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In this paper we are interested in discrete prediction problems for a decision-theoretic setting, where the
task is to compute the predictive distribution for a finite set of possible alternatives. This question is first
addressed in a general Bayesian framework, where we consider a set of probability distributions defined by
some parametric model class. Given a prior distribution on the model parameters and a set of sample data,
one possible approach for determining a predictive distribution is to fix the parameters to the instantiation
with the maximum a posterioriprobability. A more accurate predictive distribution can be obtained by
computing theevidence(marginal likelihood), i.e., the integral over all the individual parameter instanti-
ations. As an alternative to these two approaches, we demonstrate how to use Rissanen’s new definition of
stochastic complexityfor determining predictive distributions, and show how theevidence predictive dis-
tribution with Jeffreys’ prior approaches the new stochastic complexity predictive distribution in the limit
with increasing amount of sample data. To compare the alternative approaches in practice, each of the pre-
dictive distributions discussed is instantiated in the Bayesian network model family case. In particular, to
determine Jeffreys’ prior for this model family, we show howto compute the (expected) Fisher information
matrix for a fixed but arbitrary Bayesian network structure.In the empirical part of the paper the predict-
ive distributions are compared by using the simple tree-structured Naive Bayes model, which is used in
the experiments for computational reasons. The experimentation with several public domain classification
datasets suggest that the evidence approach produces the most accurate predictions in the log-score sense.
The evidence-based methods are also quite robust in the sense that they predict surprisingly well even when
only a small fraction of the full training set is used.
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1. Introduction

In discrete prediction problems the task is to select one action
from a finite set of possible alternatives. All possible outcomes,
corresponding to the set of possible actions given, result in some
gain or utility, the value of which depends on the correct (but
unknown) action in the decision problem in question. From the
decision-theoretic point of view (see e.g. (Berger, 1985)), the op-
timal procedure in this case is to choose the action with themax-
imal expected utility. To be able to maximize the expected util-
ity, one needs to determine thepredictive distributionfor all the
possible actions, by using the problem domain probability dis-

tribution. In real-life situations, however, the problem domain
probability distribution is not known explicitly, and it has to be
estimated from sample data and (possibly) some prior informa-
tion. In this paper our purpose is to compare different alternatives
for computing the predictive distribution in such a context.

Here we will assume that the probability distributions to be
considered are restricted to a limited set of discrete distribu-
tions defined by some fixed parametric model form. Given some
sample data (thetraining data), and an incompletequery vector,
where the values of some of the problem domain variables are
not given, the task is to compute the predictive distribution for
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the missing part of the query vector. In themaximum a posteri-
ori (MAP) approach, the predictive distribution is determined by
using the model (i.e., parameter instantiation) with the highest
posterior probability, given the training data and a prior distribu-
tion for the parameters. In theevidenceapproach, the predictive
distribution is obtained by integrating over all the possible para-
meter instantiations, in other words, over all the distributions rep-
resentable by the chosen model form.

As pointed out in (Rissanen, 1989), in information-theoretic
terms, minus the logarithm of the evidence integral can be re-
garded as a formalization ofstochastic complexity (SC), i.e., the
shortest possible codelength for coding the data with respect to
the chosen model form. Recently Rissanen (Rissanen, 1996)
has introduced an alternative coding scheme, which in some
cases produces much shorter codes than the evidence approach,
while retaining the code length approximately the same for the
other cases. In the third approach considered here, we define
the predictive distribution by using Rissanen’s new definition of
stochastic complexity. A recent, comprehensive tutorial to the re-
lated generalMinimum Description Length (MDL)theory and its
application to predictive inference can be found in (Grünwald,
1998). The similarities and differences between MDL and an-
other information-theoretical framework, theMinimum Message
Length (MML) approach (Wallace & Boulton, 1968; Wallace
& Freeman, 1987), are discussed in (Baxter & Oliver, 1994;
Grünwald, Kontkanen, Myllymäki, Silander, & Tirri, 1998).

The discrete decision problem discussed in this paper, to-
gether with the MAP, the evidence and the stochastic complex-
ity predictive distributions for solving this problem are described
formally in Section 2.. In Section 3., we apply these generalres-
ults to the special case where the problem domain distributions
are assumed to be specified by usingBayesian networkmod-
els (see, e.g, (Pearl, 1988; Neapolitan, 1990)), and show how
to define each of the above mentioned predictive distributions
for a given Bayesian network structure. This can be seen as an
extension of the work reported in (Kontkanen, Myllymäki, Sil-
ander, Tirri, & Grünwald, 1997), where the problem was studied
in the more limited Naive Bayes classifier context. Furthermore,
in addition to the standard case with uniform prior distribution,
we discuss here also the use of Jeffreys’ prior for computingthe
evidence predictive distribution. The case with Jeffreys’prior
distribution is particularly interesting as it can be shownthat
with this prior the evidence predictive distribution approaches
the stochastic complexity predictive distributionwhen the sample
size increases (Rissanen, 1996).

The formulas for computing Jeffreys’ prior in the Bayesian
network model family case are given in Section 3.5.. At this
point it should be emphasized that the computation of the expec-
ted Fisher information matrix presented in (Thiesson, 1995) was
done for Bayesian network models in their ‘natural parameteriz-
ation’ (Kass & Voss, 1997), i.e., when they are parameterized as
special cases of exponential families. In this paper we willuse the
more common mean-value parameterization (where parameter
values can be directly interpreted as probabilities). Thismeans

that the results on the natural parameterization cannot be applied
directly: ’converting’ these results to the mean-value paramet-
erization would involve some non-trivial computations. Instead
of doing such a conversion, we give a direct derivation of the
expected Fisher information matrix in the mean-value paramet-
erization, and moreover, show how to compute the determinant
of the resulting matrix, which is required for determining Jef-
freys’ prior. This is one of the novel contributions of this paper.
It should also be noted that the derivation of the expected Fisher
information presented in (Wallace, Korb, & Dai, 1996a, 1996b)
is of no relevance here, as it assumes a linear dependency model
with continuous zero-mean variables (and Gaussian zero-mean
noise), while we address the discrete variable case, and allow
more general dependencies represented by a Bayesian network
with Multinomial-Dirichlet local dependency models.

Although the general forms for computing the different pre-
dictive distributions for Bayesian networks are describedin Sec-
tion 3., there remain some computational problems if the meth-
ods are to be used in practice. First of all, in the general setting,
determining the predictive distributions requires computing over
all possible outcomes of the unset variables, which is clearly a
computationally infeasible task if the number of unset variables is
high. Secondly, using Jeffreys’ prior as formulated here requires
computing the marginal distribution for the parents of eachnode
in the Bayesian network. As this problem is known to be NP-
hard for multi-connected Bayesian network structures (Cooper,
1990), determining Jeffreys’ prior may be computationallydiffi-
cult in practice. However, the standard probabilistic reasoning al-
gorithms (see, e.g., (Pearl, 1988; Neapolitan, 1990; Jensen, 1996;
Castillo, Gutiérrez, & Hadi, 1997)) found in most Bayesiannet-
work software packages could in most practical cases be adapted
for solving these problems, and determining Jeffreys’ prior for
a Bayesian network model is hence computationally no harder
than actually using the model (for predictive inference). Never-
theless, to simplify our already extensive empirical setup, we de-
cided in the experimental part of the paper to focus on the compu-
tationally simple Naive Bayes classifier case, where the predict-
ive inference task in question is a simple classification problem,
and the number of possible outcomes is equal to the number of
possible classes. The Bayesian network model to be used is in
this case a simple tree, and Jeffreys’ prior can be computed effi-
ciently, as demonstrated in Section 4.1..

