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Bayesian network models are widely used for supervised prediction tasks such as clas-
sification. The Naive Bayes (NB) classifier in particular has been successfully applied in
many fields. Usually its parameters are determined using ‘unsupervised’ methods such
as likelihood maximization. This can lead to seriously biased prediction, since the in-
dependence assumptions made by the NB model rarely ever hold. It has not been clear
though, how to find parameters maximizing the supervised likelihood or posterior globally.
In this paper we show, how this supervised learning problem can be solved efficiently. We
introduce an alternative parametrization in which the supervised likelihood becomes con-
cave. From this result it follows that there can be at most one maximum, easily found by
local optimization methods. We present test results that show this is feasible and highly
beneficial.

1 INTRODUCTION

In recent years it has been recognized that for supervised prediction tasks such as classi-
fication, we should use a supervised learning algorithm such as supervised (conditional)
likelihood maximization [6, 10, 5, 9, 4]. Nevertheless, in most applications related to this
type of task, model parameters are still determined using unsupervised methods such as
ordinary likelihood maximization. One of the main reasons for this discrepancy is the
difficulty in finding the global maximum of the supervised likelihood. In this paper we
show how this problem can be solved for the Naive Bayes (NB) classifier.

We find the supervised maximum likelihood parameters by parametrizing the NB
model in a different manner; we take the logarithms of the original parameters and drop
the sum-to-one constraints. The new parametrization has the remarkable property that
it makes the supervised likelihood a concave function of the parameters. We can therefore
find the global maximum supervised likelihood parameters by simple local optimization
techniques such as hill climbing. In the experimental part of the paper, we demonstrate
the usefulness of our idea by applying it to infer supervised Naive Bayes distributions for
a variety of real-world data sets. For most of our data sets, the supervised NB classifiers
lead to (sometimes substantially) better predictions than those obtained by the ordinary,
‘unsupervised’ NB classifiers.

This paper is organized as follows. We first in Section 2 review the standard (un-
supervised) Naive Bayes classifier and its supervised version. Then we show that when



this model is parametrized in the usual way, the supervised likelihood is not a concave
function of the parameters, which hinders its optimization. In Section 3 we introduce
the L-model. Although the L-model looks different from supervised NB, in Section 4 we
show that the two models in fact represent exactly the same conditional distributions.
The supervised likelihood of the data, as a function of the parameters of the L-model,
becomes concave, while the parameter set itself is convex. Section 5 provides alternative
interpretations of the L-model. In Section 6 we argue that for technical reasons, it is use-
ful to equip our models with a prior as to effectively maximize the ‘supervised Bayesian
posterior’ rather than the plain supervised likelihood. Finally, in Section 7, we compare
our supervised NB to standard NB on a variety of real-world data sets. An outlook on
future research is given in Section 8.

2 THE SUPERVISED NAIVE BAYES MODEL

Let (X0, X1, . . . , XM) be a discrete random vector, where each variable Xi takes on values
l ∈ {1, . . . , ni}. Without loss of generality be X0 the class variable (the one we want
to predict), while the remaining X1, . . . , XM are the predictor variables or attributes .
The (training) data set D consists of N vectors containing M + 1 entries each: D =
(d1, . . . , dN), with dj = (dj0, . . . , djM). In the classification task, the goal is to build from
the training data D a model that predicts the value of the class variable, given the values
of the predictors.

The standard (multinomial) Naive Bayes classifier (NB) (see e.g. [8]) consists of pa-
rameters ΘS = (αS, ΦS), where αS = (αS

1 , . . . , αS
n0

) and ΦS = (ΦS
kil), with k ∈ {1, . . . , n0},

i ∈ {1, . . . , M}, and l ∈ {1, . . . , ni}. Here αS = P (X0|ΘS) is the default distribution over
the class, and each ΦS

ki = P (Xi|X0 = k, ΘS) is a distribution over the values of Xi given
the class. We restrict our parameters to lie in the set ΘS defined as:

