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In this paper we are interested in discrete prediction mnwisl for a decision-theoretic setting, where the
task is to compute the predictive distribution for a finité skpossible alternatives. This question is first
addressed in a general Bayesian framework, where we carassi of probability distributions defined by
some parametric model class. Given a prior distributionhenrhodel parameters and a set of sample data,
one possible approach for determining a predictive distién is to fix the parameters to the instantiation
with the maximum a posterionprobability. A more accurate predictive distribution cam dbtained by
computing theevidencgmarginal likelihood, i.e., the integral over all the individual parameter ast-
ations. As an alternative to these two approaches, we ddratmbow to use Rissanen’s new definition of
stochastic complexitfor determining predictive distributions, and show how gwidence predictive dis-
tribution with Jeffreys’ prior approaches the new stocltasbmplexity predictive distribution in the limit
with increasing amount of sample data. To compare the altemapproaches in practice, each of the pre-
dictive distributions discussed is instantiated in the &agn network model family case. In particular, to
determine Jeffreys’ prior for this model family, we show htmcompute the (expected) Fisher information
matrix for a fixed but arbitrary Bayesian network structuhe the empirical part of the paper the predict-
ive distributions are compared by using the simple tregettired Naive Bayes model, which is used in
the experiments for computational reasons. The expergtientwith several public domain classification
datasets suggest that the evidence approach produces shacoarate predictions in the log-score sense.
The evidence-based methods are also quite robust in the gexishey predict surprisingly well even when
only a small fraction of the full training setis used.

Keywords Bayesian Networks, Predictive Inference, MDL, MML, Jeffseprior

1. Introduction tribution. In real-life situations, however, the problemndain
probability distribution is not known explicitly, and it kao be

In discrete prediction problems the task is to select on®mctestimated from sample data and (possibly) some prior inderm

from a finite set of possible alternatives. All possible ames, tion. In this paper our purpose is to compare different akitives

corresponding to the set of possible actions given, residme for computing the predictive distribution in such a context

gain or utility, the value of which depends on the correctt(bu

unknown) action in the decision problem in question. From th Here we will assume that the probability distributions to be

decision-theoretic point of view (see e.g. (Berger, 1988p op- considered are restricted to a limited set of discrete ibigtr

timal procedure in this case is to choose the action witimbg- tions defined by some fixed parametric model form. Given some

imal expected utility To be able to maximize the expected utilkample data (thgaining datg), and an incompletquery vector

ity, one needs to determine thedictive distributiorfor all the where the values of some of the problem domain variables are

possible actions, by using the problem domain probabiliéy dnot given, the task is to compute the predictive distribufiar
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the missing part of the query vector. In theaximum a posteri- that the results on the natural parameterization cannoppleeal

ori (MAP) approach, the predictive distribution is determined lirectly: 'converting’ these results to the mean-valueapaet-
using the model (i.e., parameter instantiation) with thghlkst erization would involve some non-trivial computationsstiead
posterior probability, given the training data and a primtidbu- of doing such a conversion, we give a direct derivation of the
tion for the parameters. In thevidenceapproach, the predictiveexpected Fisher information matrix in the mean-value patam
distribution is obtained by integrating over all the po$sibara- erization, and moreover, show how to compute the determinan
meter instantiations, in other words, over all the disttits rep- of the resulting matrix, which is required for determiningf-J
resentable by the chosen model form. freys’ prior. This is one of the novel contributions of thiagger.

As pointed out in (Rissanen, 1989), in information-theigrett Should also be noted that the derivation of the expecteddfi
terms, minus the logarithm of the evidence integral can be fformation presented in (Wallace, Korb, & Dai, 1996a, 1896
garded as a formalization stochastic complexity (SQ)e., the 1S of no relevance here, as it assumes a linear dependenasi mod
shortest possible codelength for coding the data with @sjpe With continuous zero-mean variables (and Gaussian zeenme
the chosen model form. Recently Rissanen (Rissanen, 19%gge), while we address the discrete variable case, aod all
has introduced an alternative coding scheme, which in sofi@re general dependencies represented by a Bayesian ketwor
cases produces much shorter codes than the evidence amprdd# Multinomial-Dirichlet local dependency models.
while retaining the code length approximately the sametier t  Although the general forms for computing the different pre-
other cases. In the third approach considered here, we defifgive distributions for Bayesian networks are descrire8ec-
the predictive distribution by using Rissanen’s new defniof tion 3., there remain some computational problems if thenmet
stochastic complexity. A recent, comprehensive tutodéhe re- ods are to be used in practice. First of all, in the generdinggt
lated generaMinimum Description Length (MDltheory and its determining the predictive distributions requires conipgibver
application to predictive inference can be found in (Gratdy all possible outcomes of the unset variables, which is lylear
1998). The similarities and differences between MDL and agemputationally infeasible task if the number of unsetalales is
other information-theoretical framework, th&inimum Message high. Secondly, using Jeffreys’ prior as formulated herpiiees
Length (MML) approach (Wallace & Boulton, 1968; Wallacgomputing the marginal distribution for the parents of eaobe
& Freeman, 1987), are discussed in (Baxter & Oliver, 199# the Bayesian network. As this problem is known to be NP-
Grunwald, Kontkanen, Myllymaki, Silander, & Tirri, 1998 hard for multi-connected Bayesian network structures (o0

The discrete decision problem discussed in this paper, 1890), determining Jeffreys’ prior may be computationaliffi-
gether with the MAP, the evidence and the stochastic compléxlt in practice. However, the standard probabilistic ceisg al-
ity predictive distributions for solving this problem arestribed gorithms (see, e.g., (Pearl, 1988; Neapolitan, 1990; Je0S66;
formally in Section 2.. In Section 3., we apply these geneasd Castillo, Gutiérrez, & Hadi, 1997)) found in most Bayesiet-
ults to the special case where the problem domain distabati work software packages could in most practical cases beediap
are assumed to be specified by usBayesian networknod- for solving these problems, and determining Jeffreys’ pftw
els (see, e.g, (Pearl, 1988; Neapolitan, 1990)), and show roBayesian network model is hence computationally no harder
to define each of the above mentioned predictive distrimgtidhan actually using the model (for predictive inferencevat-
for a given Bayesian network structure. This can be seen aghgless, to simplify our already extensive empirical sgtugde-
extension of the work reported in (Kontkanen, Myllymakil-S cided in the experimental part of the paper to focus on thgaem
ander, Tirri, & Griilnwald, 1997), where the problem was &dd tationally simple Naive Bayes classifier case, where thdipre
in the more limited Naive Bayes classifier context. Furthemen ive inference task in question is a simple classificatiorbem,
in addition to the standard case with uniform prior disttibn, and the number of possible outcomes is equal to the number of
we discuss here also the use of Jeffreys’ prior for compuitieg possible classes. The Bayesian network model to be used is in
evidence predictive distribution. The case with Jeffreggbr this case a simple tree, and Jeffreys’ prior can be comptfed e
distribution is particularly interesting as it can be shotiwat ciently, as demonstrated in Section 4.1..