In Section 4.2., the predictive accuracy of the maximum
likelihood predictive distribution (the MAP predictive distribu-
tion with uniform prior distribution), the evidence predictive
distribution (with both uniform and Jeffreys’ prior), and the
stochastic complexity predictive distribution are evaluated em-
pirically in the Naive Bayes case with publicly available clas-
sification data sets. A related study, also applying the renewed
form of stochastic complexity, has been reported by Dom (Dom,
1995). However, it should be noted that Dom’s empirical results
concern the class of Bernoulli (rather than Naive Bayes) models
and the focus of the experiments was on model selection (hypo-
thesis testing and segmentation) rather than on predictiveaccur-
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acy. The empirical setup used in this paper follows the meth-
odology presented in (Kontkanen et al., 1997), but the number of
data sets used in this study is considerably higher. In addition, we
have used here a more versatile empirical validation regimeex-
ploiting several variants of the crossvalidation method for meas-
uring the accuracy of different predictive methods. In our second
set of experiments (Section 4.3.), we examined how the predict-
ive accuracies of the different approaches depend on the amount
of the sample data available. The results are summarized and
discussed in Section 4.4..

2. Predictive distributions for discrete
decision problems

2.1. The decision problem

In this paper we model our problem domain by a set X ofmdis-
crete random variables, X= fX1; : : :;Xmg, where a random vari-
ableXi can take on any of the values in the setXi = fxi1; : : :;xinig.
A data instantiationd = (x1; : : :;xm) is a vector in which all the
variablesXi have been assigned a value: byX = d we mean
that X1 = x1; : : :;Xm = xm, wherexi 2 Xi . Let D1 be the set
of all possible data instantiationsd: D1 = X1 � : : :� Xm. A
random sample D= (d1; : : :;dN) is a set ofN i.i.d. (independ-
ent and identically distributed) data instantiations, where each
d j is sampled fromP , the joint distribution of the variables
in X. Hence samples of lengthN are distributed according to
PN, the N-fold product distribution ofP . Whenever this can-
not lead to any confusion, we will drop in the sequel the su-
perscriptN. More precisely, letDN be the set of all samples
D of lengthN. For all N > 1 and anyD = (d1; : : :;dN) 2 DN,
PN(D) = P(D) = ∏N

i=1P(di).
Given thetraining data D, the conditional distribution of a

newqueryor test vectord isP(djD),
P(djD) = P(d;D)

P(D) : (1)

We focus on the following prediction problem: Given the values
of some of the variables ind, and some training dataD, we want
to use the training data to arrive at good predictions for thevalues
of the rest of the variables. More precisely, givenD and the val-
ues of a subset U (theclampedvariables) of the variables in X,
we wish to predict the values of the variables in the set V= X nU
(the free variables). We will do our predictions by determining
probabilities for each of the possible instantiations of V.

Without loss of generality we may assume that the vari-
ables are indexed in such a way that we can write U=fX1; : : :;Xkg; V = fXk+1; : : :;Xmg. In the sequel, we will use
U = u as an abbreviation for a partial data instantiationX1 =
u1; : : :;Xk = uk where ui 2 Xi. Similarly, V = v stands for
Xk+1 = vk+1; : : :;Xm = vm wherevi 2 Xi. Hence each data instan-
tiationd can be written asd = (u;v) = (u1; : : :;uk;vk+1; : : :;vm)
for someu andv. Note thatuk+1; : : :;um andv0; : : :vk remain un-
defined in our notation. We can now state our aim more precisely

as follows: we wish to compute, for all possiblev, the probabil-
ities

P(V = v jU = u;D = (d1; : : :;dN)) (2)

We will abbreviate (2) toP(v j u;D). Using the basic rules of
probability theory we can write

P(vju;D) = P(u;v;D)
P(u;D) = P((u;v)jD)

∑vP((u;v)jD) ; (3)

where the summing goes over all possible instantiations of the
variables in the set V.

Consequently, we see that the conditional distribution forthe
variables in V can be computed by using the complete data vec-
tor conditional distributions (1) for each of the possible complete
vectorsd = (u;v). The resulting distribution (2) is called the
predictive distributionof the variables in V. It should be noted
that the number of terms in the summation over possiblev grows
exponentially with the number of variables in V; therefore,pre-
dicting the values of many variables given the values of onlya
few may be difficult. However, in many cases of practical in-
terest we only want to predict the values of a very small number
(in classification problems just one) of the variables, so the set V
can be very small.

In practice the “true” problem domain probability distribu-
tion P is not known, and it has to be approximated by using the
sampleD. We restrict the search for a good approximation of
P to some parametric familyM of probabilistic models. Here
each model inM is a probability distribution overD1 determ-
ined by an instantiation of parametersΘ, i.e., each model defines
a probabilityP(djΘ) for each possible data instantiationd. We
can thus identify each model with a particular parameter instanti-
ationΘ, and writeΘ2M to denote the model that is determined
by Θ. In sections 2.2.–2.4. we describe four different approaches
for approximatingP . The first two of these are theMAP and
the evidenceapproximations, which are both standard methods
of Bayesian statistics (Berger, 1985) and therefore reviewed here
only very briefly. The third and fourth approximations we dis-
cuss are based on information-theoretic considerations. More
specifically, they involve Rissanen’s renewed (Rissanen, 1996)
definition ofstochastic complexity. Since the derivation of these
approximations ofP is part of our own theoretical contribution
in this paper, we discuss them in considerable detail.

2.2. The Bayesian predictive distributions PMAP and
PEV

Given a prior distributionP(Θ) defined for allΘ 2M , we can
arrive at a posterior distributionP(ΘjD) by using Bayes’ rule:

P(ΘjD) ∝ P(DjΘ)P(Θ): (4)

In themaximum a posteriori (MAP) probabilityapproximation,
the distributionP in Equation(1) is replaced by the distribution
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corresponding to the single modelΘ̂(D) maximizing the pos-
terior distribution(4),

Θ̂(D) = argmax
Θ

P(ΘjD):
The corresponding predictive distribution is

PMAP(d jD) = P(d j D; Θ̂(D)) i:i:d:= P(d j Θ̂(D)): (5)

If we assume the prior distributionP(Θ) to be uniform, then (4)
becomesP(ΘjD) ∝ P(DjΘ) and the MAP model becomes equal
to the Maximum Likelihood (ML) modelof classical frequent-
ist (non-Bayesian) statistics: the model that maximizes the data
likelihoodP(DjΘ). In Section 2.3. we see that the notion of the
maximum likelihood model forms one of the central concepts in
our information-theoretic approach for defining predictive distri-
butions.

If, instead of using a single modelΘ̂, we average (integrate)
over all the modelsΘ 2M , we get a more sophisticated approx-
imation ofP . In the Bayesian literature the corresponding integ-
ral is called theevidenceor marginal likelihood, and it is given
by

PEV(d;D) = Z
P(d;DjΘ)P(Θ)dΘ; (6)

where the integration goes over all the modelsΘ inM . The res-
ulting predictive distribution (1) then becomes

PEV(d jD) = Z
P(d j D;Θ)P(Θ j D)dΘ: (7)

2.3. The information-theoretic predictive distribu-
tion PSC

2.3.1. The MDL principle and stochastic complexity

Stochastic Complexityis a central concept in theMinimum De-
scription Length (MDL) Principle(Rissanen, 1989, 1996). Ac-
cording to MDL, the goal of all inductive inference is tocom-
pressthe given data as much as possible, i.e. to describe it using
as few bits as possible. This involves the use of a description
method orcode, which is a one–one mapping from datasets to
their descriptions. Without loss of generality, these descriptions
may be taken to be binary strings (Rissanen, 1989). Intuitively,
the shorter the description or codelength of a set ofD, the more
regular or simpler the setD is. Rissanen (Rissanen, 1987) intro-
duced the stochastic complexity as follows:

The stochastic complexity of the data setD with
respect to the model classM is the shortest code
length ofD obtainable when the encoding is done
with the help of classM (Rissanen, 1987, 1996).