αS := {(αS
1 , . . . , αS

k )|
n0∑

k=1

αS
k = 1; all αk > 0}

ΦS := {ΦS|∀k∈{1,...,n0}
i∈{1,...,M}

ni∑

l=1

ΦS
kil = 1; all Φkil > 0}

ΘS := {(αS, ΦS)|αS ∈ αS; ΦS ∈ ΦS}.
Note that ΘS, the closure of ΘS, is the set of all parameter vectors that correspond to
some Naive Bayes distribution. ΘS itself is the set of all parameter vectors corresponding
to a Naive Bayes distribution with only strictly positive probabilities. Without essential
loss of generality we may restrict ourselves to parameters in ΘS, as we shall see in
Section 6.

The (unsupervised) log-likelihood of D given ΘS is defined as

log P (D|ΘS) =
N∑

j=1

log P (dj|ΘS) with P (dj|ΘS) = αS
dj0

M∏
i=1

ΦS
dj0idji

, (1)

where the first equality refers to the i.i.d. (independent, identically distributed) assump-
tion inherent to the Naive Bayes model. Eq. (1) can be rewritten as

log P (D|ΘS) =

n0∑

k=1

(
hk log αS

k +
M∑
i=1

ni∑

l=1

fkil log ΦS
kil

)
, (2)
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where hk and fkil are data frequency counters: hk is the number of vectors dj of class
dj0 = k, and fkil is the number of class k vectors with dji = l.

With the standard NB classifier, for given data D, one infers the maximum likelihood
(ML) parameters Θ̂S by maximizing (2). The inferred parameters Θ̂S can then be —
and usually are — used for supervised prediction tasks: given (X1 = x1, . . . , Xm = xM),
one wants to make predictions about the value of X0. This is done using the conditional
distribution of X0 given x1, . . . , xM . For ΘS ∈ ΘS, this distribution looks as follows:

P (X = k|X1 = x1, . . . , XM = xM , ΘS) =
αS

k

∏M
i=1 ΦS

kixi∑n0

k′=1 αS
k′

∏M
i=1 ΦS

k′ixi

. (3)

It has often been argued that, because the prediction task is supervised, the score
function used to determine the parameters of a model should also be supervised, i.e.
conditional [4, 5, 6, 9, 10]. This leads us to the supervised log-likelihood SS(d; ΘS)
defined as follows. Let d = (k, x1, . . . , xM) be a single data vector. Then

SS(d; ΘS) := log P (k|x1, . . . , xM , ΘS) = log
αS

k

∏M
i=1 ΦS

kixi∑n0

k′=1 αS
k′

∏M
i=1 ΦS

k′ixi

. (4)

For a sample D = (d1, . . . , dN), this becomes

SS(D; ΘS) :=
N∑

j=1

SS(dj; Θ
S) =

N∑
j=1

log
αS

dj0

∏M
i=1 ΦS

dj0idji∑n0

k′=1 αS
k′

∏M
i=1 ΦS

k′idji

=

n0∑

k=1

(
hk log αS

k +
M∑
i=1

ni∑

l=1

fkil log ΦS
kil

)
−

N∑
j=1

log

(
n0∑

k′=1

αS
k′

M∏
i=1

ΦS
k′idji

)
. (5)

In this paper, we are interested in the parameter vectors α̃S and Φ̃S maximizing the
supervised log-likelihood (5). These are generally very different from the more commonly
used ML parameters α̂S and Φ̂S, arrived at by maximizing Eq. (2) analytically: while α̂S

and Φ̂S are exactly proportional to their corresponding training data frequency vectors,
the characterization of α̃S and Φ̃S is more complicated (see Section 5).

Since we are only interested in the conditional (supervised) likelihood, we will restrict
our attention to the set of conditional distributions. Formally, we define the Supervised
Naive Bayes model to be the set of conditional distributions of X0 given X1, . . . , XM ,
defined in Eq. (3):

MS := {P (X0|X1, . . . , XM , ΘS)|ΘS ∈ ΘS}.
The conditional distributions are extended to N outcomes by independence. For a sample
D and parameters ΘS, this results in the supervised log-likelihood SS(D; ΘS) given by
(5).

