") 2 L(y"|2"; 6)
geG(ym, ")

(07

n—=k

[1+ 1nCn7a7A} +o((Inn)/v/n). (50)
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We emphasize again that the data generating distribugions
are not restricted to i.i.d. distributions.
Proof: From Theorem 1 with (19)

max

max B Lp(Y"|z")) + A" InCy, , x(2")
geG (X, zn) T

> L(y"|z"; ) + A" InC,, , 5(2"). (51)
We need to express ! in terms of L(y"|z"; f(y", z™)).
This is done with (47), where\ is written in terms of
L(y™|z"; 0(y", ")). With the behavior oflnC, . x(z")
from Theorem 2 we get the claim (48). The rest follows in a
O

By providing the reachable lower bound for estimation the
ss complexity with Theorem 2 provides a criterion for selec-
iGh of model classes

(07

{L(y |z"; 0) [1+n_k

min InC, , )\(x”)] } . (52)

We show next that the worst case bound for predictors in The-
orem 1 is not an isolated case, for the same bound in effect holds
even when the mean is taken with respect to most of the data
generating distributiong, ¢.» = pa(y"|2™; 6, ), (41). We
also have an easy generalization of the inequality for the mean
guadratic prediction error for Gaussian processes in [9]; a some-
what different generalization of the quadratic error bound is in
[8, eq. (32)].

Theorem 4:Let i, = f,(y'~!, ") be any predictor. Then
for all « in the interval[1, 2] and all positiver, the inequality

1

- EPQ, 0, ALf(Yn|zn) >

n ~ al
holds forn large enough and for dl € €2, exceptin a set whose
volume goes to zero asgrows to infinity.

Proof: Consider

(1 +(k—e) %lnn) (53)

Pa, 6, x
pr

E

Pa,6, )

=\E

In Pa,0, X

(Ly(Y"[2") = L(Y"[2"; 6)).

As stated at the end of Appendix A, the Central Limit Theorem
holds for the family{p. (y"|2™; 6, A)}, which implies the con-
dition required for [9, Theorem 1] to hold. Hence, the right-hand
side exceedé;—f In n with the quantifications given. With (43)
we get (53). O

The question remains of how tight the lower bound in
Theorem 3 is for prediction. This is tantamount to the question
whether the mean stochastic complexity can be reached predic-
tively in an asymptotic sense. The lower bound can be shown
to be reached asymptotically far = 2 in the case where the
data generating model is in the class; », because then

Ep, . (Y™, 2") = 6)(O(Y", z") — 6) = O(1/n).

In general, however, the problem appears to be more difficult
and we settle here for an example. The reachability of the lower
bound in the almost sure sense for Gaussian autoregressive (AR)
processes was shown in [7]; a good survey of predictive coding
for a number of loss functions other than thdypes is [8].



RISSANEN: COMPLEXITY OF SIMPLE NONLOGARITHMIC LOSS FUNCTIONS 481

Example: Let « = 2 and take the predictor as the arithmetic APPENDIX A
mean of the past data EVALUATION OF Cj, o, 2
1 d In [10], conditions were given under which the quite accurate
Je1 = fe(y', &™) = n Z Yi = Y- asymptotic formula for the normalizing coefficient for the NML
i=1 density function, in our cas@,, ., », holds
Write k
\ Crion = gl +1n [ VIO +o(1)  (55)
u Q
Le(y") = (e — i) _ L _ _
= where|I(#)] is the Fisher information to be given below. The
and validity of the formula requires conditions on the density func-
o n . tions of the family considered, all involving at least two times
L(y"™ gn) = D (% — Un)™ differentiability with respect to the parameters. Thoss func-
t=1 tions are not even once differentiable at the origin for all values
We have the identity of a of interest such as = 1. We overcome this obstacle by

considering the modified loss functions as follows:

t 2
Li(y™)=1L n s i e, fore > ¢
o= e ) e
t=1|s=1 a'e* +be’ +de* +de, for0<e<e
t (56)
B ; (ys ot 21: U‘) " wherecis a parameter taking small values, in the limit even zero.
o Because of symmetry itis enough todginge through nonneg-
Let E,Y; = pandFE,(Y; — p)?> = o2. Then ative values only. The coefficients of the fifth degree polynomial
N o required are determined such thatcat ¢ the two pieces of
E,Ly(Y")=E,L(Y"; Y,) the function, . (¢) have equal values including the first three
t—1 2 derivatives. This gives for the scaled coefficieats= o’ 2,
+Z ; — ) -1 (Y; u)] b=be3"% c= et andd = d'e>~“ the equations
9 l=a+b+c+d
t 1 t
-E, (YS_N)_¥Z(YL-_M)] : a =2a+3b+ 4c+ 5d
s=1 1
afa—1) =2a 4 6b + 12¢ + 20d
Further
) ala —1)(a — 2) = 6b + 24¢ + 60d. (57)
t t
1
E - = Y; — The solution is given b
) ; - 21:( ) given by
t—1 =(3 - 1 2 — 7 —
=to [( 1/t) 5 }Z(t—l)(ﬂ (54) a=(3~-a) +6( a)(7—«)
and fort > 1 b=—(2—a)[14+0.5(3 —a)(6 — a)]
. i1 2 c=052-a)3-a)(5—a)
1
EgZ (Ys —H— (}/L _II’)> -1
= t—14 d:?(Q—a)(S—a)(ll—a)
t—1 2 . .
and the polynomial part in (56) by
=k, (Yt—/ﬁ)—mZ(Yz—M) +(t —2)0” ) s . )
1 _ « E a E « E [ E °
o fote) = () 0 (3 e () e (2)”
=\77 +t— 0. (58)
Hence, By adirect evaluation of. . (e) foranumber of different values
n of « in the intervald < o < 3 we verified that it is nonnegative
E,Ly(Y™) =E,L(Y"™; Y,) + o2 1 and zero only ay = 0, which fact, however, is not required for
! ! —t-1 our analysis.
= E,L(Y"™; V,)) + 0% Inn + O(1). Consider then the class of density functions
By (54) E,L(Y™;Y,) = (n — 1)o?, and by puttinge? = Ma,x e ={pe(y"|z"; 0, A): 0 € O}