Here ‘with the help of’ has a clearintuitive meaning: if there
exists a model inM which captures the regularities inD well,
or equivalentlygives a good fitto D, then the code length ofD

should be short. However, it turns out to be very hard to define
‘with the help of’ in a formal manner. Indeed, a completely satis-
factory formal definition has only been found very recently (Ris-
sanen, 1996) — before 1996, Rissanen used the evidence (6) for
defining the stochastic complexity, but this earlier mathematical
definition he now regards merely as an approximation of the new
one. We discuss the new definition in some detail.

Note that the informal definition of stochastic complexity
(SC) as given above presumes the existence of a code: by defin-
ition, the SC of a data setD is the length of the encoding ofD
where the encoding is done using some special codeC� which
gives ‘the shortest possible codelengths with respect toM ’. In
order to introduce a formula for the codelengths obtained using
thisC�, we first have to clarify the connection between probabil-
ity distributions and codes.

In general, we denote the length (in bits) of the encoding of
D when the encoding is done using a codeC by LC(D). All codes
considered in MDL areprefixcodes (Rissanen, 1989). From the
Kraft inequality (see for example (Rissanen, 1989) or (Cover &
Thomas, 1991)) it follows that for every (complete) prefix code
C, there exists a corresponding probability distributionP such
that for all data setsD of given lengthN (i.e., with N data in-
stantiations), we have� logP(D) = LC(D) (throughout this pa-
per, by ‘log’ we denote logarithm to the base two). Similarly,
for every probability distributionP defined over all data setsD
of lengthN there exists a codeC such that for all datasetsD of
lengthN, we haveLC(D) = d� logP(D)e (heredxe is the smal-
lest integer greater or equal tox). If we use� logP(D) instead
of d� logP(D)e, our code lengths will always be less than one
bit off the mark; we may therefore safely neglect the integer
requirement for code lengths (Rissanen, 1987). Once we have
done this, the two facts above imply that we can interpret any
probability distribution over sequences of a given length as a
code and vice versa. This correspondence allows us toidentify
codes and probability distributions: every probability distribu-
tion P over data sets of lengthN may equivalently be interpreted
as determining a codeC such thatLC(D) = � logP(D) for all
D of lengthN. We see that a short code length corresponds to
a high probability and vice versa: wheneverP(D) > P(D0), we
have� logP(D) <� logP(D0).

If our parametric class of modelsM is regular enough (as
it will indeed be for all instantiations ofM we consider in this
paper), then there exists amaximum likelihood (ML) estimator�Θ
for every data setD, and we can write:

�Θ(D) = arg max
Θ2M P(DjΘ) = arg min

Θ2M � logP(DjΘ)= arg min
Θ2M L(DjΘ); (8)

where the last equality indicates the fact that eachΘ defines a
code such that the code length ofD is given by� logP(DjΘ).
Since this term can be interpreted as a code length, we abbreviate
it to L(DjΘ).

Let us now consider a data setD of arbitrary but fixed length
N. The MDL Principle tells us to look for a short encoding ofD.
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The model within classM that compresses the data most is the
ML model �Θ(D), since by (8) it is the model for whichL(DjΘ),
the codelength ofD when encoded with (the code correspond-
ing to) Θ, is lowest. At first sight itseemsthat we should code
our dataD using �Θ(D), in which case the MDL Principle would
reduce to the maximum likelihood method of classical statist-
ics. However — and this is the crucial observation which makes
MDL very different from ML — MDL says that we must code
our data using somefixed code, which compressesall data sets
for which there is a good-fitting model inM (Rissanen, 1987).
But the code corresponding to�Θ(D), i.e. the code that encodes
any D0 using L(D0j �Θ(D)) = � logP(D0j �Θ(D)) bits, only gives
optimal compression forsomedata sets (which includeD). For
most other data setsD0 6= D, �Θ(D) will definitely not be optimal:
if we had been given such a different data setD0 (also of length
N) instead ofD, then the code corresponding to�Θ(D0) rather
than �Θ(D) would give us the optimal compression. In general,
codingD0 using �Θ(D) (i.e. usingL(D0j �Θ(D)) bits) may be very
inefficient.

We repeat the crucial observation: MDL says that we must
code our data using somefixedcode, which compressesall data
sets that are well modeled byM . We can therefore not use
the code based on�Θ(D) if our data happens to beD and the
code based on�Θ(D0) if our data happens to beD0: we would
then encodeD using a different code than when encodingD0.
It would thus be very desirable if we could come up with a
code that compresses each possibleD as well as the maximum-
likelihood, or equivalently, mostly-compressing elementin M
for that specificD. In other words, we would like to have a
single codeC1 such thatLC1(D) = L(Dj �Θ(D)) for all possible
D. However, such a code cannot exist as soon as our model class
contains more than one element, since in general a code can only
give short codelengths to a very limited number of data instanti-
ations (Grünwald, 1998). Nevertheless, itis possible to construct
a codeC2 such that

LC2(D) = � logP(Dj �Θ(D))+KN = L(Dj �Θ(D))+KN (9)

for all D of lengthN. HereKN is a constant that may depend on
N but is equal for allD of lengthN. If, for someΘ 2M , we say
that it fits the dataD well, we mean that the probabilityP(DjΘ)
is high. Note that the code length obtained usingC2 precisely
reflects for eachD how well D is fitted by the model in the class
that fitsD best.

PickingC2 such that the constantKN is as small as possible
yields the most efficient code that satisfies (9). We call the res-
ulting code thestochastic complexity codeand denote it byC�.
The corresponding minimalKN is denoted byK�

N and is called
themodel costof M . We define the code length ofD when en-
coded using this code to be thestochastic complexity of D with
respect to model classM which we write asS(DjM ):

S(DjM ) = LC� (D) = L(Dj �Θ(D))+K�
N; (10)

where �Θ(D) 2M .

2.3.2. The stochastic complexity predictive distributionPSC

The aforementioned correspondence between probabilitiesand
codelengths implies that there exists a probabilitydistributionPN

SC

such that for allD of lengthN, � logPN
SC(D) = LC� (D). We call

this PN
SC the stochastic complexity predictive distribution. Just

like C� is the code that gives the shortest possible codelength to
those data sets for which there exists a good-fitting model inM ,
PN

SC is the distribution that gives as much probability as possible
to those data sets for which there exists a good-fitting modelin
M . This motivates the use ofPSC for prediction.