Example 1 (ΘS-parametrization is not 1-to-1). Consider a domain with only two binary
variables, X0 ∈ {1, 2} and X1 ∈ {1, 2}. Let ΦS

111 = ΦS
211 = b ∈ (0, 1). For all values of b,

the supervised score1 of any vector (x0, x1) is given by

P (x0|x1, (α
S, ΦS)) =

αS
x0

ΦS
x01x1∑

k′ α
S
k′Φ

S
k′1x1

= αS
x0

,

1We use the word ‘score’ in order to stress that the log-likelihood is the objective to be optimized.
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which is constant wrt. b. This shows that there exist Θ(1), Θ(2) ∈ ΘS with Θ(1) 6= Θ(2),
such that P (X0|X1, Θ

(1)) = P (X0|X1, Θ
(2)). While all ΘS ∈ ΘS index a different joint

distribution, some of them index the same conditional distribution.

The problem with maximizing the supervised likelihood is that in the conventional
NB parametrization it is not concave. The following simple example shows that the
supervised score SS(D; ΘS) may peak more than once along some line, contradicting
concavity.

Example 2 (Non-Concavity of the supervised score). Consider the domain of the pre-
vious example. Let each of the four possible data vectors appear exactly once in the
data set D. Set αS := (0.1, 0.9) and ΦS

111 := ΦS
112 := 0.5. Figure 1 shows the plot of the

supervised log-likelihood over ΦS
211 = 1− ΦS

212 as it peaks twice.
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Figure 1: the supervised log-likelihood peaks twice as ΦS
211 varies.

Because of this non-concavity, we have to use complicated optimization methods to
maximize the supervised score (in contrast to the unsupervised NB case, we cannot solve
the problem analytically). Such algorithms may converge slowly due to the non-concavity
of the score.

3 THE SUPERVISED L-MODEL

We now introduce the model ML. This is a set of conditional distributions which, as we
shall see, is just supervised NB in disguise, i.e., ML = MS.

Each distribution in ML is defined in terms of a parameter vector ΘL = (αL, ΦL),
with αL = (αL

k )k and ΦL = (ΦL
kil)k,i,l indexed as before. The set of all parameter vectors

is denoted by ΘL. We formally define this set by

αL := Rk, ΦL := Rk·(n1+...+nM) and ΘL := {(αL, ΦL)|αL ∈ αL; ΦL ∈ ΦL}.
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Each (αL, ΦL) ∈ ΘL indexes a conditional distribution P (X0|X1, . . . , XM , (αL, ΦL)) as
follows. For a data vector d = (k, x1, . . . , xM), let us define

P (X0 = k|X1 = x1, . . . , XM = xM , (αL, ΦL)) :=
exp(αL

k )
∏M

i=1 exp(ΦL
kixi

)∑n0

k′=1 exp(αL
k′)

∏M
i=1 exp(ΦL

k′ixi
)
.

(6)

The distributions P (X0|X1, . . . , XM , (αL, ΦL)) are extended to several outcomes by in-
dependence (i.e. taking product distributions). One immediately verifies that, for all
x1, . . . , xM it is ∑

k∈{1,...,n0}
P (k|x1, . . . , xm, (αL, ΦL)) = 1;

and that each term in the sum is positive. This confirms that P (X0|x1, . . . , xM , (αL, ΦL))
given by (6) indeed defines a conditional distribution over X0 for all (αL, ΦL) ∈ ΘL, and
all x1, . . . , xM .

