Design and Implementation of a Content-Based Search Engine

Ville H. Tuulos

Helsinki May 26, 2007
Master’s Thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department

Faculty of Science Department of Computer Science
Tekija — Forfattare — Author

Ville H. Tuulos

Ty6n nimi — Arbetets titel — Title

Design and Implementation of a Content-Based Search Engine
Oppiaine — Larodmne — Subject
Computer Science

Tyon laji — Arbetets art — Level Aika — Datum — Month and year Sivumédrd — Sidoantal — Number of pages

Master’s Thesis May 26, 2007 93

Tiivistelm& — Referat — Abstract

This thesis presents a system to find interesting textual content among tens of mil-
lions of documents. This is made possible by a novel content-based ranking method
and a simple, structured query interface, which are presented in this thesis. The
ranking method allows the user to utilize the full co-occurrence matrix of all words
in the corpus to bring out relevant material. The user may explicitly define her
conception of relevance by guiding the ranking with single words.

This thesis presents the design and implementation of the system. The basic for-
mulation of the content-based ranking method is computationally rather expensive
and therefore also an efficient algorithm is given. The index structures of the sys-
tem have been specifically designed to support the ranking scheme. The system is
distributable to a cluster of servers, allowing reasonable scalability.

We present three real-world deployments of the system. The largest of the deploy-
ments was a publicly available Web search engine, Aino, which covered over four
million pages in the .FI domain.

ACM Computing Classification

H.3.1 Content Analysis and Indexing
H.3.3 Information Search and Retrieval
[.2.7 Natural Language Processing

Avainsanat — Nyckelord — Keywords

Text processing, Statistical information retrieval, Language models, Search engines
Séailytyspaikka — Forvaringsstélle — Where deposited

Kumpula Science Library, serial number C-

Muita tietoja — Ovriga uppgifter — Additional information

Contents
1 Introduction

2 Prior Work
2.1 Ranking Methodso
2.2 Existing Systems

3 AinoRank

3.1 Design Criteria
3.2 Co-occurrence Matrix Lo Lo
3.3 Method
3.4 Query Interfaceo
3.5 Discussion

4 Implementation

41 Index oL
4.2 Brute-Force Algorithm L
4.3 Top-KC Algorithm
4.4 Discussion e e e e

5 Demonstrations

5.1 Web Search
5.2 E-Mail Search
5.3 Patent Analysis

6 Conclusions

References

i

14
14
16
29
34
46

48
02
64
67
74

79
79
82
84

86

87

List of Algorithms

1
2
3

Brute-force scoring algorithm 0L
Brute-force ranking algorithm o000
Top-K ranking algorithm

List of Figures

© 0 ~ O Ot = W N

e e e e e e
S Ot e W NN = O

17

18
19
20
21
22
23

Indexing times with respect to size of the corpus
Index sizes with respect to size of the corpus
A co-occurrence matrix. Dark cells depict frequent co-occurrences. . .
Zipfian distribution of frequencies of Wikipedia tokens
Number of co-occurring tokens for each Wikipedia token
Co-occurrence matrix of 3000 Wikipedia tokens
Conditional distributions of some tokens from the Reuters corpus

Alternative Venn-diagrams for multi-token cues
Architecture of Aino L
Index structure
Distribution of delta values
Decoding performance with an in-memory index
Frequency of L2-cache misses in decoding
Decoding performance with an on-disk index
Distribution of token scores {2 for three queries

Cumulative score mass of the best half of token scores Q) for three
QUETIES . . . o o o e e e e e e e e e e e e

Distribution of document scores after the highest scoring half of (2
has been processed for three queries

The two ranking algorithms compared
Aino.hiit.fi: Front page
Aino.hiit.fi: Result page oL
Mail Archive Miner: Social network analysis with AinoRank
Patent Cruncher: Keyword sets with AinoRank

Patent Cruncher: Patent search

il

v

List of Tables

Tt = W N =

Different ranking approaches)
Search goals by Rose & Levinson [RLO04| based on AltaVista queries . 36
Some strategies to achieve search goals with Keys & Cues 41
Mapping from the query interface to the ranking behavior 43

Highest scoring tokens for some queries in Aino.hiit.fi 81

Acknowledgements

Many people have provided help and inspiration for this thesis. First, I would like
to thank Professor Henry Tirri for challenging me to develop a search engine in the
first place and Professor Petri Myllyméki for his support throughout the process.
I would like to thank my colleagues in the Complex Systems Computation Group,
especially the following three people on our IRC channel #finni: Special thanks
go to Antti Tuominen for HooWWWer and his 7517 supportive comments, Tomi
Silander for his 3627 insightful comments, and Pekka Tonteri for building necessary
infrastructure and helping me with his 3872 comments. Last but not least, a huge

hug to my wife Heli Tuulos for helping me with the math.

1 Introduction

This thesis presents an efficient design and implementation of a content-based search
engine. Content-based means that the system utilizes information available in the
documents in a holistic manner to determine what might be interesting to the user.
We focus on textual content that is written in a natural language as opposed to,
say, images included in the documents. We call the presented system a search
engine, as it contains components to retrieve and index documents, and it provides
a mechanism to return a ranked subset of the documents according to the user’s
requests. By efficient, we mean that the system should be able to process millions

of documents in a reasonable time and respond to queries with a low average latency.

This thesis consists of four main contributions:

e Design and implementation of a full-fledged search engine, Aino,
e a novel content-based ranking method, AinoRank,
e an efficient algorithm that implements the previous,

e and several applications of the system to real-world document collections.