From (10) we have

S(DjM ) = � logPN
SC(D) =� logP(Dj �Θ(D))+K�

N; (11)

where �Θ(D) 2 M . SincePN
SC(D) is a probability distribution,

and hence∑D2DN PN
SC(D) = 1, we see from (11) thatK�

N =
log∑D2DN P(Dj �Θ(D)), or, equivalently:

PN
SC(D) = P(Dj �Θ(D))

∑D2DN P(Dj �Θ(D)) = (FN)�1 �P(Dj �Θ(D)); (12)

whereFN = ∑D2DN P(Dj �Θ(D)).
From a practical point of view, using (12) as the predictive

distribution may at first sight seem infeasible since computing
the normalizing sumFN involves summing over an exponential
number of terms (one for each data instantiation). Nevertheless,
it is easy to see that the problem disappears if one computes a
predictive distribution for a datasetD of lengthN in the follow-
ing straightforward manner:

PN+1
SC (d j D) = PN+1

SC (d;D)
PN+1

SC (D) = PN+1
SC (d;D)

∑d0 PN+1
SC (d0;D)= P(d;D j �Θ(d;D)) �F�1

N+1

∑d0 P(d0;D j �Θ(d0;D)) �F�1
N+1= P(d;D j �Θ(d;D))

∑d0 P(d0;D j �Θ(d0;D))
i:i:d= P(d j �Θ(d;D))P(D j �Θ(d;D))

∑d0 P(d0 j �Θ(d0;D))P(D j �Θ(d0;D)) :(13)

Although this formula looks somewhat similar to that of the
MAP (ML) predictor (5), it should be noted that the probabilities
P(Dj �Θ(d;D)) do not cancel out here since the maximum likeli-
hood estimator appearing in the denominator of (13) dependson
d0 and hence is not a constant. Moreover, the maximum likeli-
hood estimator�Θ(d;D) is now computed by using the data set
D[d, not justD.

2.4. Connecting PEV and PSC: the PEVJ predictive dis-
tribution

2.4.1. PSC is not a random process

A sequence of probability distributionsP1;P2;P3 : : :, whereP i

is a distribution overD i , is a random processif for all N > 0,
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D 2DN, we have (see for example (Rissanen, 1989)):

∑
d2D1

PN+1(D;d) = PN(D): (14)

In such a case, the sequence of distributions may be interpreted
as one single distribution over the sample space of all infinite
sequences. This means that the data can be interpreted as ar-
riving sequentially. It is very easy to show that the evidence
predictive distributionPEV has property (14) for all i.i.d. model
classesM ; that is the reason why we may omit the superscript
N and writePEV instead ofPN

EV . However, the stochastic com-
plexity predictive distributionPSC doesnot have this property.
To show this, we give a very simple example. Suppose our set
of random variables contains just one element: X= fX1g and
our model classM contains the i.i.d. Bernoulli models forX1:
M = fP(�jΘ) j 0� Θ � 1g such thatP(X1 = 1jΘ) = Θ and for
any d andD, P(d;DjΘ) = P(djΘ)P(DjΘ). We see from equa-
tion (12) that

P2
SC(1;1) = 1

2�1+2�1=4 = 0:4000; while

∑
d2f0;1gP3

SC(1;1;d)= 1+(2=3)2(1=3)
2�1+6�(2=3)2(1=3) = 0:3974:

The fact that the sequence of distributionsPN
SC does not define

a random process has a problematic consequence. In many prac-
tical learning situations, the number of data instantiations the
learner receives is not determined beforehand; one usuallyhas
an initial training setD = (d1; : : :;dN), which is then used to
predict the variables in V for oneor more future data elements
dN+1;dN+2; : : :. Strictly speaking, the fact thatPSC does not define
a random process causes the predictive distributionPN

SC as defined
in (13) to be valid only for the situation where we know that the
learner will be confronted with justonetest vectord, after which
the prediction process will stop for ever. To see this, let usreturn
to our example and see what happens if, like before, we want
to find the predictive distribution ford givenD of lengthN, but
now we also assume that afterwards, a new vectord+ will arrive.
Rewriting in the same manner as in (13), we get:

PN+2
SC (d jD) = PN+2

SC (d;D)
∑d0 PN+2

SC (d0;D) = ∑d+ PN+2
SC (d;d+;D)

∑d0 ∑d+ PN+2
SC (d0;d+;D)= ∑d+ P(d;d+;D j �Θ(d;d+;D))

∑d0 ∑d+ P(d0;d+;D j �Θ(d0;d+;D)) : (15)

This is, however, in generalnot equal to (13). The reader may
verify this by returning to our little example:

P2
SC(1j1) = 4

5
= 0:8000 whileP3

SC(1j1) = 31
39

= 0:7949

Hence if we assume that more future data will be available at
some point, then we have to make different predictions for the
first new data vectord! Nevertheless, as we will see below,
for largeN the difference in the predictive probabilities between

PN+1
SC (djD), PN+2

SC (djD); : : : will tend to zero. For this reason,
we decided in our experiments to usePSC as defined in (13).
Moreover, we concentrate in our experiments on the leave-one-
out crossvalidation setup, in which case the test set indeedalways
contains only one test vectord.

2.4.2. A random process that approximatesPSC

We see that although thePSC predictive distribution has several
nice properties from the information-theoretic point of view, it
may still not be well-suited for most prediction tasks. On the
other hand, the theoretical results on predictive MDL (Rissanen,
1989) imply that, under fairly general circumstances, the more
(the code corresponding to) a randomprocess Pcompresses the
dataD, the better we can predict properties of future data using
the predictive distribution based onP. This means that we should
look for the random process that compresses all dataD for which
there is a good-fitting model inM as much as possible. Since the
probability distribution (not process) which does this fora fixed
sample sizeN is given byPSC, we may restate our aim as follows:
we look for the random process that best approximatesPSC.

Rissanen (Rissanen, 1996) proved a fundamental theorem
which, together with the results in (Clarke & Barron, 1990;
Takeuchi & Barron, 1998) implies the following: under certain
reasonable regularity conditions on the model classM , we have� logPN

SC(d1; : : :;dN) =� logPEVJ(d1; : : :;dN)+o(1); (16)

for almost all1 sequences of data. Here, by definition,
limN!∞ o(1) = 0, andPEVJ denotes the evidence distribution as
given by (6) with the prior instantiated to the so-calledJeffreys’
prior. If Jeffreys’ prior is proper (as it will turn out to be for the
model class of Bayesian networks), then it is given by (see for
example (Rissanen, 1996) or (Berger, 1985)):

π(Θ) = jI(Θ)j1=2R jI(η)j1=2dη
: (17)

HerejI(Θ)j is the determinant of theFisher (expected) informa-
tion matrix I(Θ). DenotingΘ =(θ1; : : :;θr), entry(i; j) of matrix
I(Θ) is defined as[I(Θ)]i; j =�EΘ

�
∂2 logP(XjΘ)

∂θi∂θ j

� :
Originally, Jeffreys’ prior was derived by invariance argu-

ments (Berger, 1985): the value ofPEVJ(D) is invariant under one–
one transformations of the parameter space. We see here thatit
also plays a role as the prior which makes the Bayesian evidence
(a random process) asymptotically equivalent to the stochastic
complexity (not a random process). The results in (Clarke &
Barron, 1994) show that it is theonly proper prior doing so.
On the other hand, recall that Rissanen introduced (12) quite re-
cently (Rissanen, 1996), and in his earlier work (Rissanen,1987,
1989), Rissanen used the marginal distributionPEV (equation (6))
as the mathematical definition of stochastic complexity. Wesee
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that if Jeffreys’ prior is used, this still coincides asymptotically
with stochastic complexity as given by (12). However, as shown
in (Rissanen, 1996), as soon as another prior is used, then there
always existΘ 2M such that withΘ-probability 1,

lim
N!∞

� logPEV(d1; : : :;dN)� [� logPN
SC(d1; : : :;dN)] = C;

(18)

with C a constantgreater than 0. For most priors this constant
can be quite large.

Together, (18) and (16) show that, among all priors,PEV

with Jeffreys’ prior should yield the best approximation toPSC

in the worst-case sense. Taking for granted the fact that the
random process best approximatingPSC leads to optimal predic-
tions (see (Rissanen, 1987, 1996)), this implies thatPEVJ should
yield very accurate predictions, at least in the worst-casesense,
provided that (18) and (16) hold. The recent results reported
in (Takeuchi & Barron, 1998) imply that (18) and (16) indeed
hold for the class of Bayesian networks with a fixed but arbitrary
structure (see Chapter 6 in (Grünwald, 1998) for details).In the
next section, we derive an analytic expression for Jeffreys’ prior
π(Θ) for the case whereΘ indexes a Bayesian network, and show
how to calculatePEVJ for Bayesian networks.