with this prior the evidence predictive distribution appebes | Section 4.2., the predictive accuracy of the maximum
the stochastic complexity predictive distribution whee $ample |ikelinood predictive distribution (the MAP predictivesfiibu-
size increases (Rissanen, 1996). tion with uniform prior distribution), the evidence pretie
The formulas for computing Jeffreys’ prior in the Bayesiadistribution (with both uniform and Jeffreys’ prior), anthet
network model family case are given in Section 3.5.. At thisochastic complexity predictive distribution are evahgaem-
point it should be emphasized that the computation of the@xppirically in the Naive Bayes case with publicly availablas!
ted Fisher information matrix presented in (Thiesson, )94 sification data sets. A related study, also applying thewede
done for Bayesian network models in their ‘natural paramiete form of stochastic complexity, has been reported by Dom (Dom
ation’ (Kass & Voss, 1997), i.e., when they are parametdrae 1995). However, it should be noted that Dom’s empirical itssu
special cases of exponential families. In this paper wewsill the concern the class of Bernoulli (rather than Naive Bayes) etsod
more common mean-value parameterization (where parameigd the focus of the experiments was on model selection ¢hypo
values can be directly interpreted as probabilities). Theans thesis testing and segmentation) rather than on prediativer-
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acy. The empirical setup used in this paper follows the mets follows: we wish to compute, for all possiblethe probabil-
odology presented in (Kontkanen et al., 1997), but the numbeities

data sets used in this study is considerably higher. In axidive

have used here a more versatile empirical validation regirae P(V=v|U=uD=(dy,...,dn)) (2)
ploiting several variants of the crossvalidation methodnieas-

uring the accuracy of different predictive methods. In ceoand We will abbreviate (2) taP(v [ u,D). Using the basic rules of
set of experiments (Section 4.3.), we examined how the gredProbability theory we can write

ive accuracies of the different approaches depend on themtmo

of the sample data available. The results are summarized and P(v|u,D) = P(u,v,D) - P((u,v)ID) 7 (3)
discussed in Section 4.4.. P(u,D)  3yP((u,v)|D)

where the summing goes over all possible instantiationsef t

2. Predictive distributions for discrete varablesinthe setV.
Consequently, we see that the conditional distributioritier

decision probl ems variables in V can be computed by using the complete data vec-
. tor conditional distributions (1) for each of the possibdenplete
2.1. Thedecison problem vectorsd = (u,v). The resulting distribution (2) is called the

In this paper we model our problem domain by a set Xnafis- predictive distributiorof the variables in.V. It should .be noted
crete random variables, ¥ {Xa, ..., Xm}, where a random vari- that the nymber_ of terms in the summatlon over possilgmows
ableX; can take on any of the values in the &et= {X1, .. ., Xin, }. e?<p_onent|ally with the number _of varlal_)Ies in V; therefqueg-
A data instantiatiord = (x, ..., Xn) is a vector in which all the dicting the values of many variables given the values of anly

variablesX, have been assigned a value: ¥y— d we mean few may be difficult. However, in many cases of practical in-
that Xy = Xq..... Xm = Xm, Wherex, € Xi. Let D! be the set terest we only want to predict the values of a very small numbe

of all possible data instantiatios D' = X; x ... x Xm. A (in classification problems just one) of the variables, sodt V

random sample D- (dy,...,dy) is a set ofN i.i.d. (independ- can be very small. . o

ent and identically distributed) data instantiations, reheach !N practice the “true” problem domain probability distribu
dj is sampled from®, the joint distribution of the variablestion % is not known, and it has to be approximated by using the
in X. Hence samples of lengtN are distributed according toS@mpleD. We restrict the search for a good approximation of
PN, the N-fold product distribution of?. Whenever this can- £ t0 some parametric family// of probabilistic models. Here
not lead to any confusion, we will drop in the sequel the sfiach model im is a probability distribution overD* determ-

perscriptN. More precisely, letbN be the set of all samplesined by an instantiation of parametdsi.e., each model defines
D of lengthN. For allN > 1 and anyD = (ds,...,dy) € DN, 2 probabilityP(d|®) for each possible data instantiatidn We

PN(D) = P(D) = I_IiN—1fP(di)- can thus identify each model with a particular parametdains
Given thetraining data D the conditional distribution of a ation®, and write® € 2 to denote the model that is determined
newqueryor test vector is 2(d|D), by ©. In sections 2.2.—-2.4. we describe four different appreach

for approximating®?. The first two of these are thHAP and
P(d, D)_ (1) theevidenceapproximations, which are both standard methods
P(D) of Bayesian statistics (Berger, 1985) and therefore resiEere
We focus on the following prediction problem: Given the \edu only very briefly. The third and fourth approximations we -dis
of some of the variables id, and some training dafa, we want cuss are based on information-theoretic considerationereM
to use the training data to arrive at good predictions formilaes specifically, they involve Rissanen’s renewed (Rissan&96}
of the rest of the variables. More precisely, gii@rand the val- definition ofstochastic complexitySince the derivation of these
ues of a subset U (th@tampedvariables) of the variables in X, approximations of? is part of our own theoretical contribution
we wish to predict the values of the variables in the set X\ U  in this paper, we discuss them in considerable detail.
(thefree variables). We will do our predictions by determining
probabilities for each of the possible instantiations of V. 2
Without loss of generality we may assume that the vari-
ables are indexed in such a way that we can write=U B

X1, X}, V= {Xs1,--, Xm}. In the sequel, we will use Given a prior distributiorP(©) defined for all® € M, we can

U = u as an abbreviation for a partial data instantiathin=" arrive at a posterior distributioR(©|D) by using Bayes’ rule:
Up, ..., X« = Uux whereu; € X. Similarly, V = v stands for

Xi+1= Vkt1, - - -, Xm = Vm Wherey; € Xi. Hence each data instan- P(©|D) O P(D|©)P(O). (4)
tiationd can be written asl = (u,v) = (U1, ..., Uk, Vk41, - - -, Vim)

for someu andv. Note thatuy, 1, ...,Unandvp, ...V, remain un- In the maximum a posteriori (MAP) probabiligpproximation,
defined in our notation. We can now state our aim more pracisttie distribution? in Equation(1) is replaced by the distribution

P(d|D) =

2. TheBayesan predictive distributions %, and
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corresponding to the single mod@(D) maximizing the pos- should be short. However, it turns out to be very hard to define

terior distribution(4), ‘with the help of’in a formal mannerindeed, a completely satis-
. factory formal definition has only been found very recentys-
O(D) = argmaxP(O|D). sanen, 1996) — before 1996, Rissanen used the evidence (6) fo
defining the stochastic complexity, but this earlier matatoal
The corresponding predictive distribution is definition he now regards merely as an approximation of the ne
N one. We discuss the new definition in some detail.
Ruae(d | D) = P(d | D,&(D)) "t P(d | (D). (5) Note that the informal definition of stochastic complexity