A brief overview of relevant prior work is given in section 2. Then, Chapter 3
presents the ranking method, AinoRank. Chapter 4 introduces the architecture and
the main elements of our system as well as several algorithms that implement the
previous ranking method. Finally, Chapter 5 gives a summary of some real-world

applications of the system. Chapter 6 concludes the thesis.

The starting point of this thesis is based on my personal background. I have been
interested in natural language processing since I was fifteen. In those days, Neural
Networks Research Center at the Helsinki University of Technology released the
first demonstrations of the WEBSOM method [KHLK98|, which visualizes document

2

collections using a model called Self-Organizing Map [Koh01]. T found this intriguing
and soon I got an opportunity to take these ideas forward in a spin-off company. In
this context, I helped to design and implement a content-based information retrieval

platform [HT02|, which was the first of its kind for me.

In 2003 T joined the Complex Systems Computation Group at the University of
Helsinki. The group had a strong background in statistical and information-theoretic
modeling, which matched well with my interests. The group was applying an
advanced statistical model, Multinomial Principal Component Analysis (MPCA)
[BJO6], to content-based search with promising results. We produced some nice

demonstrations [TT04, BLPT04] which, however, raised new questions in my mind.

Two things bothered me both in WEBSOM and MPCA. First, I felt helpless with
opaqueness of the methods. Both methods relied on certain elaborate theoretical
assumptions that were not directly related to the modeled phenomenon, namely
language. I did not feel comfortable with the exploratory "let’s change some param-
eters and see what happens" approach. The problem of opaqueness was reflected
also in the user interfaces. It was hard to tell exactly how to get desired results
and in case of unsuccessful queries, how to improve them. I started to feel that
natural language is a phenomenon so complex that we should avoid adding to this

complexity in our models — at least until we understand the underlying data better.

The second unanswered question was about losing information. Practically all so-
phisticated methods in information retrieval seem to take as granted that most of
the tokens do not carry any important information or they are redundant. Often
features that are considered unimportant are thrown away either by explicitly us-
ing some stopword lists or by frequency limits, or by using some automatic feature
selection or dimensionality reduction method. I could not see how one could decide
what should be thrown away a priori, before seeing any queries. Naturally we could

base the decision on some statistical measure but often the choice felt unjustified.

3

I felt that before I could continue with more sophisticated methods, I needed to
understand the basics better. I wanted a system that would be transparent and
whose inevitable fallacies could easily be circumvented by the user. Also I wanted
a system that would not make any unjustified decisions before seeing what the user
considers important in her queries. And due to my personal sense of aesthetics, I

wanted a rather minimalistic, but robust and efficient implementation.

2 Prior Work

Aino’s legacy comes from many sources. Firstly, there is the decades-long tradition of
information retrieval. Secondly, there is almost an equally old tradition of statistical
modeling of language. Finally, there is a rather recent trend of producing free search

engines.

In the following, we first give an overview of different ranking methods. After this, we
present some free search engines and information retrieval packages. The presented
systems vary from drop-in search solutions to complex academic testbeds of state-
of-the-art information retrieval methods. This selection is deliberate, as Aino falls
somewhere in between these two extremes. To justify this claim, we present a rough

comparison between the presented systems and Aino in the end of the section.

2.1 Ranking Methods

Consider that you are given a corpus of documents. Then you get a query consisting
of one or more words. Now your task is to order documents in the corpus according
to their relevance with respect to the query. This operation is commonly called

ranking.

Besides ordinary words, in many cases the document corpus contains some auxiliary
information that can be utilized in ranking. As of 2007, the three most popular Web
search engines, Google [Goo07], Yahoo [Yah07], and MSN Live [MSNO07|, utilize hy-
perlinks in their ranking algorithms. A well-known example of a link-based ranking

algorithm is Google’s PageRank [PBMW98]|.

An approach based on hyperlinks is justified in the Web, as statistically hyperlinks
tend to point at the content that many people find interesting [PBMW98|. Similarly

to hyperlinks, other kinds of structures within the document can be utilized in

Query type
Keyword Example Natural Language
, Hypertext Google, Yahoo More Similar Pages Ask.com, QuASM
% by Yahoo, Google
§ Structured XIRQL SQL-QBE Precise, NALIX
Plain Text Lucene, Aino WEBSOM, Ydin Various QA systems

Table 1: Different ranking approaches

ranking as well. For instance, some ranking algorithms such as [LYJ05, FG04|, can

utilize any structure encoded in XML.

Not only the corpus, but also the query may come in different forms. A typical
Web search engine accepts a short list of keywords with some modifiers, such as
quotes to denote phrases. In contrast to earlier systems, which required explicit
Boolean operators to structure the query, current systems often rely on implicit,

algorithm-specific heuristics to decide how to handle multiple keywords.

Some systems provide a function like “Query by Example” (QBE) or “More Similar
Documents”. In these systems, a short excerpt of text or even a full document may
be used as a query. Some sophisticated systems let the user input the query or a

question in natural language, e.g. in plain English.

Table 1 presents a survey of some existing systems that utilize different types of
queries and corpora for ranking. Let us start with the systems based on hypertex-
tual content: If the query interface is based on keywords, the system is similar to
contemporary Web search engines, such as Google and Yahoo. Web search engines
often provide a function called “similar pages”, which resembles Query by Example
functionality. In this case, however, the similarity measure is based on the topology

of the link-graph and not on the textual content.

6

Ask.com is a major Web search engine that lets the user search for pages in plain
English. The results are ranked with a link-based ranking scheme, similarly to
keyword-based Web search engines. A different kind of approach is taken by the
QuASM system [PBCT02| that uses HTML tables to find answers to questions given

in plain English.