The supervised log-likelihood corresponding to this conditional distribution is denoted
by SL(d; ΘL). It is of course just the log of (6) and hence given by

SL(d; (αL, ΦL)) = αL
k +

M∑
i=1

ΦL
kixi

− log

n0∑

k′=1

exp(αL
k′ +

M∑
i=1

ΦL
k′ixi

), (7)

extended to a sample D = (d1, . . . , dN) by independence:

SL(D; (αL, ΦL)) =
N∑

j=1

SL(dj; (α
L, ΦL)). (8)

We now define the supervised L-model ML as the set of conditional distributions that
are indexed by ΘL:

ML = {P (X0|X1, . . . , XM , ΘL)|ΘL ∈ ΘL} (9)

As for the model MS with parameters ΘS, the mapping from parameters ΘL to models
in ML is not one-to-one:

Proposition 1 Let (αL, ΦL) ∈ ΘL. Let (γ1, . . . , γn0) be any vector in Rk and set Ψkil :=
−M−1γk for all k, i, l. Then (αL+γ, ΦL+Ψ) ∈ ΘL, and both (αL, ΦL) and (αL+γ, ΦL+Ψ)
index the same conditional distribution in ML.

Proof: Plug (αL + γ, ΦL + Ψ) into (7). 2

We now have two supervised (conditional) models: MS indexed by ΘS, correspond-
ing to the conditional NB distributions; and ML indexed by ΘL, corresponding to the
conditional ‘L-distributions’. In the following we show that these two seemingly different
conditional models are in fact equal.
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4 EQUALITY OF MS AND ML; CONCAVITY

To see that MS and ML are related, define the log-transformation L : ΘS → ΘL as
follows. For a given parameter vector (αS, ΦS) ∈ ΘS, the corresponding transformed
parameters L(αS, ΦS) are defined as L(αS, ΦS) := (αL, ΦL) with (αL, ΦL) given by:

αL
k := log αS

k ; ΦL
kil := log ΦS

kil (10)

By plugging (10) into (8) and further into (7), we see that for all ΘS ∈ ΘS it is

P (X0|X1, . . . , Xm, ΘS) = P (X0|X1, . . . , Xm, L(ΘS)).

This shows that MS ⊆ ML: each parameter set ΘS indexing a distribution in MS is
transformed into a parameter set ΘL indexing the same conditional distribution in ML.
By this result, one may be tempted to view ΘL simply as a parametrization of MS in
terms of the logarithms of the original parameters. But it is more complicated than that:
in ΘL all parameters αL

k and φL
kil are allowed, not just those that, when exponentiated,

can be interpreted as probabilities (i.e. sum to 1 over k and l respectively). Nevertheless
we have:

Theorem 1 MS = ML.

Proof: We have already shown that MS ⊆ ML. To show that also ML ⊆ MS, let
(αL, ΦL) ∈ ΘL. Let c ∈ R1+Mn0 be a vector with components
(c0, (c11, . . . , c1M), . . . , (cn01, . . . , cn0M)). Define for k ∈ {1, . . . , n0}

Φ
(c)
kil := ΦL

kil + cki and α
(c)
k := αL

k + c0 −
M∑
i=1

cki. (11)

From (7) we infer that, for all c ∈ R1+Mn0 and all d,

SL(d; (α(c), Φ(c))) = SL(d; (αL, ΦL)). (12)

To see that (12) holds, just substitute its left-hand side into (7) and see that all c0 and
cki cancel. Now define

ΦS
kil := exp(Φ

(c)
kil) = exp(ΦL

kil + cki),

αS
k := exp(α

(c)
k ) = exp(αL

k + c0 −
M∑
i=1

cki). (13)

Evidently, for all k and i we can choose cki such that
∑ni

l=1 ΦS
kil = 1, and subsequently c0

such that
∑

k αS
k = 1. This implies that (αS, ΦS) ∈ ΘS. Substituting (13) into (4), we

find that, for all d,
SS(d; (αS, ΦS)) = SL(d; (α(c), Φ(c))).

Equation 12 now implies that MS ⊆ML. 2

Because of the equality proved above, we can think of ΘL as a parametrization of the
supervised Naive Bayes model MS; we call ΘL the L-parametrization of MS.

We saw that the supervised log-likelihood is not concave for standard supervised NB.
Our main theorem is that, remarkably, it becomes concave in the L-parametrization:
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Theorem 2 Let Θ(1), Θ(2), ΘL ∈ ΘL. Then:

(i) For any λ ∈ [0, 1], λΘ(1) + (1− λ)Θ(2) ∈ ΘL (hence ΘL is a convex set).