3. Predictive Distributions for Bayesian
Networks

3.1. Bayesian Networks

A Bayesian (belief) network (Pearl, 1988; Shachter, 1988) is
a graphical high-level representation of a probability distribu-
tion over a set of discrete variables. A Bayesian network con-
sists of astructureG and aparameter setΘ. The Bayesian
network structureG is a directed acyclic graph (DAG), where
the nodes correspond to the domain variablesX1; : : :;Xm. The
graphG can be represented by a set ofm� 1 parent variable
setsΠi � fXi+1; : : :;Xmg where 1� i < m. For each variableXi ,
the parent setΠi represents the set consisting of the variables for
which the corresponding node in the graphG is a parent (prede-
cessor) of the node corresponding to the variableXi . For simpli-
city, we shall henceforth forget about the mapping between the
nodes and the random variables, and treat the variables as ifthey
were nodes of the graphG . In addition, the possible configura-
tions of a parent setΠi are assumed to be stored in an indexed
table, which allows us to treatΠi as a random variable with pos-
sible values from a setX i = f1; : : :;cig.

Each Bayesian network topology (parent set)G defines a set
of independence assumptions which allow the joint probability
distribution for variablesX1; : : :;Xm to be written as a product of
simple conditional probabilities,

P(d) = P(X1 = x1; : : :;Xm = xm) = m

∏
i=1

P(Xi = xi jΠi = πi);
(19)

whereπi 2 X i . In other words, a Bayesian network structure
G = fΠ1; : : :;Πm�1g represents the class of all probability dis-
tributions on variablesX1; : : :;Xm such thatP(d) can, for alld,
be written as in (19). It follows that in the Bayesian network
model family induced by a graphG , a single distributionP can
be uniquely determined by fixing the values of the parameters
Θ = (θ1; : : :;θm), where

θi = (θi
11; : : :;θi

1ni
; : : :;θi

ci1; : : :;θi
cini

);
ni is the number of values ofXi , ci is the number of possible con-
figurations ofΠi , and

θi
πixi

= P(Xi = xi jΠi = πi):
In the following we assume an arbitrary but fixed structureG

and we consider the family of corresponding probability distribu-
tionsMG , which contains allΘ as defined above excluding points
at the boundaries of the parameter space. Formally,Θ 2MG if
and only if

1. θi
πixi

> 0 andθi
πini

= 1�∑ni�1
xi=1 θi

πixi
.

2. All conditional distributions of variables given val-
ues for their parent values are multinomial:Xijπi

�
Multi(1;θi

πi1
; : : :;θi

πini
).

Since the family of Dirichlet densities isconjugate(see e.g. (De-
Groot, 1970)) to the family of multinomials, i.e. the func-
tional form of parameter distribution is invariant in the prior-
to-posterior transformation, it is convenient to assume that the
prior distributions of the parameters are from this family.2 This
assumption will be made throughout the remainder of this pa-
per. More precisely, let(θi

πi1
; : : :;θi

πini
) � Di(µi

πi1
; : : :;µi

πini
),

where (µi
πi1
; : : :;µi

πini
) are the hyperparametersof the cor-

responding distributions. Assuming that the parameter vec-
tors (θi

πi1
; : : :;θi

πini
) are independent, the joint prior distribution

of all the parametersΘ is

m

∏
i=1

ci

∏
πi=1

Di(µi
πi1; : : :;µi

πini
):

Having now defined the prior distribution, the predictive dis-
tributionsPMAP (5) andPEV (7) can be written more explicitly, as
will be shown in the next two sections. The general stochastic
complexity predictive distributionPSC (13) is instantiated for the
Bayesian network case in Section 3.4.. For being able to determ-
ine thePEVJ predictive distribution, in Section 3.5. we show how
to compute Jeffreys’ prior for a given Bayesian network model.
In Section 4. we see that, for the subclass of Bayesian networks
used in our experiments, Jeffreys’ prior, as needed in computing
the predictive distributionPEVJ, is indeed of the proper conjugate
(Dirichlet) form.



46 Kontkanen et al.

3.2. The PMAP predictive distribution for Bayesian
Networks

For anyd j 2 D, let d ji denote the value ofXi in d j , andd j [Πi] the
value ofΠi in d j . In addition, let us introduce the following two
indicator variableszi

jxi
andzi

jπi
:

zi
jxi

= (1; if d ji = xi ;
0; otherwise.

, andzi
jπi

= (1; if d j [Πi] = πi ;
0; otherwise. (20)

For an unindexed test vectord we simply omit the subscriptj
and writezi

xi
andzi

πi
.

As already noted in Section 2.2., the MAP predictive distri-
bution can be determined by computing the likelihood of a test
vectordt = (u;v), t = N+1:

PMAP(dt j D) = P(dt j Θ̂(D)) = m

∏
i=1

ci

∏
πi=1

ni

∏
xi=1

(θ̂i
πixi

)zi
txi

zi
tπi ;

wherezi
txi

andzi
tπi

are indicator variables as defined above and
θ̂i

πixi
is given by (see, for example, (Heckerman, Geiger, & Chick-

ering, 1995))

θ̂i
πixi

= f i
πixi

+µi
πixi

�1

∑ni
l=1

�
f i
πi l

+µi
πi l

��ni

:
Here f i

πixi
are the sufficient statistics of the training dataD: f i

πixi
is the number of data vectors where variableXi has valuexi and
the parents ofXi have configurationπi:

f i
πixi

= N

∑
j=1

zi
jxi

zi
jπi
;

wherezi
jxi

andzi
jπi

are defined as in (20). With the uniform prior
all the hyperparametersµi

πixi
are set to 1, in which case we get

the standard maximum likelihood estimator,

�θi
πixi

= f i
πixi

∑ni
l=1 f i

πi l

:
3.3. The PEV predictive distribution for Bayesian

Networks

The evidence predictive distribution (7) is defined as an integral
over the parameter space. As shown in (Cooper & Herskovits,
1992; Heckerman et al., 1995), with Bayesian networks this in-
tegral can be solved analytically, yielding

PEV(dt j D) = m

∏
i=1

ci

∏
πi=1

ni

∏
xi=1

(θ̄i
πixi

)zi
txi

zi
tπi ; (21)

where

θ̄i
πixi

= f i
πixi

+µi
πixi

∑ni
l=1

�
f i
πi l

+µi
πi l

� :

From (21) we see that similarly to thePMAP predictive distribu-
tion case, the resulting predictive distribution can be regarded as
a likelihoodof the test vectordt , but now taken at the mean of the
posterior rather than at the mode. This result is somewhat surpris-
ing, since it means that being able to determine the expectations
of the parameters as described above, the corresponding single
Bayesian network model represents all the possible models rep-
resentable by the same network structure, in the sense that it pro-
duces the same predictive distribution that would be obtained by
integrating over all the different parameter instantiations.

3.4. The PSC predictive distribution for Bayesian
Networks

From (12), we see that the stochastic complexity predictivedis-
tribution is proportional to the likelihood of the combineddata
setD+ = D[dt at the maximum likelihood point:

PSC(dt jD) ∝ P(D+ j �Θ(D+)) = m

∏
i=1

ci

∏
πi=1

ni

∏
xi=1

( �θi
πixi

)( f i
πixi

)+ ;
where

�θi
πixi

= ( f i
πixi

)+
∑ni

l=1( f i
πi l
)+ ;

and( f i
πi l
)+ are the sufficient statistics ofD+. Consequently, the

predictive distributioncan also in this case be regarded asa likeli-
hood of the test vectordt , but the maximum likelihood estimator
is now computed from the extended data set, consisting of the
original data set together with the test vector itself.