Nowadays majority of research on structured information retrieval focuses on XML
and Semantic Web technologies; for an overview, see [Leh06]. Earlier, a substantial
amount of related research focused on designing various extensions to the Simple
Query Language (SQL). XQuery [XQu07] is a standard query language for retrieving
different parts of an XML document. On top of this, various layers have been

proposed to support keyword search, for instance, XIRQL [FGO04].

Domain Relational Calculus [LP77] is an early example of a method that allows
querying of structured (relational) data by example. It is followed by many query
by example systems for SQL, such as the IBM’s QBE [RG02]|. Roughly speaking,
these systems let the user specify a template or a set of constraints that the results
must satisfy. Also, several research prototypes exist for compiling natural language
queries to SQL, e.g. with Precise [PEK03| and to XML queries e.g. with NALIX
[LYJ05].

Content-Based Information Retrieval is a vague concept, which is used to refer
to various information retrieval settings and approaches. Often the concept refers
to retrieval of non-textual data, such as images or videos [BR99|. In the litera-
ture, content-based queries are brodaly defined as “queries exploiting data content”

IBROY).

Along these lines, we can interpret that content-based refers to systems that utilize
the bulk content of the corpus in a holistic manner, instead of relying on some specific

features of the data, such as links, tables, or other structural elements. According

7

to this interpretation, the last row in table 1 can be seen to refer to content-based

systems.

The work presented in this thesis belongs to the category characterized by plain text
corpora and keyword queries. Many other academic or open source search engines,
such as the ones presented in the following section, belong to this category. Some
ranking schemes benefit directly from longer queries that contain more information
about the user’s interests — in this case the system may work with single keywords
but the best results are produced when a long example document is given as the
query: Systems of this kind include WEBSOM [KHLK98| and many other system
based on language modeling approach [PC98], such as Ydin [BLP*04]. Many tra-
ditional question-answering (QA) systems belong to the category on the lower right
corner. For recent examples, see publications in the TREC Question Answering

track [VBO6].

An important characteristic missing from Table 1 is how the query actually affects
ranking. Some algorithms, such as PageRank [PBMW98|, assign a static score to
each document independently from the query. The main benefit of this approach
is that query processing becomes extremely efficient as the query is only needed to
determine the matching subset of documents that are already ranked. We call this

approach static ranking.

An alternative approach is to re-rank the corpus against every query — we call this
dynamic ranking. This approach is more flexible, as it does not fix the ranking
before seeing any query, but the computational cost may be high. In the following

chapter, a novel dynamic ranking approach is presented.

2.2 Existing Systems

Considering the vast number of possible interpretations of “search” and the ease
of implementing something resembling search, it is understandable that there is a

plethora of software packages available for this purpose.

However, implementing a truly scalable search engine is not so trivial. We restrict
the discussion to systems that claim to scale to millions of documents. Also, we
require that the system should be rather complete, so an efficient implementation
of, say, a bare inverted index is not enough. Furthermore, the system should not be
domain-specific, which often allows remarkable optimizations by sacrificing general-
ity. Instead, we are interested in systems that are aimed at indexing and querying

unspecified, mostly unstructured corpora of natural language.

Comparing implementations is often rather unfruitful. The most relevant compar-
ison deals with the results or the perceived quality of search. This is a deep sub-
ject, which is covered for instance by the TREC text retrieval competitions [VB06].
Comparing scalability or performance is difficult as well, since any attempt to index
a huge number documents requires detailed tuning of the system, which in turn
requires intimate knowledge of the implementation at hand. Comparing the per-
formance of query processing is even more difficult, since each system balances the

trade-off between ranking quality and speed differently.

However, by comparing systems we may clarify our own position. This is the main
motivation for the following section, which will briefly introduce some systems re-

sembling ours and their relationship to this work.

Ht://Dig

The first version of ht://Dig [Ht:95] was released already in 1995, which makes it

one of the oldest software packages for searching web pages. Ht://Dig consists of

9

a collection of small command-line tools for indexing and querying web pages. It
is mainly aimed at individual web sites, but technically it should be applicable to
small intranets as well, given that the documents are suitably organized on disk.

Ht://Dig is implemented in C++.

The system provides a simple query interface based on Boolean ranking [BR99|
and a variation of it using approximate keyword matching. Although Ht://Dig
was popular during its early days, its development has been ceased for years and
it is surpassed by more modern systems. Despite the system’s lack of technical
or academic merit, its simple Unix-style architecture provided some inspiration for

Aino.

Lucene

As of 2007, Lucene [Cut97| is the most widely used open-source search package.
Lucene includes an efficient indexing mechanism and facilities for building highly
scalable search engines, including a Web crawler Nutch. The main implementation
is in Java, although partial ports to various programming languages exist. According
to the project’s web site, Lucene’s ranking method is "a combination of the Vector
Space Model (VSM) of Information Retrieval and the Boolean model to determine

how relevant a given Document is to a User’s query".

Developers are encouraged to integrate the Lucene’s object-oriented architecture into
their own search interfaces. Also, the architecture makes it possible to implement
missing functionalities behind the given interfaces. In contrast, the design and
implementation of Aino was dictated by our data-intensive ranking method, which

required careful attention to performance.

10

Lemur and Indri

Lemur is a C/C++ toolkit for language modelling, which forms the basis for the
search engine Indri [MCO04]. They have been developed in a joint project by the
Computer Science Department at the University of Massachusetts and the School of
Computer Science at Carnegie Mellon University. In contrast to the above systems,
they are targeted at the academic community needing a testbed for advanced infor-
mation retrieval algorithms. Lemur / Indri supports a versatile INQUERY query

language [CCH92| and ranking using inference networks [MC04].