(SC) as given above presumes the existence of a code: by defin-
If we assume the prior distributid®(©) to be uniform, then (4) ition, the SC of a data sé is the length of the encoding &
becomes(©|D) 0 P(D|®) and the MAP model becomes equakhere the encoding is done using some special @dehich
to the Maximum Likelihood (ML) modedf classical frequent- gives ‘the shortest possible codelengths with respeét/to In
ist (non-Bayesian) statistics: the model that maximizesd#ita order to introduce a formula for the codelengths obtainédgus
likelihood P(D|@®). In Section 2.3. we see that the notion of thiaisC*, we first have to clarify the connection between probabil-
maximum likelihood model forms one of the central conceptsity distributions and codes.
our information-theoretic approach for defining predietdistri- In general, we denote the length (in bits) of the encoding of
butions. R D when the encoding is done using a c@iey Lc(D). All codes
If, instead of using a single mod@l, we average (integrate)considered in MDL argrefix codes (Rissanen, 1989). From the
over all the model® € M, we get a more sophisticated approX<raft inequality (see for example (Rissanen, 1989) or (Cdve
imation of 2. In the Bayesian literature the corresponding inteFhomas, 1991)) it follows that for every (complete) prefixdeo
ral is called theevidenceor marginal likelihood and it is given C, there exists a corresponding probability distribut®rsuch
by that for all data set® of given lengthN (i.e., with N data in-
stantiations), we have logP(D) = Lc(D) (throughout this pa-
2y(d,D) = /P(d,D|@)P(®)d®, (6) per, by ‘log’ we denote logarithm to the base two). Similarly
: for every probability distributiorP defined over all data sed
where the integration goes over all the modalm 94. The res- of lengthN there exists a cod€ such that for all Qataseﬁ of
ulting predictive distribution (1) then becomes lengthN, we havelc(D) = [ ~logP(D)] (here[x] is the smal-
lest integer greater or equal 1. If we use—logP(D) instead
_ of [—logP(D)], our code lengths will always be less than one
%(d|D) = / P(d]D,®)P(©]D)d®. ) bit off the mark; we may therefore safely neglect the integer
requirement for code lengths (Rissanen, 1987). Once we have
2.3. The information-theoretic predictive distribu- done this, the two facts above imply that we can interpret any

tion 2. probability distribution over sequences of a given lengshaa
o _ . code and vice versa. This correspondence allows udetatify
2.3.1. The MDL principle and stochastic complexity codes and probability distributions: every probabilitgtribu-

Stochastic Complexitig a central concept in thelinimum De- tion P over dgta sets of length may equivalently be interpreted
scription Length (MDL) PrinciplgRissanen, 1989, 1996). Ac-2S determining a cod€ such thatl.c(D) = —logP(D) for all
cording to MDL, the goal of all inductive inference is tom- D ©f lengthN. We see that a short code length correlsponds to
pressthe given data as much as possible, i.e. to describe it usihgigh probability and vice versa. wheneR(D) > P(D’), we

as few bits as possible. This involves the use of a descript/Ve—0gP(D) < —logP(D’). ,

method orcode which is a one-one mapping from datasets to | OUr parametric class of modets{ is regular enough (as
their descriptions. Without loss of generality, these desions 't Will indeed be for all instantiations ofi/’ we consider in this
may be taken to be binary strings (Rissanen, 1989). In&litiv paper), then there eX|stma7aX|mum.I|keI|hood (ML) estimat®

the shorter the description or codelength of a sebothe more O €very data seb, and we can write:

regular or simpler the sé@ is. Rissanen (Rissanen, 1987) intro-

. . D) = XP(D|@) = in—logP(D|®
duced the stochastic complexity as follows: 8(D) argergg{ (DI®) argerQM 9P(DIo)
The stochastic complexity of the data d2twith - arg@TA?L(D|@)’ ®)

respect to the model clag® is the shortest code o ]
length of D obtainable when the encoding is done where the last equality indicates the fact that e@cHefines a

with the help of class\f (Rissanen, 1987, 1996). che suph that the code length Bfis given by — IogP(D|Q).
Since this term can be interpreted as a code length, we dbtwev
Here ‘with the help of’ has a cledntuitive meaning: if there it to L(D|©).
exists a model i which captures the regularities D well, Let us now consider a data d&tof arbitrary but fixed length
or equivalentlygives a good fito D, then the code length @ N. The MDL Principle tells us to look for a short encodingf
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The model within clas$V that compresses the data most is t1#3.2. The stochastic complexity predictive distributign
ML model &{D), since by (8) it is the model for which(D|©),
the codelength ob when encoded with (the code correspon

ing to) ©, is lowest. At first sight iseemghat we should code N
. in which he MDL Princiol | su_ch that for alD of I_engthN, —!ogfl;c(p) = Lq(D). We call
our dataD usmg@(D), In which case the rinciple would his &Y the stochastic complexity predictive distributiodust

reduce to the maximum likelihood method of classical sitati% °C. . ;
ics. However — and this is the crucial observation which nsakik€ C” IS the code that gives the shortest possible codelength to

MDL very different from ML — MDL says that we must codet ose data sets for which there exists a good-fitting mod@{in

our data using somfixed code, which compressesdl data sets 2 is the distribution that.gives as mgch probabili_ty.as quSib
for which there is a good-fitting model iff (Rissanen, 1987)_to those data sets for which there exists a good-fitting model

But the code corresponding ®D), i.e. the code that encodesM' This motivates the use d for prediction.
any D' usingL(D'|@(D)) =  logP(D'|&{D)) bits, only gives O™ (10) we have
optimal compression fosomedata sets (which includ®). For _ N _ *
most other data se® # D, (D) will definitely not be optimal: S(DI?M) = ~ log2(D) = ~10gP(DIO(D)) +K5, - (1)
if we had been given such a different data Bé{also of length where @(D) cM. sincefz;’g‘(D) is a probability distribution,
N) instead ofD, then the code corresponding @D’) rather and hencey pe gy eN(D) = 1, we see from (11) thak}; =
than@(D) would give us the optimal compression. In generabgzDegN P(D|@kD)), or, equivalently:
codingD’ using®(D) (i.e. usingL(D’'|&{D)) bits) may be very 5
inefficient. N P(D|®&(D)) 1

We repeat the crucial observation: MDL says that we must £c(D) = S ey P(D|G(D)) (Fv)™*-P(DI&(D). (12)
code our data using sonfixed code, which compressed| data
sets that are well modeled §/. We can therefore not usevhereFy = 3 peon P(D|G(D)).
the code based o®{D) if our data happens to bB and the ~ From a practical point of view, using (12) as the predictive
code based o®{(D') if our data happens to b@’: we would distribution may at first sight seem infeasible since corimgut
then encodeD using a different code than when encoding the normalizing sunfy involves summing over an exponential
It would thus be very desirable if we could come up with @umber of terms (one for each data instantiation). Neviatise
code that compresses each possiblas well as the maximum-it is easy to see that the problem disappears if one computes a
likelihood, or equivalently, mostly-compressing elemént/ predictive distribution for a datasét of lengthN in the follow-
for that specificD. In other words, we would like to have ang straightforward manner:
single codeC; such thatlc, (D) = L(D|®{D)) for all possible N+1(d D N+1(d D
D. However, such a code cannot exist as soon as our model clas%'gﬂ(d |D) = Rc (dD) %R (d.D)

J_he aforementioned correspondence between probabititids
codelengths implies that there exists a probability distion 2

contains more than one element, since in general a code ¢an on '§+1(D) B 2d ffé'é‘“(d’, D)
give short codelengths to a very limited number of data imsta P(d,D | &{d,D))- F,\le
ations (Grunwald, 1998). Neverthelesdsipossible to construct = P(d' D ' D). L
a codeC, such that So P(d,D| &(d'D))-Fyyy
_ P(d,D | &{d, D))
Lc,(D) = — logP(D|&(D)) + Ky = L(D|&(D)) +Kn  (9) - yoP(d',D|&{d', D))

for all D of lengthN. HereKy is a constant that may depend on I.Ld P(d [@kd ?))P(D | &, [?))
N but is equal for alD of lengthN. If, for some® € M, we say S P(d'| &(cd".D))P(D | &(d, D))

that it fits the datd well, we mean that the probabili§(D[®)  Although this formula looks somewhat similar to that of the
is high. Note that the code length obtained usihgprecisely pap (ML) predictor (5), it should be noted that the probatis
reflects for eactd how well D is fitted by the model in the cIassP(D|@kd7 D)) do not cancel out here since the maximum likeli-
that fitsD best. . _hood estimator appearing in the denominator of (13) depends
Picking Cz such that the constaky is as small as possibley’ and hence is not a constant. Moreover, the maximum likeli-

yields the most efficient code that satisfies (9). We call &% rhood estimatofd{d, D) is now computed by using the data set
ulting code thestochastic complexity cod#nd denote it bYC*. pyd, not justD.