3.5. The PEVJ predictive distribution for Bayesian
Networks

As can be seen from (17), Jeffreys’ prior is proportional to the
square root of the determinant of the Fisher information matrix.
Since the Fisher information matrix forN data vectors can be ob-
tained from the information matrix for only one vector simply by
multiplying all the elements byN, it is sufficient to consider only
the simple case with only one data vector. The log-likelihood of
a data vectord can be written as

logP(d jΘ) =
m

∑
i=1

ci

∑
πi=1

zi
πi

 
ni

∑
xi=1

�
zi
xi

logθi
πixi

�+zi
ni

logθi
πini

! : (22)

wherezi
πi

andzi
xi

are defined as in (20).

Let us consider the element(θi1
qi1 l1

;θi2
qi2l2

) of the second de-

rivative (Hessian) matrix of (22), wherel1; l2 2 fxi1; : : :;xinig.
If either the variable indicesi1; i2 or the parent configurations
qi1;qi2 are different, then clearly the second derivative is zero,
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and thus also the corresponding element of the information mat-
rix is zero. It follows that the only non-zero elements of thein-
formation matrix are in submatrices where both parameters in
question have the same variable and configuration index. Let
us now consider one of these submatricesI i

πi
(Θ), wherei is the

variable index andπi the parent configuration. We need two type
of second derivatives: first for the case when the value indices
l1 and l2 are different, and secondly for case when they are the
same. After some simple calculus we get� ∂2 logP(d j Θ)

∂θi
πi l1

∂θi
πi l2 =8>>><>>>: zi

πi
zi
ni(θi

πi ni )2 ; if l1 6= l2;
zi
πi

zi
l(θi

πi l
)2 + zi

πi
zi
ni(θi

πi ni
)2 ; if l1 = l2 = l : (23)

The elements of the Fisher information matrix are now the ex-
pectations of (23) over the set of all possible data vectorsD. For
the case wherel1 6= l2 we get

EΘ

"�∂2 logP(d jΘ)
∂θi

πi l1
∂θi

πi l2

# = ∑
d2DP(d jΘ) zi

πi
zi
ni(θi

πini
)2= 1(θi

πini
)2 ∑ P(d j Θ)fd2DjΠi=πi ;Xi=nig= P(Πi = πi;Xi = ni jΘ)(θi

πini
)2= P(Πi = πi j Θ)

θi
πini

: (24)

Similarly, with l1 = l2 = l we get

EΘ

"�∂2 logP(d jΘ)
∂(θi

πi l
)2

#= P(Πi = πi j Θ)
θi

πi l

+ P(Πi = πi j Θ)
θi

πini

: (25)

Multiplying these elements byN, we get the Fisher information
matrix

I i
πi
(Θ)=0BBBBBBBB@N( Pi

πi
θi

πi1
+ Pi

πi
θi

πi ni
) N( Pi

πi
θi

πi ni
) � � � N( Pi

πi
θi

πini
)

N( Pi
πi

θi
πi ni

) N( Pi
πi

θi
πi2

+ Pi
πi

θi
πi ni

) � � � N( Pi
πi

θi
πini

)
...

...
...

...

N( Pi
πi

θi
πi ni

) N( Pi
πi

θi
πi ni

) � � � N( Pi
πi

θi
πi ;ni�1

+ Pi
πi

θi
πi ni

)1CCCCCCCCA ;
(26)

where Pi
πi

= P(Πi = πi jΘ). Notice that I i
πi
(Θ) is an (ni �

1)� (ni � 1) matrix sinceθi
πini

is completely determined by

θi
πi1; : : :;θi

πi;ni�1. It is relatively easy to show (see (Bernardo &
Smith, 1994)) that the determinant of (26) is given byjI i

πi
(Θ)j= (N �Pi

πi
)ni�1

∏ni
l=1θi

πi l

: (27)

The whole Fisher information matrixI (Θ) is a block diagonal
matrix, where the blocks are the submatricesI i

πi
(Θ). The determ-

inant of a block diagonal matrix is product of the determinants of
the blocks, and thusjI (Θ)j= m

∏
i=1

ci

∏
πi=1

(N �Pi
πi
)ni�1

∏ni
l=1θi

πi l

: (28)

Finally, as noted in Section 2.4.,π(Θ) ∝
pjI(Θ)j, so we get

π(Θ) ∝
m

∏
i=1

ci

∏
πi=1

 (N �Pi
πi
) ni�1

2

ni

∏
l=1

(θi
πi l )� 1

2

!
∝

m

∏
i=1

ci

∏
πi=1

 (Pi
πi
) ni�1

2

ni

∏
l=1

(θi
πi l )� 1

2

! :
However, computing Jeffreys’ prior as formulated above requires
computing for each variable the marginal distribution of its par-
ents. Unfortunately, for multi-connected Bayesian networks, this
problem is known to be NP-hard (Cooper, 1990). In the exper-
iments reported in Section 4., we used a simple tree-structured
Bayesian network, in which case Jeffreys’ prior is of a proper
conjugate form, and it can be computed efficiently.

4. Empirical Results

4.1. Experimental setup

In the following, we concentrate on the standard classification
problem, where the task is to predict the value of a singleclassi-
fication variable, given the values of all the other variables. Con-
sequently, the set of free variables consists of only one variable,
and the set of clamped variables contains all the other variables
— in other words, by using the notation given in Section 2., U=fX1; : : :;Xm�1g and V= fXmg , and we wish to compute probab-
ilities of the formP(Xm = xm j X1 = x1; : : :;Xm�1 = xm�1;D).

In the Naive Bayes classifier case, the variables in U are as-
sumed to be independent, given the value of variableXm. Con-
sequently, we can regard the Naive Bayes model as a simple tree-
structured Bayesian network, where variableXm forms the root of
the tree, and variablesX1; : : :;Xm�1 are represented by the leaves.
In this case, the Jeffreys’ prior formula (17) reduces to

π(Θ) ∝
K

∏
k=1

(θm
k )� 1

2

m�1

∏
i=1

K

∏
k0=1

 (θm
k0) ni�1

2

ni

∏
l=1

(θi
k0l )� 1

2

!= K

∏
k=1

(θm
k ) 1

2 (∑m�1
i=1 (ni�1)�1) m�1

∏
i=1

K

∏
k0=1

ni

∏
l=1

(θi
k0l )� 1

2 ; (29)
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whereK denotes the number of the values of the root variable
Xm. Consequently, the prior distribution can be represented as a
product of Dirichlet distributions,

Θ � Di

 
1
2

 
m�1

∑
i=1

(ni �1)+1

!; : : :; 1
2

 
m�1

∑
i=1

(ni �1)+1

!!�m�1

∏
i=1

K

∏
k=1

Di
�

1
2
; : : :; 1

2

� :
For our experiments with the Naive Bayes classifier, eight

public domain classification data sets of varying size were
used (the data sets can be obtained from the UCI data reposit-
ory (Blake, Keogh, & Merz, 1998)). Table 1 describes the size
(N), the number of attributes (m), and the number of classes (K)
for each of these data sets.