Lemur’s strong focus on statistical language modelling and its success in the TREC

competition [VB06] make it inspirational for Aino.

Terrier

Terrier is a full-fledged search engine and information retrieval platform by the
information retrieval research group at University of Glasgow [OAPT06|. Terrier
implements various novel probabilistic ranking algorithms, such as the Divergence
from Randomness model [AVR02]. It is targeted both at practical applications and

academic research.

In the Aino’s point of view, Terrier belongs to the same category of large-scale prob-
abilistic information retrieval research platforms as Lemur. Terrier is implemented

in Java.

Comparison

The presented systems are motivated by different goals, which are deeply reflected
in the design of each system. However, some basic tasks are common to all the

systems: Namely, they have to read input documents, perform some preprocessing

11

1400 T T T T T T T T
Aino —+—
Indri —-->-—--
Lucene ---%---
1200 | Terrier = 3
1000 - -
" .
2 x
[e)
8
b 800 I ¥ i
£
© |
E o -
2@ 600 D - |
S] e
£ . =
400 x e e)
200 ¥
1 1 1 1 1 1 1 1

0
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of documents

Figure 1: Indexing times with respect to size of the corpus

tasks, and construct an index.

Being efficient in these tasks is mostly a matter of careful engineering. In theoretical
point of view, these tasks are more or less trivial. However, in terms of scalability
this phase is essential: The system must achieve high indexing throughput to be able
to handle millions of documents in a reasonable time. At the same time, the system
must produce efficient index structures so that latencies in the query processing

phase will be low.

We compared raw indexing performance of the presented systems. Unfortunately
Ht://Dig had to be excluded from the benchmark due to its exceptional slowness;
processing of the smallest data set took more than eight minutes. This might be due
to the fact that it is designed to receive its input from an integrated Web crawler

that is remarkably suboptimal in local environments.

The test collection consisted of 100,000 documents from Wikipedia, the free en-

12

- I T T T T T T 1
Aino —+—
Indri ---x---
Lucene ---%---
700000 I Terrier &4
x
600000 | ////X/ |
_x
0 //X/
£ 500000 |
Qo)
o
X
< 400000 |
: P
N |
: e
: X
| D
. m .
200000
100000
8
1 1 1 . I | | |

0
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of documents

Figure 2: Index sizes with respect to size of the corpus

cyclopedia [Wik07]. We tested the indexing performance with varying number of
documents. The results are shown in Figure 1. Each system was run with compara-
ble default parameters. It is clear that the systems may be tweaked to achieve higher
throughput but it should be reasonable to assume that Figure 1 depicts the overall
trend. Here, Aino and Indri seem to scale rather logarithmically and they outper-
form the other two systems. This might be due to differences between C/C++,
the language of choice for Aino and Indri, and Java, which is used by Terrier and

Lucene.

We also measured sizes of the resulting indices; the results are shown in Figure 2.
One should be extremely careful in interpreting the results, since the systems do
not index exactly the same types of information. In this case, it is reasonable to
believe that Aino, Terrier, and Lucene index approximately the same amount of

information and their mutual differences are caused by different encoding methods.

13

Aino performs well in the comparison. It shows modest linear behavior with respect
to the number of documents and a good balance between the indexing speed and the
index size. Chapter 4, which describes the implementation, will give some reasons

for this.

As mentioned earlier in this section, macro-scale benchmarks of this kind are often
unfruitful and unfair. Due to modular architecture of each system, it should not
be difficult to replace inefficient algorithms with efficient ones, at least in theory.
Moreover, most of the systems focus on improving the ranking quality, not efficiency
of indexing. Thus, one should not underestimate quality of the other systems based
on this comparison but it should be interpreted as a further motivation for the design

and implementation of Aino instead.

14
3 AinoRank

This chapter forms the core of this thesis. We start with our desiderata for content-
based ranking. Then, Section 3.2 introduces the theoretical basis for the method.
Section 3.3 formulates the actual method step by step, starting from a simplified
case. We then proceed to explain how the method appears to the user in Section
3.4. Finally, we bring all the pieces together in Section 3.5 that gives the final

formulation for AinoRank.

3.1 Design Criteria

AinoRank was motivated by the following design criteria: We need a content-based
ranking algorithm that is usable, predictable, robust, and it should scale to millions

of documents. In the following, we provide background for each of the criteria.

Users of Web search engines seldom browse the search results beyond the top ten
hits. Based on 15,000,000 clicks on search results in the AOL Web search logs
[AOLO6|, we know that the first result is 3.5 times more popular than the second,
which in turn is four times more popular than the tenth result. In total, the top ten

results account for 90% of all clicks in the data and the top-100 for 99% of them.

Thus, an important usability goal for our ranking algorithm is to get the most
relevant documents to the top ten set. However, the user’s conception of relevance,
i.e. what the user feels important, is often weakly mediated in the query: The
query may carry little information (e.g. “cat”), it may be broad (“foreign politics”),
or ambiguous (“apple” — computer or fruit?). Yet in all these cases we can assume
that the user has a specific information need, although it is not well articulated
in the query. In order to be truly usable, the system should take into account

this discrepancy between the true information need and the actual query, while

15

respecting the user’s desire to use only minimum effort to formulate the queries.

It is reasonable to assume that our ranking algorithm will not be perfect in the first
place; it is likely to miss relevant documents. In these cases, the user should be
able to circumvent errors by rephrasing the query. Rephrasing is likelier to improve
the results if the user is able to predict, at least to some degree, how the system
behaves. Traditional information retrieval systems, which were based on Boolean
queries, were excellent in predictability once the user had become familiar with
Boolean expressions. On the other hand, behavior of a sophisticated statistical
model may seem opaque even to the system developers. Predictability is not just a

usability goal — it makes also system development easier.