The corresponding minima{y is denoted byKy, and is called
themodel cosof . We define the code length Bfwhen en- . ) . .
coded using this code to be tetochastic complexity of D with2'4' Connecting 2, and &c: the ., predictive dis-

respect to model classf which we write asS(D|): tribution

(13)

. 2.4.1. 2Rcisnotarandom process
S(D|#) = Le-(D) =L(DI&(D) + K, (10) ‘ i |

A sequence of probability distributior', 22, 23, ., where?’
where®(D) € M. is a distribution over?', is arandom processf for all N > 0,
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D € DN, we have (see for example (Rissanen, 1989)): eN+1(d|D), 2N*+2(d|D), ... will tend to zero. For this reason,
we decided in our experiments to ugk as defined in (13).
TN+1(D7 d) = TN(D)- (14) Moreover, we concentrate in our experiments on the leaee-on
deDt out crossvalidation setup, in which case the test set indieet/s

In such a case, the sequence of distributions may be intetbrézom"’“nS only one test vectar

as one single distribution over the sample space of all tefini .
sequences. This means that the data can be interpreted ag-4r2- A random process that approximatgs

riving sequentially. It is very easy to show that the evidengy, see that although thic predictive distribution has several
predictive distributior2, has property (14) for all i.i.d. model ;.o properties from the information-theoretic point ofwi it

classesi; that is the reason why we may omit the superscripl,, il not be well-suited for most prediction tasks. Oe th

. . N .
N and write , instead ofy. However, the stochastic COMyher hand, the theoretical results on predictive MDL (Ries,

plexity predictive d_istributior@c_ doesnot have this property. 1989) imply that, under fairly general circumstances, theren
To show this, we give a very simple example. Suppose our §gk code corresponding to) a rand@mcess Reompresses the
of random variables contains just one element=XXi1} and yaap the better we can predict properties of future data using
our model class¥ contains the i.i.d. Bernoullimodels fof: o predictive distribution based & This means that we should
M = {P(-|©) | 0< © <1} such thaP(X; = 1|©) = © and for |56\ for the random process that compresses all Beftar which
anyd andD, P(d,D|®) = P(d|©)P(D[©). We see from equa- here is a good-fitting model it as much as possible. Since the
tion (12) that probability distribution (not process) which does this éofixed
sample sizéN is given byR., we may restate our aim as follows:

2 _ 1 _ H
R = 21+21/4 = 0.400Q while we look for the random process that best approxim@es
3 __H23%Y3 Rissanen (Rissanen, 1996) proved a fundamental theorem
1L1d)= L =03974 , p
de{qu}fgC( )= 2R which, together with the results in (Clarke & Barron, 1990;

Takeuchi & Barron, 1998) implies the following: under cénta
The fact that the sequence of distributic} does not define reasonable regularity conditions on the model clé&swe have
a random process has a problematic consequence. In many prac N
tical learning situations, the number of data instantiaithe —log®c(dy, ..., dn) = —logRy,(dy, . .., dn) +0(1), (16)
learner receives is not determined beforehand; one ushally
an initial training setD = (dy,...,dn), which is then used to
predict the variables in V for oner morefuture data elements

dna1,dng2, - - .. Strictly speaking, the fact tha8. does not define <" , e N
a r;ndor; process causes the predictive distriCbL@@)as defined PMor- If Jefireys prior 1S proper (as it will tu_rn ou_t to be for the
in (13) to be valid only for the situation where we know tha tH“OdeI class of Bayesian networks), then it is given by (see fo

learner will be confronted with juginetest vectod, after which example (Rissanen, 1996) or (Berger, 1985)):

for almost all sequences of data. Here, by definition,
limnse 0(1) = 0, and®y; denotes the evidence distribution as

given by (6) with the prior instantiated to the so-calli=ifreys’

the prediction process will stop for ever. To see this, lataiisrn ()Y
to our example and see what happens if, like before, we want m0O) = AR a7
to find the predictive distribution fod givenD of lengthN, but JIHm)[¥#dn
now we also assume that afterwards, a new vettowill arrive.  Here || (@)| is the determinant of thEisher (expected) informa-
Rewriting in the same manner as in (13), we get: tion matrix I(©®). Denotingd = (81, . .., 6), entry(i, ) of matrix
I(©) is defined as
N+2(d | D) — fg’él+2(d7 D) _ Zd+ fg’él+2(d7 d+7 D) ( )
¢ Yo BETA(d' D) S¢¥ya, BYTA(d,dy,D) 1O~ Eo [azlogp(x@)] .
S, P(d.dy,D| 6ld,d;, D)) as) 06196
Yo Ya, P(d,dy, D] &(d',ds, D))’ Originally, Jeffreys’ prior was derived by invariance argu

o , ments (Berger, 1985): the valuef{,(D) is invariant under one—
This is, however, in generalot equal to (13). The reader mayyne transformations of the parameter space. We see heri¢ that

verify this by returning to our little example: also plays a role as the prior which makes the Bayesian eviden
4 31 (a random process) asymptotically equivalent to the sttaha
P2(1)1) = E= 0.8000 while®3(1[1) = 39" 0.7949 complexity (not a random process). The results in (Clarke &

Barron, 1994) show that it is thenly proper prior doing so.
Hence if we assume that more future data will be available@un the other hand, recall that Rissanen introduced (12 gait
some point, then we have to make different predictions fer tbently (Rissanen, 1996), and in his earlier work (Rissafh887,
first new data vectod! Nevertheless, as we will see below]989), Rissanen used the marginal distributiyn(equation (6))
for largeN the difference in the predictive probabilities betweesis the mathematical definition of stochastic complexity. &
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that if Jeffreys’ prior is used, this still coincides asymiitally wheret; € X'. In other words, a Bayesian network structure
with stochastic complexity as given by (12). However, asssho G = {IMy,...,Mn-1} represents the class of all probability dis-
in (Rissanen, 1996), as soon as another prior is used, tleea tkributions on variablesy, . .., Xm such thatP(d) can, for alld,

always exis® € M such that witt®-probability 1, be written as in (19). It follows that in the Bayesian network
model family induced by a grap§f, a single distributior can
,\Il|_r>n —logRy(dy,...,dn) — [—log2N(dy, . ..,dn)] =C, be uniquely determined by fixing the values of the parameters

(18) ©=(6',...,8™), where

with C a constangreaterthan 0. For most priors this constant 6= (8,,....60,,....6.,, ... 6L,
can be quite large. ' ' o

Together, (18) and (16) show that, among all priots, p, js the number of values o, ¢ is the number of possible con-
with Jeffreys’ prior should yield the best approximation® figurations off;, and
in the worst-case sense. Taking for granted the fact that the
random process best approximati®g leads to optimal predic- o
tions (see (Rissanen, 1987, 1996)), this implies fatshould Tox
yield very accurate predictions, at least in the worst-casese, , , )
provided that (18) and (16) hold The recent results reported !N the following we assume an arbitrary but fixed structgre
in (Takeuchi & Barron, 1998) imply that (18) and (16) indeeﬂlnd we cons!derthe fgmlly of correspondlng probablllltymhmj
hold for the class of Bayesian networks with a fixed but aojtr tions Mg, Whlch_ contains al® as defined above excluding pglnts
structure (see Chapter 6 in (Griinwald, 1998) for detalisthe &t the boundaries of the parameter space. Formally, 2/ if
next section, we derive an analytic expression for Jeffrpsisr  2nd Only if
1(©) for the case wher® indexes a Bayesian network, and show : : no1
how to calculate®,, for Bayesian networks. 1. Oy > 0andlyy = 1 351 O

=P(X =x M =Tm).