Table 1. The datasets used in the experiments.
Dataset Data vectors Attributes Classes CV folds
Heart Disease (HD) 270 14 2 9
Iris (IR) 150 5 3 5
Lymphography (LY) 148 19 4 5
Australian (AU) 690 15 2 10
Breast Cancer (BC) 286 10 2 11
Diabetes (DB) 768 9 2 12
Glass (GL) 214 10 6 7
Hepatitis (HE) 150 20 2 5

For comparing the predictive accuracy of different predictive
distributions, we used two different utility functions: the log-
score and the0/1-score. The log-score of a predictive distri-
butionP(Xmju;D) is defined as� logP(Xm = kju;D) wherek
denotes the actual (“true”) classification, i.e., the correct value
of Xm. When using logarithm of base two, the log-score has the
following coding interpretation: If one encodes the data using
the code corresponding toP(Xmju;D), then logP(Xm = kju;D)
is equal to the number of bits one needs to describe the actual
outcomek. On the other hand, if we imagine the correct predict-
ive distribution to give in this case probability one to the actual
outcome, and probability zero to other outcomes, we see thatthe
log-score is equivalent to the cross-entropy or Kullback-Leibler
distance between the above defined degenerate distributionand
the predictive distribution produced.

For the 0/1-score, we simply first determine thek for which
the probabilityP(Xm = kju;D) is maximized, and the 0/1-score
is then defined to be 1, if the actual outcome indeed wask, other-
wise it is defined to be 0.

Two separate sets of experiments were performed on each
data set by using the following predictive inference methods with
the Naive Bayes model described above:� ML: ThePMAP predictive distribution (5) with uniform prior

(equivalent to the predictive distribution with the max-
imum likelihood model).� EV: ThePEV predictive distribution (7) with uniform prior.

� SC: ThePSC predictive distribution (13).� EVJ: ThePEV predictive distribution (7) with Jeffreys’ prior
(29).

In the first set of experiments (Section 4.2.) we measured the
crossvalidated prediction performance by using the two utility
functions described above. In our second set of experiments
(Section 4.3.), we studied how the prediction quality of ourvari-
ous approaches depends on the size of the training setD.

4.2. Crossvalidation results

In our crossvalidation experiments, we initially used eachof the
datasets with the same number of folds as in the major exper-
imental comparison performed by the Statlog project (Michie,
Spiegelhalter, & Taylor, 1994) (the number of folds used in each
case can be found in Table 1). Let us first note that although
the result of one crossvalidation run is an average ofn numbers,
wheren is the number of folds used, the result depends of course
on how then folds are selected from the sample data. To see how
much the results vary with different fold partitionings, weper-
formed 100 independent crossvalidation runs where the datawas
randomly partitioned inton folds, and computed the minimum,
the average, and the maximum of the crossvalidated prediction
accuracies obtained. As can be seen in Figures 1 (in the log-score
case) and 2 (in the 0/1-score case), the crossvalidation results can
vary quite a lot depending on the specific fold partitioning used.

Though the differences in crossvalidation results betweendif-
ferent prediction methods are small, we see that for the log-score,
evidence with uniform prior performs consistently better than the
other methods, followed very closely by the evidence with Jef-
freys’ prior. The ML approach produces the worst results. For
the 0/1-score, the picture is not as clear-cut, and the differences
are quite small. However, it should be noted that in this casethe
ML approach produces the best results with two of the data sets
(GL and HE). One explanation for this fact may be that for the
much coarser 0/1-score, it is in many cases not important exactly
what probability we attach to a class value beingk; all probability
distributions over the class values for whichk gets the maximum
probability will lead to the same prediction. Thus it can very
well happen that, while the ML prediction captures less wellthe
regularities underlying the data (and hence performs worsewith
respect to log-score), it still captures them well enough togive
maximum probability to the class value that should indeed re-
ceive maximum probability.

In addition to comparison purposes between the different pre-
dictive distributions, the results in Figures 1 and 2 are interesting
as they show very good performance of the Naive Bayes model
when compared to the results reported in the machine learning lit-
erature (for references, see e.g., (Tirri, Kontkanen, & Myllymäki,
1996)). This fact becomes especially clear if we look at the max-
imal results reported here, which in many cases is justifiable as
many of the results reported in the literature seem to be obtained
in this way, although this fact may not be explicitly stated.
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Fig. 1: The minimum (lower end of the black line), the average (grey bar), and the maximum (upper end of the black line) of the
crossvalidated log-scores obtained by 100 independent crossvalidation runs. The corresponding leave-one-out crossvalidation res-
ults are marked with small circles. The y-axis represents the log-score, so the smaller the score, the better. The prediction methods
used are ML (denoted here by M), EV (E), EVJ (J), and SC (S).
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The high variance of the results obtained indicate that one
singlen-fold crossvalidation run can not be used as a reliable
measure for comparing various predictive inference methods, un-
less the same specific fold partitioning is used in all cases.If,
however, a number of independent runs is performed, then some
statistical measure, such as the average, can be used for this pur-
pose. Alternatively, the leave-one-out results seem to follow the
behavior of the averaged crossvalidation results quite accurately.

For this reason, we decided to restrict ourselves to leave-one-out
crossvalidation in the next section.

4.3. Results with varying amount of training data

To see how the prediction quality of our various approaches de-
pends on the size of the training setD, we performed a set of
experiments using only small fractions of the training dataavail-
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Fig. 3: Average leave-one-out 0/1-scores obtained with different predictive distributions for the HD, IR, LY and AU dataset cases as
a function of the number of the training examples used.
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Fig. 4: Average leave-one-out 0/1-scores obtained with different predictive distributions for the BC, DB, GL and HE dataset cases
as a function of the number of the training examples used.

able. In these experiments, leave-one-out crossvalidation was
used, but at each step, only thek first vectors from the train-
ing set were used in order to predict the test vector that was “left
out”, and this procedure was repeated fork = 1; : : :;N� 1. As
this setup is dependent on the ordering of the data vectors, the
whole leave-one-out crossvalidation cycle was then repeated 100
times with 100 randomly generated permutations of the dataset.

The averaged (over the 100 leave-one-out crossvalidation runs)
results are plotted as a function ofk in Figures 3–6. These statist-
ics of the behavior of different predictive distributions as a func-
tion of increasing amount of training data should now give us
some idea as to the typical behavior of our prediction methods.
It should be noted that since with small sample sizes, the ML
method will sometimes yield infinitely bad log-score, in order
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Fig. 5: Average leave-one-out p-scores obtained with different predictive distributions for the HD, IR, LY and AU dataset cases as a
function of the number of the training examples used.
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Fig. 6: Average leave-one-out p-scores obtained with different predictive distributions for the BC, DB, GL and HE dataset cases as
a function of the number of the training examples used.

to prevent scaling problems when presenting the results graphic-
ally, thep-score(the probability of the correct class, instead of
its logarithm) was used in these tests as the alternative score for
the 0/1-score, and not the log-score.

All in all, the results with all the eight datasets used show very
similar behavior: the evidence-based EV and EVJ approaches
perform surprisingly well even in cases where the training data

consists of only a few data vectors, which shows that the data
sets used here are quite redundant, and when properly used, only
a very small sample of these data sets is needed for constructing
good models. In the following section, we analyze three further
interesting aspects of the results.
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4.4. Discussion

It is a well-known fact that, for small sample sizes, the ML pre-
dictor is too dependent on the observed data and does not take
into account that future datamay turn out to be different. Our
results support this observation and show that compared to the
other methods, the ML predictive distribution appears to bemuch
more sensitive to the amount of data available. This phenomenon
can be explained by the fact that the EV and EVJ approaches are
more conservative methods as they base their predictions onex-
pected values of the parameters, or actually, on integrating over
all the parameter values, while ML makes more “eager” predic-
tions based on the maximum likelihood estimator.