By robustness we refer to several criteria: The system should be resistant against
noise, as otherwise it can not be used with arbitrary web pages. The system should
not be highly sensitive to parametrization. It should perform similarly on different
corpora, so that it does not require extensive domain-specific customization. Like-
wise, the system should perform similarly with different queries i.e. its behavior
should not change drastically with varying input. In particular, the system should
take all occurring words into account, regardless of their frequency. These criteria
try to ensure that the system is easy to deploy in different environments, it adapts

to various use cases, and its behavior does not change abruptly.

There is not a single good definition for scalability in information retrieval. In
some sense dynamic ranking is inherently non-scalable, since in the worst case,
ranking cost increases linearly with respect to number of documents. However, we
can assume that the computational power of commodity hardware increases faster
than the number of interesting documents to be searched, at least outside the Web.
In many cases, one would like to trade CPU cycles for higher quality results. Our
goal should be a method that can easily benefit from new hardware in terms of faster

results and from larger corpora in terms of higher quality results.

16

Lacking a good formal definition, we define that a scalable ranking method should
handle the largest intranet with hardware costing $40,000 at most. This definition
was inspired by a keynote talk at the SIGIR 2005 conference, which was given by a
Google’s Distinguished Engineer Amit Singhal. As of 2007, we can assume that the

largest intranets contain some 10-50 million searchable documents.

3.2 Co-occurrence Matrix

Let us begin with some definitions. In the following discussion, the basic atom is
token. Informally, we may think that tokens are words, but this conception may be
misleading. For instance, whitespace-delimited substrings that are extracted from a
random Web page often do not correspond to words in any language. Consider the

following "words" from Wikipedia:
solvayprocessworksb504r, pageantofsteam, addc3, lamanna

These are valid tokens. What actually counts as a token is determined by the fok-
enizer. Tokenizer splits documents to tokens as a part of the preprocessing pipeline.
Depending on its parametrization, it may allow digits, dashes, apostrophes, or other

special characters to occur in tokens.

A document is a Ny-length finite sequence of tokens.
d=(t1,....tn,). (1)

A document may naturally contain multiple occurrences of the same token. If we

lose the order in the document, we get a multiset

D' = {t1,....,tn,}. (2)

Like with ordinary sets, order is ignored but multiplicity of tokens is explicitly
significant. This gives us a so called bag of words representation for document,

which is dominant in the information retrieval tradition |[BR99|.

17

N
g
3
g
—
)
°0

france
italy
train
ship
car

germany

france

italy

train

ship

car

Figure 3: A co-occurrence matrix. Dark cells depict frequent co-occurrences.

If we ignore token frequencies within a document, we may cast multiset D’ to an
ordinary set D. An alternative document representation is given later on. The set

of all D is called a corpus C. The set of all distinct tokens that occur in C is denoted
by 7.

When two distinct tokens belong to the same bag of words, we say that the tokens
co-occur. The most fundamental concept in this thesis is the co-occurrence matrix.
The co-occurrence matrix tells how many times any two tokens co-occur in the

corpus.
For each token ¢t € 7 we may define an inverted set i.e. the set of all documents in
which ¢ occurs. Let I; denote the inverted set for the token ¢, formally

I,={DecC|te D} (3)

By definition, I; is non-empty for each ¢t € 7. Now let us pick two tokens m,n € 7.

If the intersection

A=1,NI, (4)

is non-empty, words m and n co-occur i.e. they appear at least once in the same

18

document. We may enumerate all possible token pairs in a 7 x 7 matrix A and
define
Ay; = |0 I). (5)

The co-occurrence relation is naturally symmetrical: If token m co-occurs with token
n, n co-occurs with m equally often. Thus the upper and lower triangular matrices
contain the same information i.e. the co-occurrence matrix is symmetric. This can
be easily seen in Figure 3 that contains a co-occurrence matrix of six words. Since
a token always co-occurs with itself, the diagonal values correspond to the number

of documents in which the token appears in the corpus C.

Technically, the co-occurrence matrix grows quadratically with respect to the num-
ber of tokens. Even with medium-scale corpora, its space requirements are enor-
mous. A 100,000 document subset of Wikipedia contains approximately one million
tokens!. If we used only one bit per value on average, the matrix would require
approximately 102 bits or 116 gigabytes of space — or half of this if only the lower
triangular matrix is saved. Still, the space requirement is huge for any Intranet-scale
corpora. Although one can get terabytes of disk space nowadays off the shelf, the
average sizes of RAM and CPU caches are measured in giga- and megabytes, which

makes any operations on the full matrix slow.

Fortunately, most of the tokens are infrequent. Figure 4 shows the distribution of
frequencies of the aforementioned subset of Wikipedia. About 64% of tokens occur
only in one document. Infrequent tokens are likely to co-occur with frequent tokens,
but each of them co-occur only with a small number of other rare tokens. This can
be seen in Figure 5 that shows the number of co-occurring tokens for each token in
the Wikipedia subset. Infrequent tokens co-occur typically only with 10-200 other

tokens. The median number of co-occurrences per token is 154 in this corpus. This

1A good rule of thumb for the relationship between the size of a Web corpus and the number

of tokens in it is that asymptotically every new document introduces one new token.