2. All conditional distributions of variables given val-
3. Predictive Distributions for Bayesian ues for their parent values are multinomial(y; ~

Networ ks Multi(L;6},,, ., 8, ).

L

Since the family of Dirichlet densities sonjugatgsee e.g. (De-
Groot, 1970)) to the family of multinomials, i.e. the func-

A Bayesian (belief) network (Pearl, 1988; Shachter, 1988)!jgnal form of parameter distribution is invariant in theiq

a graphical high-level representation of a probabilitytrifis- tO-POSterior transformation, it is convenient to assuna the
tion over a set of discrete variables. A Bayesian network cdifior distributions of the parameters are from this fardilghis
sists of astructure G and aparameter se. The Bayesian assumption will be made tihroughoiut the re_maiunder Oif this pa-
network structureg is a directed acyclic graph (DAG), wherd®®- More precisely, 1e(04,,..., On) ~ Dilkny, ... B,

the nodes correspond to the domain variab{es .., Xm. The Where (Wq,... Uy, ) are the hyperparametersof the cor-
graph G can be represented by a setrof- 1 parent variable responding distributions. Assuming that the parameter—.vec
setsl; C {Xi11, ..., Xm} Where 1< i < m. For each variable;, tors (8531 - - -, Oy ) @re independent, the joint prior distribution
the parent seffl; represents the set consisting of the variables f@tall the parameter® is

which the corresponding node in the graglis a parent (prede-

cessor) of the node corresponding to the variagle-or simpli- moa Di( i i )

city, we shall henceforth forget about the mapping betwéen t il:lT!:ll Hryds - )

nodes and the random variables, and treat the variablestaeyif

were nodes of the grap§. In addition, the possible configura- —y,,ing now defined the prior distribution, the predictive-di
tions of a parent sefl; are assumed to be stored in an indexggy, ionse (5) and2y (7) can be written more explicitly, as
table, which allows us Eo tredt; as a random variable with POSyi| he shown in the next two sections. The general stochasti
sible values from aset' ={1....c} : complexity predictive distributiofR. (13) is instantiated for the
'Each Bayesian network topology (parent sgtjiefines a sét gayesian network case in Section 3.4.. For being able tardete
Of m_dep_endence assumptions which allqw the joint proftgbiliy theR,, predictive distribution, in Section 3.5. we show how
d.IStI’Ibutlon fp_r varlable9(1,_..._.,>(m to be written as a product of; compute Jeffreys’ prior for a given Bayesian network mode
simple conditional probabilities, In Section 4. we see that, for the subclass of Bayesian nkswor
m used in our experiments, Jeffreys’ prior, as needed in caimgu
P(d) =P(Xy = X1,..., Xm=Xm) = |‘l|:>()(i =M =), the predictive distributiofy,, is indeed of the proper conjugate
i= (19) (Dirichlet) form.

3.1. Bayesian Networks
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3.2. The &, predictive distribution for Bayesian From (21) we see that similarly to th@ ., predictive distribu-
Networks tion case, the resulting predictive distribution can beardgd as
a likelihood of the test vectat;, but now taken at the mean of the
Foranyd; € D, letd;; denote the value of; in d;, anddjin; the posterior rather than at the mode. This result is somewgtist
value off1; in dj. In addition, Iet us introduce the foIIowmg tWOing, since it means that being able to determine the expeotat

mdmatorvanablea' andz' of the parameters as described above, the correspondiglg sin
. . Bayesian network model represents all the possible modpls r
)L ifdji =X, i )1, ifdjny =T, resentable by the same network structure, in the sense fhrat i
= U, andz; = , PP
P 0, otherwise. ! 0, otherwise. (20) duces the same predictive distribution that would be obkthlry

integrating over all the different parameter instantiatio
For an unindexed test vectdrwe simply omit the subscripg
and ertez'X andz‘m
As already noted in Section 2.2., the MAP predictive dist®-4. The 2. predictive distribution for Bayesian
bution can be determined by computlng the likelihood of & tes Networks

vectord; = (u,v),t =N+ 1: . ] o
From (12), we see that the stochastic complexity predictige

. P . T :
Z{X,Z{ tribution is proportional to the likelihood of the combinédta
Fune(ch | D) = P(dk | O(D |_|rn ) 9 " setD* = DU d; at the maximum likelihood point:

Wherez{Xi andzy, are indicator variables as defined above and 2(ck | D) O P(D* | §{D*)) I_l I—l ) (Fhx )™

equx, is given by (see, for example, (Heckerman, Geiger, & Chick-

ering, 1995))

T=1%=

where
B - MutHu 1 g _ ()
Z|:1( il +“m|) L ()
Here fT'QXI are the sufficient statistics of the training d&ta fTQXI and( frim)+ are the sufficient statistics @*. Consequently, the
is the number of data vectors where varialldhas valueg and predictive distribution can also in this case be regardeslgeli-
the parents oX; have configuration: hood of the test vectad;, but the maximum likelihood estimator
is now computed from the extended data set, consisting of the
original data set together with the test vector itself.
Tnx - Z ixi JTﬁ7

whereZ,, andZ,,; are defined as in (20). With the uniform prio.5. The 2, predictive distribution for Bayesian

1%
all the hyperparameter[s;w are set to 1, in which case we get Networks

the standard maximum likelihood estimator, o ,
As can be seen from (17), Jeffreys’ prior is proportionalhe t
fl

&l rnx. square root of the determinant of the Fisher informationrixat
T : Since the Fisher information matrix fof data vectors can be ob-
Sy . ) . ; )

tained from the information matrix for only one vector simply
" o . multiplying all the elements bi, it is sufficient to consider only
33. The @, predictive distribution for Bayesian the simple case with only one data vector. The log-likelthob

Networks a data vectod can be written as

The evidence predictive distribution (7) is defined as aagrsl
over the parameter space. As shown in (Cooper & Herskovits,'ogp(d 1©) =

1992; Heckerman et al., 1995), with Bayesian networks this i
tegral can be solved analytically, yielding Z 2x logBhy ) + 2y 1096, | - (22)
m G nj _ z{ z{ I
i X . .
%v(di | D) = .rlmnlxnl(emi) T (21) wherez; andz, are defined as in (20)
i=1lm=1x=
Let us consider the eleme(ﬁql Iy q + 1,) of the second de-
where _ fi +“;m rivative (Hessian) matrix of (22), Wheriq l2 € {Xi1,--.,%in; }-
Oy = —— If either the variable indices,i» or the parent configurations