Let us consider a very simple example to illustrate this point.
Suppose our data consists of a string of ones and zeros generated
by some i.i.d Bernoulli-processp = P(X = 1). If we have seen
an initial string consisting of one ‘1’, and no zeros, then the ML
predictor will determine that the probability of the secondsym-
bol being a ’1’ is unity. However, using the EV prediction, this
probability is 2

3. If the next data item turns out to be a ’0’, then
the log-score of the ML predictor will be�∞ while that of the EV
will be log2� log3. The behavior of the SC and EVJ methods
lie somewhere in between that of ML and EV. In our Bernoulli
example, the probability of the second symbol being a ’1’ would
be 3

4 for EVJ and4
5 for SC.

Theoretically, for large sample sizes EVJ and SC should lead
to the same predictions, sincePEVJ andPSC become asymptotically
identical. It can be seen from Figures 3–6 that this phenomenon
indeed occurs for most of the data sets used. For small sample
sizes however, EVJ usually performs somewhat better than SC.
We believe that this is caused by the fact thatPSC as we use it here
is defined for theunsupervisedcase, where the goal is to give
maximally high probability for full unseen vectors(x1; : : :;xm),
while the methods were tested in thesupervisedcase, where only
one variable (the class variablexm) was actually predicted. An
exact optimization of the SC method for the supervised classific-
ation case would require the use of aconditionalmaximum like-
lihood estimator of dataD. Using the notation of Section 2.1.,
this is the modelΘ in model classM that maximizes thecon-
ditional probabilityP(DV jDU ;Θ) whereDV is the set of theN
instantiations of the free variables inV andDU is the set ofN
instantiations of the clamped variables inU . This modification is
by no means straightforward and is left as a goal for future work.

The results presented by Rissanen (Rissanen, 1989, 1996) im-
ply that application of the MDL framework should lead to quite
accurate predictions. However, in the experiments performed,
predictions based on the standard Bayesian EV approach (mar-
ginal likelihood predictive distribution with uniform prior) usu-
ally gave slightly better results than predictions based onthe
EVJ approach motivated by MDL. We conjecture that the reas-
ons for this are twofold. First, it should be remembered that� logPEVJ(D) is only an asymptotic approximation of the ac-
tual stochastic complexity (10). The small sample size beha-
vior of this approximation is theoretically not well understood,
and hence the small size performance of this approximation tells

nothing about the validity of the MDL approach per se. Second,
it is important to note that the fundamental goal behind the MDL
approach is to optimize the ‘worst-case’ behavior of a predictive
distribution:whateverthe dataD is, � logPEVJ(D) will be about
equally close to� logP(Dj �Θ(D)), the code length obtained by
using the best-fitting model in the class forD. For the model
class of Bernoulli processes, Rissanen (Rissanen, 1996) showed
that this leads to a considerable gain (in the sense of smaller num-
ber of bits needed to code the data and hence better predictions
in the log-score sense) overPEV with the uniform prior, if the data
sets used are highly ‘skewed’. By skewed data sets we mean
here data for which the ML estimator lies near the boundary of
the parameter spaceM .

Intuitively, the above phenomenon is easy to accept when
we recall thatPEVJ employs Jeffreys’ prior which yields a slight
preference to models near the boundary points of the parameter
space, whilePEV assumes a uniform prior over the model para-
meters. Consequently, whilePEVJ can be expected to give smal-
ler code lengths for skewed data sets thanPEV, the price to pay is
that for non-skewed, more ‘average’ data sets, usingPEVJ can lead
to slightly inferior predictive performance. As our experimental
results show, the data sets used in this study are not very skewed,
since already a small amount of data was enough for obtainingas
good predictive performance as with all the data. For this reason,
it seems reasonable to assume that the datasets used were just not
skewed enough for EVJ to outperform EV. Our preliminary stud-
ies (Kontkanen, Myllymäki, Silander, Tirri, & Valtonen, 1999)
on this subject support the theoretical arguments, but all in all,
this interesting hypothesis produces an important research prob-
lem that needs to be studied in more detail.

5. Conclusion and Future Work

We have described how to obtain predictive distributionsbyusing
different approximations for the problem domain probability dis-
tribution, given some sample data. Of the alternatives considered
here, the predictive distribution exploiting Rissanen’s new for-
mulation of stochastic complexity is of particular interest as it
has some nice theoretical properties, which suggest that the cor-
responding probability distribution is in some cases more accur-
ate than the marginal likelihood distribution. A straightforward
application of Rissanen’s MDL formalism led us to the SC pre-
dictive distribution. However, as discussed earlier, thispredictive
distributiondoes not constitutea random process which makes its
use troublesome. For this reason, we first described how the evid-
ence predictive distribution with Jeffreys’ prior can be regarded
as an approximation of the MDL-optimal predictive distribution,
and then showed how to compute Jeffreys’ priors in the Bayesian
network model family case.

In the experimental part of the paper, the predictive accuracy
of the ML predictive distribution (the MAP predictive distribu-
tion with uniform prior distribution), the evidence predictive dis-
tribution (with both the non-informative uniform prior, and Jef-
freys’ prior suggested by the MDL theory), and the straightfor-
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ward SC predictive distributionwere evaluated empirically by us-
ing publicly available classification data sets. For computational
reasons, the specific model used in the tests was the structurally
simple Naive Bayes model. In the experiments performed, in the
0/1-score sense there was no clear winner. In the log-score sense,
the evidence-based predictive distributions EV and EVJ outper-
formed the other methods, especially in cases where the amount
of training data was small. The best results were obtained by
using the uniform prior. One reason for the evidence predictive
distribution performing slightly worse with Jeffreys’ prior may
be the fact that Jeffreys’ prior is in a sense a “worst-case” prior,
as we indicated in the last section.

The somewhat inferior performance of the SC method with
small training sets can be partly explained by the fact that the
stochastic complexity predictive distribution does not constitute
a random process. In addition, the SC predictive distribution was
defined so that the method would give a maximally high prob-
ability for full unseen vectors, while the methods were tested in
the restricted supervised case, where only one variable (the class
variable) was actually predicted. All in all, it should be emphas-
ized that the fact that the two approaches motivated by the MDL
theory (EVJ and SC) did not produce better results than the stand-
ard Bayesian EV approach, marginal likelihood prediction with
uniform prior, does not imply that there is anything wrong with
the MDL approach per se; rather, they illustrate the difficulty of
applying the theoretically elegant MDL framework in practice in
a formally solid manner.

The results with decreasing amount of training data show that
the evidence-based approaches are quite robust in the sensethat
they predict surprisingly well even with small training sets. What
is more, it should also be noted that the actual classification ac-
curacies obtained with the Naive Bayes model are surprisingly
high, when compared to the results obtained by alternative mod-
els. The latter fact has actually been noted before by several
authors (see for example (Langley & Sage, 1994; Friedman &
Goldszmidt, 1996)); the results reported here extend theseprevi-
ous works as they show that when the evidence predictive distri-
bution is used, very good performance may already be achieved
for quite small sample sizes. This suggests that in many natural
domains, using the Naive Bayes model may not be so naive after
all, and that the empirical results presented here also bearrel-
evance for the general case with multi-connected Bayesian net-
works.
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Notes

1. Strictly speaking, (16) does not hold for degenerate datase-
quences, i.e., for data sequencesD1;D2; : : : with the property that
the corresponding sequence of maximum likelihood estimators
�Θ(D1); �Θ(D2); : : : converges to the boundary of the parameter
space.

2. Additional justifications for using Dirichlet priors aregiven
in (Geiger & Heckerman, 1994), where it is shown that under
certain reasonable assumptions, Dirichlet is the only prior that
can be used without violating the assumptions made.
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