100000

90000

80000

70000

60000

50000

frequency

40000
30000
20000

10000

Figure 4

1e+06

100000

10000

1000

100

number of co-occurrences (logarithmic scale)

10

Figure 5:

1 1 1 "
1 10 100 1000 10000 100000 1e+06
rank of a token in the frequency table (logarithmic scale)

: Zipfian distribution of frequencies of Wikipedia tokens

1 1 1 1 1
1 10 100 1000 10000 100000 1e+06
rank of a token in the frequency table (logarithmic scale)

Number of co-occurring tokens for each Wikipedia token

19

20

Figure 6: Co-occurrence matrix of 3000 Wikipedia tokens

implies that the co-occurrence matrix is sparse. In the Wikipedia subset, only 0.1%

of the matrix is populated.

One should note that the downward curve is not very steep in Figure 5. Especially
the first 10,000-50,000 most frequent tokens, which often correspond to common
English words, have lots of co-occurrences with other tokens. For the purpose of
content analysis, this is beneficial. A high number of co-occurrences translates to a
rich characterization of the usage of a token. On the other hand, one can see that
only few tokens co-occur with more than 10-20% of all tokens in the corpus, which

implies that the tokens have discriminative power.

In addition to Figure 5 that shows the number of distinct co-occurrences for each
token, it is useful to have a general idea how the absolute values of the co-occurrence
matrix A are distributed. Figure 6 shows a co-occurrence matrix of 3000 tokens from
the Wikipedia subset. The tokens are ordered according to their frequency in the

full Wikipedia; the highest frequency being 52,000 and the lowest 2200 — token

21

frequencies decrease from left to right and from top to bottom. The dark area in the
upper-left corner corresponds to high A values between the most frequent tokens,
which are in the range from 100,000 to 130,000 co-occurrences. In the lower-right
corner, the co-occurrences are in the range from 40,000 to 60,000. The visible vertical
stripes correspond to tokens that are frequent in the full Wikipedia, but not frequent
in the subset that was used to generate the matrix. As only few displays can show

over 1000 dots per inch, the image is quantized to fit into smaller space.

We can derive some empirical probabilities from the matrix. The prior probability

for seeing a token m in the corpus is

_ ZnG’T Am”
ZleT ZnE’T e

We can also define the conditional probability of seeing token m given that we have

P(m) (6)

seen n:
P(m,n) Apn
P(n) ZleT Any

This probability will have a central role in the following ranking scheme. Moreover,

P(mn) = (7)

since items of A are unbounded sizes of intersections, they are not convenient for vi-
sualization as such. In the following, we will visualize co-occurrence data as P(m|n)
distributions instead. Note that in contrast to raw co-occurrence matrices the con-

ditional distribution tables are not symmetrical, since in general P(m|n) # P(n|m).

Semantics

Justifying the semantic validity of any formal ranking method is difficult, as long
as we do not have a widely accepted formalism for natural language or human
cognition. Actually, this can be seen as one motivation for using rather simple and
pragmatic models: We cannot justify the use of complex models over simple ones,
especially if the complex model is not as usable, predictable, robust and scalable

as the simple model, even though the simple model might be clearly inadequate

22

semantically. In other words, since we can not justify any model in semantic terms,
there is no reason to use a more complex model than the simplest one that can be
justified in pragmatic terms. More discussion about this viewpoint for content-based

search can be found in [TS05].

Co-occurrence data has a long history in linguistics. An early seminal work in the

field, "Methods in Structural Linguistics" by Zellig Harris [Har60|, states that

The main research of descriptive linguistics, and the only relation
which will be accepted as relevant in the present survey, is the distribu-
tion or arrangement within the flow of speech of some parts or features
relatively to others. The present survey is thus explicitly limited to ques-
tions of distribution i.e. of the freedom of occurrence of portions of an

utterance relatively to each other.

Taking "freedom of occurrence" as the basis for research is an attractive approach,
as it allows objective and rigorous study of the language based on empirical data.
Clearly, there are some implicit rules or conventions in the language which constrain

how and which individual units may occur with each other, at least statistically.

For instance, consider two real-world examples in Figure 7. The figures contain
two manually selected subsets of tokens from the Reuters corpus of news articles
[LYRLO4|. In the first example, two thematically different sets of tokens were cho-
sen: The first three words are about agriculture and the next three words about
metallurgy. The example shows that if one sees a word related to agriculture in a
document, it is much more probable to see another word related to agriculture in
the document than a word related to metallurgy. This phenomenon agrees with the

common sense.

The second example in Figure 7 shows five tokens that are closely related to oil in-

dustry and five other tokens that are common words in English. If you see a common

[}
=
e S
Q = =
g2 = 2 3 3
= S B 8 e L
e} [o < 73] .~ o
livestock
poultry
agriculture
steel
iron
ore
-
9 5
g g
o
b= &0 g g B
— = < .2
g5 3 g = o S g =2 £ =
2 I 2 g 2 = = 2 = s
2 5 2 2 19 = 8 g = =

saudi

crude

barrel

brent

opec

allegations

trying

environment

utilities

yearly

Figure 7: Conditional distributions of some tokens from the Reuters corpus

23

24

English word in a document, you can not be confident that the document is about
oil, or you can not know what other common words might appear in the document.
However, if you see a word related to oil, with moderately high confidence you can
expect to see other oil-related words in the document as well. This exemplifies the

discriminative power of tokens that are highly related to a certain topic or theme.

In the linguistic point of view, the use of co-occurrence data has some drawbacks:
Firstly, it can not explain how language is generated in the first place — for elabora-
tion, see for instance Noam Chomsky’s influential works [Cho69, Cho72|. Secondly,
the real-world co-occurrence data contains a complex mixture of several linguistic
phenomena from phonetics and morphology to stylistic and pragmatic issues. In

other words, the data seems extremely noisy for rigorous study.