(ii) For any sample D of any length, SL(D; ΘL) is a concave (but not strictly concave!)
function of ΘL.

Proof: item (i) is immediate, for proof of item (ii) see Section 5 and our technical report
[13].

Together, items (i) and (ii) demonstrate that finding the NB distribution maximizing
the supervised likelihood in the L-parametrization is finding the maximum of a concave
function over a convex set. Thus we can use a simple local optimization method such as
hill-climbing.

Remark The log-likelihood does not have local maxima over the standard parametriza-
tion ΘS (see [13]), but neither is it concave (i.e. it will have ripples and wrinkles). Greiner
and Zhou have used the L-parametrization in [6] and report that “it worked better” [than
the standard parametrization]. Our results explain this.

Example 3 (The concavified surface). Let us once more look at the domain consisting of
only two binary variables, but this time we choose the L-model. We had αS := (0.1, 0.9),
now we set αL := L(αS) = (log 0.1, log 0.9). Figure 2 gives some clue of how it is possible
to concavify the objective, and why it could peak twice in Example 2.
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Figure 2: the supervised log-likelihood has become a concave function of the new param-
eters ΦL

211 and ΦL
212; the pointed line shows the transform of ΦS

211 in Figure 1.
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5 ALTERNATIVE VIEWS ON THE L-MODEL

The L-parametrization allows us to think of the Naive Bayes classifier as a discriminative
(diagnostic) rather than as a generative (sampling) model, see e.g. [2, 10]. Even though
formally identical to supervised Naive Bayes, the L-model can also be interpreted in
terms of logistic regression, neural networks and ‘recalibrated’ models.

Discrete, Supervised Logistic Regression. We can think of the conditional model
ML as a predictor that combines the information of the attributes using softmax. This
is usually done for the continuous or binary case (‘linear softmax’; [7, 10]). Figure 3 gives
an interpretation of this, depicting both Naive Bayes and the L-model in their Bayesian
network guises.

(a)

...X X X X1 2 3 M

X0 (b)

...X X X X1 2 3 M

 ~~ ~ ~
X0

Figure 3: standard NB net (left) and L-model (right). All arcs have been reversed and
the resulting product distribution has been replaced by softmax (denoted by tildes).

Technically, to get a logistic regression model from the L-model, one would create one
(binary) regressor variable for each possible value of an attribute and one (binary) output
variable for each value of the class.

Looking at the L-model in this light also proves concavity of SL(D; ΘL) (Theorem
2 (ii)), since the supervised log-likelihood is known to be concave for logistic regression
models (see e.g. [11], p.234).

Neural Networks. The conditional distribution (6) is equivalent also to a single-layer
(no hidden units) linear feed-forward neural network with logistic sigmoid (softmax)
activation function, see e.g. [1]. In this type of a network both inputs and outputs are
encoded using the so called 1-of-c encoding with a binary node for each variable–value
combination. Thus the logistic activation function is applied to a linear function of the
resulting set of indicator variables and the activation value of the output nodes can
be interpreted as probabilities of the corresponding class values. The αL

k terms which
represent the default classification of the ML model can be implemented by adding a
so called bias node, i.e. a node with constant input, to the network. The parameters
of the neural network are usually optimized to maximize the conditional likelihood, or
equivalently the so called cross-entropy. It follows from Theorem 2 that the objective
function of the neural network is also concave.
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Calibration. The L-model has the following interesting property: the derivative of
SL(D; ΘL) becomes zero if and only if for all k, i, l, the following holds:

N∑
j=1

P (X0 = k|dj1, . . . , djM , ΘL) = hk, and
∑

j:dji=l

P (X0 = k|dj1, . . . , djM , ΘL) = fkil.

(14)

That is, we have found good parameters for the supervised task exactly when we are
‘well-calibrated’ wrt. D and all subsets Dil := {dj|dji = l} in the sense of [3]. Thus opti-

mizing ΘL according to SL means ‘recalibrating’ ourselves using
∑M

i=1 ni + 1 calibration
tests simultaneously. Here the i.i.d. assumption of our model saves us from becoming
‘incoherent’ as we recalibrate, see [3].