(1/n) 37 (y+ — 5 )? we see with the formula fdn C,,, o, » (™) where
in Theorem 2 that the lower bound in Theorem 4 is reached
asymptotically to within a constant. pe(y"|x"™; 0, X) = 2"\ _AZ Leia(yi=t'z1)
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and (2, as before, is a closed and bounded subset’ofvith  where the subindexes in the polynomjal,(y) are dropped.
Q° as its nonempty interior. Notice that we restrict the predict@y expanding
functionh(z; #) = 6’z to be linear, which is not unreasonable.

The conditions in [10], under which the expansion (55) holds, MW =1 Af(y)+ 1N y) - (66)
are for the model clas$1, », . as follows. .
Conditions: we get with (58)
1) The elements 92 Y, L, o(y: — 0'2:)/06;09; defining CAMW) gy — lta
the matrixI(y™, 6, ¢) are continuous if2°, and 0 ¢ dy =e+0(e™). 67)
L.(0,¢)=EI(Y", 0, ¢€) In the second integral in (65) put= A\y® and apply (64) and
A { 62 ZLe,a<Yt - glxt) } (63) to get
06;00; —Ay® 1 o
" 7 /E e dy:Za,)\—m'y(l/a, Ae)

(59)

where the expectation is with respecipt@y™|z™; 0, A).
Moreover, the limit satisfied < ¢; < |I(6, €)| < c2 for  Hence, with (40)
all g € Q°, and 5
— I+ay _ 14a
1106, )] db < oo. (o)  Fore = Zor O = e DL/ + O(T).
Qo (68)
2) The maximum-likelihood estimator satisfies the Central In order to verify Conditions 1)-3), we need to evaluate the

Limit Theorem: The distribution of = /n(A(z") — ¢) first three derivatives of.. (y — 0'z). Fory — 'z > e they
converges to the normal distribution with mean zero arff€ as follows:

=Zo r—c+O(1?).

covariancel ~1(0, ¢) for # € Q°. (Because of the com- OLc oy — 0'x) a1
pactness of? the requirement in [10] that the convergence g = laly-0z)*z (69)
is uniform is not needed nor was used in the proof.) L. . (y - 'z)
3) Finally ool Z 78 _Nafa—1)(y — 0'z)* "2z’ (70)
. 00; 00 ;
I(y",0€) DL (g 0'z)
%Y Le,o(ye — 0'my) T ey = TT) —da(a—1)(a—2)
A 7 90; 00; 00,
=— <Cyp<oo (61) J
n 08; 00 - (y - 0'z)* iz jay. (71)

where Cy is a positive-definite matrix, ang™ is such For0 < e = y — #'z < € they are
that the maximum-likelihood estimate= 9(1/ ") €

2°. In addition, and most stringently, the famlly of the OLe,a(e) =-\f(e)z (72)
elements o
0?Le o(y — 0'x) .
A O leay —0E) | _ '
Iij (yn, 0(5)7 6) = E 0* Z Le, a(yt - let)/agz af] { 00; 093 } o )\f(e).’t.'lf (73)
t
3L _
(62) Ploaolu=V2) _ i p(e)/(dey'aiasme (70
forn>1,1<14,j <k, as a function of the normalized i V5 Ok
variable¢, wheref (&) = 6(y™, ")+ £/+/n, is equicon- where
tinuous att = 0. ] ) 3,2 a3 .4
We verify that the members of the model famityt,, »_ . sat- f(e) =2ae® "e + 3be™ "e” + 4dce™ e + 5de* e
isfy these conditions for < « < 2, and we prove Theorem 2 (75)
for the original family M., x. In the proof, we use repeatedly F(e) =2ae"2 + 6be™ 3¢ + 12ce*4e® + 20de” 5 ¢?
the formulas [5]
. (76)
/ e~V dt =T(a) — y(a, ) (63) d*f(e)/de® =6be® 3 + 24ce® e + 60de> Pe?. (77)
(, 7) = > et gy The elements of the matrik(y™, 6, ¢) in Condition 1) are
N T) = 0 clearly continuous if2°. Denote their expected value needed
z® ot 2ot2 64 in (59) bym., which with (70) and (76) becomes
=% atioary @Y )
_ Y _
We evaluate first the normalizing constant =200 [/0 ) dy + oo = 1)