For content-based search, the above issues are not critical. A search engine does
not have to process language similarly to the human brain. In our approach, this is
deliberately avoided since mimicking the brain inadequately often leads to serious
problems in usability and predictability, which were our original design criteria. As
long as we do not have adequate machinery for handling semantics computationally,
it is better to leave semantics to the user and give the user a powerful, but non-
intelligent tool?. In our case, the tool could be characterized as "an automated token

relationship analyzer".

Regarding the second issue above, the mixture of different phenomena can be seen
as an asset for content-based search. In information retrieval, the primary uses
for co-occurrence analysis have traditionally been word-sense disambiguation and
automatic thesaurus construction [BR99|. In addition to these, co-occurrences can
be used, for instance, in automatic style analysis [UK05| and language recognition

[CT94|. These applications are possible due to the richness of phenomena that are

2We call this tool-centric approach to language modelling practically adequate. For elaboration,

see [T'S05]

25

present in co-occurrence data.

The previous methods of information retrieval are not perfect. Depending on the
measure, their accuracies are typically in the range from 50% to 95%. For instance,
this is the case with a survey of methods for style analysis in [UKO05|. False results
are often attributable to co-occurrence data that contains many interleaved linguistic
phenomena, as mentioned above, and the model is unable to de-noise or de-interleave

the data in order to solve a particular task perfectly.

However, if we give the user tools that are powerful enough to handle the data
smoothly, she may use them to solve the aforementioned tasks "manually", on case
by case basis. The benefit of this approach is that the user is able to interpret the
results, despite the interleaved levels of information, and act accordingly, since the
human brain is perfectly tuned to the task of producing and understanding natural
language. Metaphorically, one can consider machinery for efficient co-occurrence
analysis as the engine of a car. Whereas the traditional information retrieval aims
at building a perfect auto-pilot to drive the car, we want to give the user a perfect

steering wheel.

Statistical Models and Co-Occurrence Data

Many statistical models for information retrieval are based on the co-occurrence
data. Strong statistical dependencies are abundant in the data, as Figure 5 above
suggests. Often dependencies can be given a natural interpretation by a human
observer, as in the case of Figure 7 above. As the data is a rich and complex mixture
of dependencies due to the various linguistic phenomena it captures, many different
statistical model families are able to capture at least some of the dependencies.
Generally speaking, any captured dependency is meaningful to a human observer,

since, after all, all the dependencies were generated by the human brain in the first

26

place. Thus, it is not surprising that almost any statistical model, which is applied

to co-occurrence data, seems to produce at least some meaningful results.

For exploratory data analysis, the above phenomenon is beneficial to some degree.
For example so called Word Category Maps, which are based on the Self-Organizing
Map model |[Koh01], can be used to visualize and cluster frequently co-occurring
tokens [HPK95]. The results are often intriguing and easily interpretable to a human
observer. However, it is difficult to formulate a rigorous way to use the model,
say, for word sense disambiguation, which would work without the human observer.
Similarly, if the observer wanted to analyze some other dependencies in the data,

in contrast to the ones that the model happens to capture, it is not clear how the

model should be modified.

The results are dominated by implicit and explicit modeling assumptions and the
chosen parameter estimation procedure, whose relation to semantics is not often
fully understood and thus difficult to tune. For users and applications, such as
content-based search, models seem rather opaque. This observation motivated us
to take predictability as one of the design criteria — the user should be able to see

through the model in order to be able to use it in an efficient manner.

Another modeling dilemma is directly related to the nature of search: What infor-
mation we can afford to lose a prior:, before seeing any query? For instance, various
methods of dimensionality reduction are commonly used in information retrieval for
de-noising and to reduce the computational burden of the models [BR99|. The aim
is to reduce the number of distinct tokens in 7, either by grouping similar tokens

together or by filtering out the ones that have no statistical significance.

However, as with the Wikipedia subset above, over half of the tokens may occur only
once in the corpus. They have hardly any statistical significance. Yet if the user

searches for a rare token, say, a model number of a microchip, the system should be

27

able to rank the results accordingly and maybe return other microchip data-sheets
that contain some related information. This motivates the criterion of robustness.

The quality of the results should not drop drastically with rare queries.

Some models are based on the working assumption that an unknown generative pro-
cess has produced the tokens in documents — these models are called latent-variable
models. The model is used to estimate these unknown, or latent, factors. In the
case of co-occurrence data, the factors often correspond to semantically meaningful
themes or topics that appear in the corpus. For instance, in the case of Figure
7, a latent variable model would likely recognize that tokens livestock, poultry,
and agriculture are generated by a common topic. In this sense, a latent variable
model can be used to group tokens together to form higher-level "concepts". Com-
monly used models for this task include Multinomial Principal Component Analysis
[BP03|, Latent Dirichlet Allocation |BNJ03], and Probabilistic Latent Semantic Anal-

ysis [Hof99]. Theoretically, these models are closely related to each other [BJ06].

When a probabilistic model is used for content-based ranking, a so called Language
Model formalism is dominant nowadays. In this formalism, document ranking is
based on query likelihood |PC98|:

log P(Q|D) = > _log P(q|D), (8)

qe@

where () is the query, possibly consisting of several tokens ¢. In this approach, the
model is used to estimate probabilities of form P(¢|D) i.e. the probability of a token
t to appear in document D. Again, infrequent tokens pose a difficult challenge to
the model: How to estimate P(t'|D) for all D € C, if t’ occurs only in one document,
and thus P(t'|D) = 0 for most of the documents? This problem is known as the
Zero Probability Problem in the literature [PC98]. The problem is often solved by
various smoothing methods that try to spread the probability mass more uniformly

over the tokens. The chosen smoothing method is a major factor that distinguishes

28

different language models.