As a spin-off we find, that using the L-model we can solve any calibration problem of
the form

∀f∈F
∑

j:f(dj)=1

P (X0 = k|dj1, . . . , djM , ΘL) = |{j : f(dj) = 1 ∧ dj0 = k}|

– where F is any collection of indicator functions computable from X1, . . . , XM – by local
optimization methods. In the long run, with an unlimited amount of data available, we
should be calibrated with respect to all such calibration tests f , see [12]. With only
limited data availability the calibration tests implicit to the Naive Bayes model (i.e.
FNB = {fil : fil(d) = 1 ⇔ di = l} ∪ {1}) seem to be a sensible choice in many cases.
Other choices can be made that do not need to correspond to any Bayesian model at all.
In order to avoid over-fitting we may, for instance, prune the NB model by demanding the
calibration sets to be of certain minimal size c, arriving at Fc = {fil : |Dil| ≥ c} ∪ {1}.
For small data sets the resulting model may consist of considerably fewer parameters
(depending on c).

6 THE NEED FOR A PRIOR

A Problem In practical applications, sample D will typically have some of its frequency
counters fkil = 0. In that case, the supervised likelihood SS(D; ΘL) in the ordinary pa-
rameterization (1) is maximized for a parameter vector with some of the parameters
(conditional or class probabilities) equal to 0. This poses a problem for supervised like-
lihood optimization within the model ML: if SS(D; ΘS) is maximized at (αS, ΦS) with
ΦS

kil = 0 for some k, i, l, then the supervised likelihood SL(D; ΘL) in ΘL is maximized at
some (αL, ΦL) with ΦL

kil = −∞ and SL will have no maximum over ΘL. This makes our
optimization task hard to perform.

The same problem can arise in more subtle situations, as illustrated by the following
example:

Example 4 (Divergence of SL). Consider a domain of three binary variables X0, X1, X2,
with D = {(1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 1, 1), (2, 2, 2))}. SL(D; (α, Φ)) is maximized (cf.
Example 1) at α = Φ·12 = Φ·22 = (0, 0) and Φ·11 = −Φ·21 = (b,−b) with b → ∞. This
can be seen as follows. All vectors with x1 = x2 have a conditional likelihood of 0.5,
which cannot be improved, since there is always a pair of them with contradicting class.
Finally observe, that P (X0 = 1 | X1 = 1, X2 = 2, Θ) −→

b→∞
1.
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We can avoid such problems by introducing Bayesian parameter priors. We impose a
strictly concave prior, which goes to −∞ along with any parameter. We also introduce
a set of constraints on the parameters, namely

∑
k αL

k = 0 and for all i, l
∑

k ΦL
kil = 0,

thus ensuring the existence of a single maximum of the new objective

S+(D; Θ) := log (P (X0 | X1, . . . , XM , Θ)P (Θ)) = SL(D; Θ) + log P (Θ). (15)

over the restricted parameter space.
Note that maximizing S+(D; Θ) is equivalent to Bayesian Maximum A Posteriori

(MAP) estimation based on the conditional model ML and prior P (Θ). We have shown
in earlier work that for ordinary, unsupervised Naive Bayes, whenever we are in danger
of over-fitting the training data (i.e. for small sample sizes), future data predictions can
be greatly improved by imposing a prior on the parameters and using Bayesian MAP or
Bayesian Evidence rather than ML prediction [8]. Supervised NB is inclined to worse
over-fitting than unsupervised NB, since it uses the same amount of parameters to model
a much smaller domain. In the experiments reported in the next section, we decided
to use a strictly technical prior that draws all parameters a little bit closer to zero (i.e.
zero-influence), moderating over-fitting. The prior used here is simply the normalized
product of all parameters:

P (Θ) :=
∏

k

(
exp αk∑
k′ exp αk′

∏

i,l

exp Φkil∑
k′′ exp Φk′′il

)
. (16)

7 EMPIRICAL EVALUATION

We now want to illustrate the usefulness of our method by reporting the results of our
test runs. The globally optimal supervised parameters were obtained by maximizing
(15), using gradient ascent with standard line search. As the test bed, we took 32 real-
world data sets from the UCI repository. Continuous data was discretized (discretizations
at http://www.cs.Helsinki.FI/u/pkontkan/Data/). The cross-validation method was
leave-one-out (loo), avoiding variance due to random splits.