Z|ni:1 (frim + ll'm) 0i,,qi, are different, then clearly the second derivative is zero,
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and thus also the corresponding element of the informatiata nﬂim, . 9' n_1- Itis relatively easy to show (see (Bernardo &
rix is zero. It follows that the only non-zero elements of the Smith, 1994)) that the determinant of (26) is given by
formation matrix are in submatrices where both parameters i _
question have the same variable and configuration index. Let Il (@) = (N-Pp)" ! 27)
us now consider one of these submatribe@), wherei is the T |-||”i:1(9irE '

variable index andl the parent configuration. We need two type

of second derivatives: first for the case when the value eslidThe whole Fisher information matri®) is a block diagonal
[1 andl; are different, and secondly for case when they are timatrix, where the blocks are the submatrit;'@sa). The determ-
same. After some simple calculus we get inant of a block diagonal matrix is product of the determitsaof

the blocks, and thus

8%logP(d | ©)
B i (N- pi ) i—
B, u@n—r]n——————. (28)
z'mz}l. . i=1m=1 |_||:1 il
(%T')p if 11 # 12,
= (23) Finally, as noted in Section 2.41(©) 0 /|1 (©)], so we get
23 ] —
(el )2+(6| ) ) Ifll*'Z*' i
uqs r! (N-Pp) iy I_l
The elements of the Fisher information matrix are now the ex- =1
pectations of (23) over the set of all possible data vecfargor i
(P i
the case wherh # I we get I'l A I'l
—0%logP(d [©) | _ S Pd|0 Zn However, computing Jeffreys’ prior as formulated aboveurezs
00’ 96! N o, )2 computing for each variable the marginal distribution afptar-
il Vgl deD Tin; . .
ents. Unfortunately, for multi-connected Bayesian neksothis
@ P(d | ©) problem is known to be NP-hard (Cooper, 1990). In the exper-
TN/ {deD|Ni=mg,X=ni} iments reported in Section 4., we used a simple tree-stredtu
_ P(Mi=1,%=n;|O) Bayesian network, in which case Jeffreys’ prior is of a prope
(elmnl) conjugate form, and it can be computed efficiently.
_PMi=mn|®) (24) o
Orn 4. Empirical Results
Similarly, with |1 = I, = | we get 41. Experimental setup
E ~0%logP(d | ©) In the following, we concentrate on the standard classificat
© o( im )2 problem, where the task is to predict the value of a sictissi-

fication variable given the values of all the other variables. Con-
(25) sequently, the set of free variables consists of only onalvh,
and the set of clamped variables contains all the other blada
— in other words, by using the notation given in Section 25U
{X1,...,Xm-1} and V= {Xn} , and we wish to compute probab-

_PNi=m|©) PMNi=1]06)
= ei —+ 9' .
il i

Multiplying these elements b, we get the Fisher information

matrix ilities of the formP(Xm = Xm | X1 = X1, ..., Xm-1= Xm-1, D).
i (©) In the Naive Bayes classifier case, the variables in U are as-
T , , , , sumed to be independent, given the value of varidle Con-
(:_“i + ;“i ) (;“i . N(;_“i) sequently, we can regard the Naive Bayes model as a simple tre
e i o i o ;}”i structured Bayesian network, where variakieforms the root of
N(e,“i ) N(e,—”i + s,“‘_ ) N( 6,“‘_ ) the tree, and variable§, .. ., Xm_1 are represented by the leaves.
= i e e " . In this case, the Jeffreys’ prior formula (17) reduces to
pi pi pi pi K 1 m-1 K
N5, N N St a) me) 0 e ( T”mz)
K

WlK nj

(em) Bl I_l l_llﬂ il 2, (29)

where P, = P(Mj = 14|©). Notice thatl},(©) is an (nj —
1) x (nj — 1) matrix since®l;, is completely determined by

=~
\ |
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whereK denotes the number of the values of the root variable ¢ SC: TheR. predictive distribution (13).

Xm. Consequently, the prior distribution can be represensed a o _ _
product of Dirichlet distributions, o EVJ: The®, predictive distribution (7) with Jeffreys’ prior

(29).

m-1 m-1
O~ Di (% (Z(ni -1 +1) % ( Z(ni -1 +1)) In the first set of experiments (Section 4.2.) we measured the
i= i= crossvalidated prediction performance by using the twbtyti
m1lK /q 1 functions described above. In our second set of experiments
X I_l |_| Di (57 S 5) : (Section 4.3.), we studied how the prediction quality of wauni-
I=Lk=1 ous approaches depends on the size of the training.set
For our experiments with the Naive Bayes classifier, eight
public domain classification data sets of varying size we ot
used (the data sets can be obtained from the UCI data repo&se"% Crossvalidation results
ory (Blake, Keogh, & Merz, 1998)). Table 1 describes the si@our crossvalidation experiments, we initially used eatthe
(N), the number of attributesr{), and the number of classes)( datasets with the same number of folds as in the major exper-

for each of these data sets. imental comparison performed by the Statlog project (Machi
Spiegelhalter, & Taylor, 1994) (the number of folds usedanre

Table 1. The datasets used in the experiments. case can be found in Table 1). Let us first note that although
Dataset Data vectors Attributes Classes CV foldge result of one crossvalidation run is an average néimbers,
Heart Disease (HD) 270 14 2 9 wheren is the number of folds used, the result depends of course
Iris (IR) 150 5 3 5 on how then folds are selected from the sample data. To see how
Lymphography (LY) 148 19 4 5 much the results vary with different fold partitionings, \wer-
Australian (AU) 690 15 2 10 formed 100 independent crossvalidation runs where thevdasa
Breast Cancer (BC) 286 10 2 11 randomly partitioned intm folds, and computed the minimum,
Diabetes (DB) 768 9 2 12 the average, and the maximum of the crossvalidated predicti
Glass (GL) 214 10 6 7 accuracies obtained. As can be seen in Figures 1 (in thecog:-s
Hepatitis (HE) 150 20 2 S case) and 2 (in the 0/1-score case), the crossvalidatiaftsesin

vary quite a lot depending on the specific fold partitionisgd.

For comparing the predictive accuracy of different preleet  Though the differences in crossvalidation results betveien
distributions, we used two different utility functions: eog- ferent prediction methods are small, we see that for theste,
scoreand the0/1-score The log-score of a predictive distri-evidence with uniform prior performs consistently bettear the
bution P(Xm|u, D) is defined as-log?(Xm = kju,D) wherek other methods, followed very closely by the evidence with Je
denotes the actual (“true”) classification, i.e., the otmealue freys' prior. The ML approach produces the worst resultsr Fo
of Xm. When using logarithm of base two, the log-score has tfig 0/1-score, the picture is not as clear-cut, and therdiffees
following coding interpretation: If one encodes the datngs are quite small. However, it should be noted that in this tase
the code corresponding t8(Xm|u, D), then logP(Xm = k|u,D) ML approach produces the best results with two of the data set
is equal to the number of bits one needs to describe the act¢ll and HE). One explanation for this fact may be that for the
outcomek. On the other hand, if we imagine the correct predigiych coarser 0/1-score, it is in many cases not importartigxa
ive distribution to give in this case probability one to thetusl \yhat probability we attach to a class value beingll probability
outcome, and probability zero to other outcomes, we seetRatgjstributions over the class values for whicigets the maximum
log-score is equivalent to the cross-entropy or Kullbaekbler propability will lead to the same prediction. Thus it canwer
distance between the above defined degenerate distritaninye|| happen that, while the ML prediction captures less el
the predictive distribution produced. regularities underlying the data (and hence performs waite

For the 0/1-score, we simply first determine thtor which yegpect to log-score), it still captures them well enougliite
the probability?(Xm = k|u, D) is maximized, and the 0/1-scorgnaximum probability to the class value that should indeed re
is then defined to be 1, if the actual outcome indeedkvather-  cejve maximum probability.
wise it is defined to be 0. In addition to comparison purposes between the differest pr