Zare= 2/ e M) dy+2/ e dy  (65) / e Ay 2 dy]. (78)
0 Je €
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Introducef (e) from (58) into (66), multiply the result with the which follows from (69) and (72). To verify the second in-
second derivative from (76), and integrate term by term to gequality note that
the first integral

I*pe(ylz; 0, A)’

/ L= M)+ 5320 -] fly 09; 06
0 0% Inp.(y|z; 0, \)
= (2a 4 3b + 4c + 5d)e* ™ + O(2* ) = pelyle; 6, 4) {‘ 6; 09, ‘
=ae® P+ O(7h). Olnp(ylz; 6, \)||0lnp(ylz; 0, N)
+ 00; 06 '
Fora > 1 putt = Ay® in the second integral in (78) and apply ' !
(64) and (63), which withs = 1 — 1/« gives The integral of the first term is finite by (70), (73), and (76),
oo while the finiteness of the integral of the second terms follows
/ efxy&ya—z dy from (69), (72), and (75).
Je Further, Cramer’s condition
= —5[(8) — (B, Ae?)] (79) 3 /
a)? 0°Lo, (y—10
a)\ /Pe(y|x; 0, ) W dy <oo  (85)
1 6] 1 UV k
e {m —1fa) - ey O(e"‘)} . (80)
o o - needs to be verified. From (71)
By combining the two integrals and substituting the expression 0o
of Za, x, € we get / e Y B dy < 737, 5k
A2, fora =1 ‘
2/a “ and from (58) and (77) we get
me = g@l eyl =D (1—1/a) ®1)
)\1 l/a a—1 + O(€G>]7 for > 1. ef)\f(y)(GbEafS + 24C€a74y+ €™ 5 2) dU
The convergence (59) in Condition 1) is satisfied with the0 = (6b + 12¢ + 20d)e>~2 + O(¢2*~2).

assumption (44)
1 , Hence, the inequality (85) holds. Finally, the Fisher information
In(0, €) = me > mai —mI=1(0,¢) (82) matrix(a, ¢) is clearly bounded and positive definite, and by
t Cramer’s conditions [4], the Central Limit Theorem holds for

asn — oo. We also see that the family {p.(y|z; 0, \)}.
To verify Condition 3) we get from (73) and (76) for
106, ) — 1(6) ale— 1)A/T(1 - 1/a) (83) g — 0'z, < e
R — = =~
. I(1/a)
8 Le a - 0 —
ase — 0, sothatthe limit may be taken as the Fisher information — Z aeytaa 2t) =0(e*?)

matrix of p(y|z; 6, A) even though the double derivative does
not exist everywhere. Sinck#d, ¢) does not depend ofi and
since(2° is bounded the rest of Condition 1), (60), is satisfied.
_ We next verify Condition 2). The maX|_mum -likelihood €S- 925 L. o (ye—0'z:)

timates of a scalar-valued parameter satisfy the Central Limit t _ Aa(a—1) Z( 03
Theorem, provided Cramer’s conditions, [4], on the differentian 00; 04; N - ot K I
bility of the likelihood function are satisfied. The proof extends
to vector-valued parameters provided the conditions hold com-
ponentwise. These conditions require in the present case, first,
that L .(e) is three times differentiable in the interior 6% where the last inequality holds far < 2. Hence, Condition 3)
which itis. Secondly, we need to show that the absolute valuedigds forl < a < 2.

the first two derivatives of the likelihood function are mtegrablg To complete the proof of Theorem 2 notice first that for

while by (70) fory, — 6’2, > ¢

S O(€a72)

veryy
Ipe(ylz; 6, A)
—=——1d
/o 96, y<oo pe(yla; 6, X) — p(ylz; 0, \)
/ 9%pe(ylz; 0, A) dy < oo. ase — 0. By [10,.Theorem 1], (55) holds for the fa_mily
Jao 00; 00 ; M. x. e, wherel(9) is replaced byl (6, €) in (82), and letting

e — 0 we get with (83) the formula in Theorem 2.

We conclude this appendix by showing that the Central Limit
Theorem holds for the maximum-likelihood estimates in the
family M, . In fact, let A be an open set in the parameter

The first inequality is equivalent with

OL, (y—0'z
/ pe(ylm; 0, A) ‘#

06, dy < o0 (84)
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space, and put. = /n(f.(y™, z") — #), whered, (y™, ") de- By expanding the logarithm into Tailor series we get
notes the maximum-likelihood estimator in the famiy, . ».

N

Similarly, put§ = /n(6(y", ") — 6). Then, by (67) and (68) N — X 1
0<O0 _— <o
A n—k
[ nrs e a0 0y
Jé6.EA JbEA . . .
which implies (47).
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