Table 1 lists the data sets used — ordered by size — and both the log-score and
the percentage of correct predictions obtained by using standard Naive Bayes (with uni-
form prior and evidence prediction) and our supervised method. The ‘winner scores’ are
boldfaced.

We observe, that in 26 out 32 cases the supervised method has produced a better
log-score. On a few small data sets, it apparently over-fitted the training data more. On
all larger data sets it consistently outperformed standard NB, in several cases by quite
a margin. In contrast, for the few smaller data sets where standard NB outperformed
supervised NB, it did so by much smaller margins. This is exactly the type of behavior
that we had expected. For completeness we mention, that for the 0/1-loss, the supervised
method has won by a score of 18:13. Again it wins on larger data sets in agreement with
results in [10].

8 CONCLUSION AND FUTURE WORK

We showed that by using the parameter transformation described in this paper, one can
effectively find the parameters maximizing the global supervised likelihood of the Naive
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Table 1: Leave-one-out cross-validation results. Name and size of the data set, predic-
tion loss of unsupervised vs. supervised Naive Bayes (log-score/percentage of correct
predictions). Best scores boldfaced.

data set size uns. NB sup. NB

Mushrooms 8124 0.131/95.57 0.002/100.00
Page Bl. 5473 0.172/94.74 0.102/96.29
Abalone 4177 2.920/23.49 2.082/25.95
Segment. 2310 0.181/94.20 0.118/97.01

Yeast 1484 1.155/55.59 1.140/57.75
German Cr. 1000 0.535/75.20 0.524/74.30
TicTacToe 958 0.544/69.42 0.099/98.33
Vehicle S. 846 1.731/63.95 0.682/72.22
Annealing 798 0.161/93.11 0.053/99.00
Diabetes 768 0.488/76.30 0.479/75.78

BC (Wisc.) 699 0.260/97.42 0.105/96.42
Austr. Cr. 690 0.414/86.52 0.334/85.94
Balance Sc. 625 0.508/92.16 0.231/93.60
C. Voting 435 0.632/90.11 0.102/96.32
Mole Fever 425 0.213/90.35 0.241/88.71
Dermat. 366 0.042/97.81 0.079/97.81

Ionosphere 351 0.361/92.31 0.171/92.59
Liver 345 0.643/64.06 0.629/68.70

Pr. Tumor 339 1.930/48.97 1.769/49.26
Ecoli 336 0.518/80.36 0.562/81.85

Soybean 307 0.647/85.02 0.314/90.23
HD (Cleve) 303 1.221/58.09 1.214/55.78
HD (Hung.) 294 0.562/83.33 0.444/82.99
Breast C. 286 0.644/72.38 0.606/70.98
HD (Stats) 270 0.422/85.19 0.419/83.33
Thyroid 215 0.054/98.60 0.132/94.88
Glass Id. 214 0.913/70.09 0.809/69.63

Wine 178 0.056/97.19 0.169/96.63
Hepatitis 155 0.560/79.35 0.392/82.58
Iris Plant 150 0.169/94.00 0.265/94.67
Lymphogr. 148 0.436/85.81 0.375/86.49

Postop. 90 0.840/67.78 0.837/66.67

Bayes model. The empirical results reported suggest that this technique can be used
for improving the accuracy of the Naive Bayes classifier in many cases by a considerable
amount. In [13] we extend our theoretical results to more general classes of Bayesian
network models including TAN (tree-augmented NB) models. In the future we intend to
perform experiments that also involve such more complicated models. We further plan to
investigate how to prevent over-fitting of small data samples by using theoretically more
elaborate parameter priors than the simple technical prior used here.
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