Two separate sets of experiments were performed on egghive distributions, the results in Figures 1 and 2 areriesting
data set by using the following predictive inference metwith g they show very good performance of the Naive Bayes model
the Naive Bayes model described above: when compared to the results reported in the machine legtitin

o ML: The R predictive distribution (5) with uniform prior €rature (for references, see e.g., (Tirri, Kontkanen, & iytyiki,

(equivalent to the predictive distribution with the maxt996))- This fact becomes especially clear if we look at tiagm
imum likelihood model). imal results reported here, vv_hlch in many cases is Jus'gélabl
many of the results reported in the literature seem to beirodda

e EV: The®, predictive distribution (7) with uniform prior. in this way, although this fact may not be explicitly stated.
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| og-score

LY

1.5
HE

HD AU DB

T

MEJS MEJS MEJS MEJS MEJS MEJS MEJS MEJS

Fig. 1: The minimum (lower end of the black line), the average (geay,and the maximum (upper end of the black line) of the
crossvalidated log-scores obtained by 100 independesseaiidation runs. The corresponding leave-one-out ealg$ation res-
ults are marked with small circles. The y-axis representsltig-score, so the smaller the score, the better. The piedicnethods
used are ML (denoted here by M), EV (E), EVJ (J), and SC (S).

0/ 1-score
+ii$
0'8-4‘*‘}‘} ]“l} @b b @ 4}+i%
| o At a

I

MEJS MEJS MEJS MEJS MEJS MEJS MEJS MEJS

Fig. 2: The minimum (lower end of the black line), the average (geay, land the maximum (upper end of the black line) of the
crossvalidated 0/1-scores obtained by 100 independesseadidation runs. The corresponding leave-one-out ealg$ation res-
ults are marked with small circles. In this picture higheoseis better. The prediction methods used are ML (denotesltheM),

EV (E), EVJ (J), and SC (S).

The high variance of the results obtained indicate that ofRer this reason, we decided to restrict ourselves to leaecaut
single n-fold crossvalidation run can not be used as a relialimssvalidation in the next section.
measure for comparing various predictive inference methoa-
less the same specific fold partitioning is used in all cadgs.
however, a number of independent runs is performed, theres
statistical measure, such as the average, can be usedd@UiAi 14 see how the prediction quality of our various approactees d
pose. Alternatively, the leave-one-out results seem tofolhe engs on the size of the training €8t we performed a set of
behavior of the averaged crossvalidation results quiterately. experiments using only small fractions of the training datail-

&3 Resultswith varying amount of training data
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MEAN of 01-score for HD MEAN of 01-score for IR

o 20 40 60 80 100 120 140 160
MEAN of 01-score for LY MEAN of 01-score for AU

Fig. 3: Average leave-one-out 0/1-scores obtained witleift predictive distributions for the HD, IR, LY and AU @akt cases as
a function of the number of the training examples used.

MEAN of 01-score for BC MEAN of 01-score for DB

ML —
EV -
E)

o 50 100 150 200 250 300 o 100 200 300 400 500 600 700 800
MEAN of 01-score for GL MEAN of 01-score for HE

Fig. 4: Average leave-one-out 0/1-scores obtained witledint predictive distributions for the BC, DB, GL and HE akst cases
as a function of the number of the training examples used.

able. In these experiments, leave-one-out crossvalidatias The averaged (over the 100 leave-one-out crossvalidatios)r
used, but at each step, only tkeirst vectors from the train- results are plotted as a functionloiih Figures 3—6. These statist-
ing set were used in order to predict the test vector that \eds “ics of the behavior of different predictive distributiorssafunc-
out”, and this procedure was repeated for 1,... . N— 1. As tion of increasing amount of training data should now give us
this setup is dependent on the ordering of the data vectioes, some idea as to the typical behavior of our prediction method
whole leave-one-out crossvalidation cycle was then reged0 It should be noted that since with small sample sizes, the ML
times with 100 randomly generated permutations of the datasnethod will sometimes yield infinitely bad log-score, in erd
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MEAN of P-score for HD MEAN of P-score for IR

o 50 100 150 200 250 300 o 20 40 60 80 100 120 140 160
MEAN of P-score for LY MEAN of P-score for AU

500 600 700

Fig. 5: Average leave-one-out p-scores obtained with iffepredictive distributions for the HD, IR, LY and AU da¢a€ases as a
function of the number of the training examples used.

MEAN of P-score for BC MEAN of P-score for DB

ML —
SV~

o 50 100 150 200 250 300 o 100 200 300 400 500 600 700 800
MEAN of P-score for GL MEAN of P-score for HE

Fig. 6: Average leave-one-out p-scores obtained with aiffepredictive distributions for the BC, DB, GL and HE datiasases as
a function of the number of the training examples used.

to prevent scaling problems when presenting the resulfghiga consists of only a few data vectors, which shows that the data
ally, the p-score(the probability of the correct class, instead afets used here are quite redundant, and when properly udgd, o
its logarithm) was used in these tests as the alternative $o0 a very small sample of these data sets is needed for constyuct
the 0/1-score, and not the log-score. good models. In the following section, we analyze threehert

) ] ] interesting aspects of the results.
Allin all, the results with all the eight datasets used shewv

similar behavior: the evidence-based EV and EVJ approaches
perform surprisingly well even in cases where the trainiatad
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4.4. Discussion nothing about the validity of the MDL approach per se. Se¢ond
it is important to note that the fundamental goal behind thzL.M

It is a well-known fact that, for small sample sizes, the ME-DI 50 5r0ach is to optimize the ‘worst-case’ behavior of a et

dictor is too dependent on the observed data and does not ibution: whateverthe dataD is, - log,,(D) will be about

into account that _future daua].aytum out to be different. Our equally close to- logP(D|G{D)), the code length obtained by
results support this observation and show that compareteto lﬁsing the best-fitting model in the class ©r For the model

other meth.olds, the ML predictive distribu_tion appears tooeh class of Bernoulli processes, Rissanen (Rissanen, 1986)esh
more sensm\{e to the amount of data available. This phenomethat this leads to a considerable gain (in the sense of smaife-

can be explained by the fact that the EV and EVJ approachesiaie ¢ it needed to code the data and hence better prewictio
more conservative methods as they base their predictioRS-0n;, yq 1o4_score sense) ove, with the uniform prior, if the data
pected values of the parameters, or actually, on inte@aVer ¢ois seqd are highly ‘skewed’. By skewed data sets we mean
all the parameter values, while ML makes more “eager” prediga o gata for which the ML estimator lies near the boundary of
tions based on the maximum likelihood estimator. the parameter spack(

Let us consideravgry simple e_xample to illustrate this poin Intuitively, the above phenomenon is easy to accept when
Suppose our data consists of a string of ones and zeros gaMege reca|l thatp,, employs Jeffreys’ prior which yields a slight
by some i.i.d Bemnoulli-process = P(X = 1). If we have seen , oference to models near the boundary points of the paeamet
an initial string consisting of one ‘1, and no zeros, thee ML - g5 00 \yhilep, assumes a uniform prior over the model para-
predictor will determine that the probability of the secayin- a1 Consequently, whil,, can be expected to give smal-

bol being a L is unity. However, using the EV predictionisth o . 4e |engths for skewed data sets thanthe price to pay is

probability is 5. If the next d_ata ite_m turns out to be a’'0’, thep, ot for non-skewed, more ‘average’ data sets, ugingean lead
the log-score of the ML predictor will be «o while that of the EV' y, gjightly inferior predictive performance. As our expesntal
will be log2—log3. The behavior of the SC and EVJ methodsg s show, the data sets used in this study are not veneske
lie somewhere in between that of ML and EV. In our Bemoullj,-¢ 4jready a small amount of data was enough for obtaising
example, the probability of the second symbol being a "1 Wlouy g predictive performance as with all the data. For thisoa
be 3 for EVJ andg for SC. ’

- i it seems reasonable to assume that the datasets used wew jus
Theoretically, for large sample sizes EVJ and SC should legdyyed enough for EVJ to outperform EV. Our preliminary stud

to the same predictions, sin@&, and. become asymptotically jes (Kontkanen, Myllymaki, Silander, Tirri, & Valtonen929)
identical. It can be seen from Figures 3-6 that this phenomen,, +his subject support the theoretical arguments, bumnadilli

ir}deed occurs for most of the data sets used. For small sanm,g interesting hypothesis produces an important rebgamab-
sizes however, EVJ usually performs somewhat better than that needs to be studied in more detail.

We believe that this is caused by the fact ti#atas we use it here
is defined for theunsupervisedase, where the goal is to give
maximally high probability for full unseen vectofgy,...,xn), 5. Conclusion and Future Work
while the methods were tested in thapervisedase, where only
one variable (the class variabtg) was actually predicted. AnWe have described how to obtain predictive distributionssing
exact optimization of the SC method for the supervised ifless different approximations for the problem domain probaipiiis-
ation case would require the use ofenditionalmaximum like- tribution, given some sample data. Of the alternativesidensd
lihood estimator of dat®. Using the notation of Section 2.1.here, the predictive distribution exploiting Rissanenéwrfor-
this is the modeDB in model classM that maximizes theon- mulation of stochastic complexity is of particular intdres it
ditional probability P(Dy |Dy, ©) whereDy is the set of theN has some nice theoretical properties, which suggest teatah
instantiations of the free variables ihandDy is the set ofN responding probability distribution is in some cases mo®ia
instantiations of the clamped variablegin This modification is ate than the marginal likelihood distribution. A straigitifard
by no means straightforward and is left as a goal for futurewoapplication of Rissanen’s MDL formalism led us to the SC pre-
The results presented by Rissanen (Rissanen, 1989, 1996}ictive distribution. However, as discussed earlier, gredictive
ply that application of the MDL framework should lead to guitdistribution does not constitute a random process whichasiék
accurate predictions. However, in the experiments pertgkmuse troublesome. For this reason, we first described howttie e
predictions based on the standard Bayesian EV approach (reace predictive distribution with Jeffreys’ prior can bgaeded
ginal likelihood predictive distribution with uniform i) usu- as an approximation of the MDL-optimal predictive distitiloun,
ally gave slightly better results than predictions basedtl® and then showed how to compute Jeffreys’ priors in the Bayesi
EVJ approach motivated by MDL. We conjecture that the reastwork model family case.
ons for this are twofold. First, it should be remembered that In the experimental part of the paper, the predictive aagura
—log2y,(D) is only an asymptotic approximation of the acef the ML predictive distribution (the MAP predictive digiu-
tual stochastic complexity (10). The small sample size behi@n with uniform prior distribution), the evidence pretie dis-
vior of this approximation is theoretically not well undeysed, tribution (with both the non-informative uniform prior, drdef-
and hence the small size performance of this approximagits tfreys’ prior suggested by the MDL theory), and the straightf
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ward SC predictive distributionwere evaluated empirichl us- were obtained from the University Medical Centre, Insgtof
ing publicly available classification data sets. For corafighal Oncology, Ljubljana, Slovenia. Thanks go to M. Zwitter and
reasons, the specific model used in the tests was the stullgtuM. Sokli(d for providing the data.

simple Naive Bayes model. In the experiments performedén t

0/1-score sense there was no clear winner. In the log-seoses

the evidence-based predictive distributions EV and EVpeut NOLES

formed the other methods, especially in cases where ther@mou

of training data was small. The best results were obtained byl- Strictly speaking, (16) does not t;old for degenerate data
using the uniform prior. One reason for the evidence predict quences, i.e., for data sequenBésD?, .. with the property that
distribution performing slightly worse with Jeffreys’ pii may t&%ﬁ;’gﬁ’%nd'ngosnev(lligggiooihrgaggsa?a:;‘?;htzzdpzigﬁ?tzr
be the fact that Jeffreys’ prior is in a sense a “worst-cas@rp space’_

as we indicated in the last section.

The somewhat inferior performance of the SC method with 2. _Additiqnal justifications for using Dirich_le_t priors argiven
small training sets can be partly explained by the fact that t in (Geiger & Heclkerman’ 1994), w_hgrr(]el ftis sk?ownlthat_under
stochastic complexity predictive distribution does nobstitute g::%'g l:izzovcsﬁoif ;leja?sgcm(i’azgfms;;st nfazg yrithat
a random process. In addition, the SC predictive distrdyutvas '
defined so that the method would give a maximally high prob-
ability for full unseen vectors, while the methods wereedsn Refer ences
the restricted supervised case, where only one variabbec(tss
variable) was actually predicted. All in all, it should begmas- Baxter, R., & Oliver, J. (1994)MDL and MML: Similarities and differ-
ized that the fact that the two approaches motivated by the MD ~ encegTech. Rep. No. 207). Department of Computer Science,

theory (EVJ and SC) did not produce better results than tiredst Monash University.
ard Bayesian EV approach, marginal likelihood predictidthw Berger, J. (1985).Statistical decision theory and Bayesian analysis.
uniform prior, does not imply that there is anything wrongtwi New York: Springer-Verlag.

the MDL approach per se; rather, they illustrate the difficolf Bernardo, J., & Smith, A. (1994Bayesian theorydohn Wiley.
applying the theoretically elegant MDL framework in praetin _
Blake, C., Keogh, E., & Merz, C. (1998). UCI repository of

a formally solid manner. . - . .
. . - machine learning databases. (URL: http://www.ics.uci.edu/
The results with decreasing amount of training data shotv tha ~mlearn/MLRepository.html)

the evidence-based approaches are quite robust in thetbetise ) )
they predict surprisingly well even with small trainingsewhat Castillo, E., Gutiérrez, J., & Hadi, A. (1997&xpert systems and prob-
is more, it should also be noted that the actual classificatin abilistic network modelsNew York, NY: Springer-Verlag.
curacies obtained with the Naive Bayes model are surpiiiginglarke, B., & Barron, A. (1990). Information-theoretic asptotics
high, when compared to the results obtained by alternativé-m of Bayes methodsIEEE Transactions on Information Theory
els. The latter fact has actually been noted before by severa 36(3), 453-471.

authors (see for example (Langley & Sage, 1994; FriedmanGfarke, B., & Barron, A. (1994). Jeffrey’s prior is asymptatlly least
Goldszmidt, 1996)); the results reported here extend these- favorable under entropy risklournal of Statistical Planning and
ous works as they show that when the evidence predictive-dist Inference41, 37-60.

bution is used, very good performance may already be adahie¥®oper, G. (1990). The computational complexity of probsti in-
for quite small sample sizes. This suggests that in manyraatu ference using Bayesian belief networkArtificial Intelligence
domains, using the Naive Bayes model may not be so naive after 42(2-3), 393-405.

all, and that the empirical results pre;ented here also Mar Cooper, G., & Herskovits, E. (1992). A Bayesian method feritiduc-
EVaECE for the general case with multi-connected Bayest&n n  tion of probabilistic networks from dataMachine Learnings,
works. 309-347.
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