One can use a latent variable model as a language model. In this case, the query
becomes conditional on the latent variables, Z:

log P(Q|D) = > "log P(q|2) P(z|D). (9)

qEQ z€Z

Some examples of this approach applied to content-based ranking can be found in
[BPT04, BLPVO05|. Here the latent variables Z can be seen as a bottleneck, which
compresses global co-occurrence statistics to a smaller, fixed number of dimensions,
|Z|. The largest latent-variable models that have been built for search have included
at most hundreds of topics [BLPV05|. Due to relative sophistication of the models,

scaling them up is a major challenge.

Based on the above, a latent-variable model can be seen as a dimensionality reduc-
tion method. However, in this case tokens are not filtered out, but instead they
are grouped together by Z. For instance, consider the following observation from

[BPO3|:

For instance, a "Mother Teresa" component was discovered whose
extreme documents were all about Mother Teresa but whose general
role in other documents was to isolate facets of motherhood and elderly

women.

This result is semantically understandable. However, what if the user was specifically
interested in geriatrics and elderly women? In this case, the model might estimate
that the query is probably about Mother Teresa and rank the results accordingly.
Similarly, a latent-variable model could easily find the two topics in Figure 7, namely
farming and metallurgy. Yet if the user was specifically interested in poultry, which
is a subset of livestock, grouping it under the topic of farming would be an over-

generalization.

29

These issues of over-generalization and the lack of semantic resolution are inherent
to latent-variable models, at least in the context of search. The problems are greatly
amplified when a latent-variable model of, say, 500 topics, is applied to a Web corpus
of millions of documents. Generally speaking, we can not judge beforehand which

features or tokens can be grouped together or filtered out until we see the query.

The intention of the previous discussion is not to undervalue the statistical methods
and models for information retrieval. The discussed methods are valuable for various
purposes, such as clustering, summarization, data mining, and even domain-specific
search where lots of a priori information on relevance is available. However, the
points made are applicable to general, Web-like, search. To a large extent, the
design criteria of predictability, robustness, and scalability were motivated by the
need to address the issues discussed above. The following section will describe our

solution.

3.3 Method

This section presents AinoRank, a content-based ranking method. The method in
itself is simple, which is deliberate. The central questions are whether the method
can be seen to fulfil the original design criteria and whether it is possible to imple-
ment the method in a scalable manner. We start with a simple special case and

gradually extend the description to cover the whole method.

Consider that we have a corpus of documents, C. The user submits a query, ¢ € 7
to the system. We require that the query token occurs in the corpus at least once.
We start with a simplified assumption that the query consists of only one token, q.
The ranking method assigns a score, S; (D) for each document D € C. The system

returns a ranked sequence of documents (D, Dy, ..., Dy) so that S, (D;) > S (D;y1).

30

In this case, AinoRank assigns score to a document as follows
S)(D)=Xp > P(qlt). (10)
teD
where A\p is a document-specific normalization term and P(q|t) is estimated using

the full co-occurrence matrix as specified in Equation 7.

We can formulate scoring of all D € C in matrix form as follows. Let D be a C x T
matrix containing the documents. A row from the 7 x 7 conditional distribution
table corresponding to the query ¢ is denoted by q. The document normalization
factors [Ap], D € C are entries of a diagonal matrix N. Now scoring can be formu-

lated as follows

s = NDaq, (11)

where s is a |C|-dimensional vector containing the document scores.

This formulation for S; (D) is similar to so called Translation Model for information

retrieval [BL99|. Translation Model is defined as follows:

T(q|D) =Y I(t|D)r(qlt), (12)

teD
where [(t| D) is document language model and r(q|t) translation model, following the
terminology of [BL99]. Now if we assume that the language model is uniform for all
t € D, we can let A\p = [(t|D). Furthermore, if we define that the translation model
is based on the empirical probability P(q|t) derived from the co-occurrence matrix,

we can equal T'(q|D) = S;(D).

Intuitively, the idea behind the above formulation is the following. We want to give a
high score to documents that contain either the query token ¢ or many co-occurring

tokens {t|Ay, # 0,t € T}. Since co-occurring tokens contain many synonyms,

31

hypernyms, and hyponyms of ¢, this scheme should reward relevant documents even

though they would not contain any occurrences of the query token q.

Naturally the co-occurrences include non-relevant tokens as well. We try to weight
relevant tokens against the non-relevant ones with P(g|t). The idea is that for
relevant tokens, Ay, should be large and Ay (the frequency of token t) not be much
larger than that. In other words, to gain a high weight, token ¢ should appear only
in the same documents as g, i.e. preferably I, C I,. Very frequent words have large
Ay, but also their Ay, is large and thus P(¢|t) becomes small. In probabilistic terms,
we give high weight to term ¢ if seeing it makes seeing ¢ in the same document
probable. Correspondingly, we give a high score to document D if it contains many

tokens related to q.

The above scheme favors long documents. As each token in a document can only in-
crease the score, the more tokens the document has, the higher score it will get. This
is not beneficial. Here the normalization term Ap comes into play. A straightforward

fix is to take the average of the weights, or let

Ap = —. (13)

This definition coincides with the uniform document language model, [(¢|D) above
which assumes that seeing each token ¢t € D is equally probable. Semantically this
means that we favor documents that contain the maximum number of informative
i.e. rare words that co-occur with the query. This does not always produce desirable

effects, as we will see later on.

We employ also another approach to handle documents of varying lengths. The
lengths of web pages vary from one token (e.g. error) to full dissertations and books
of hundreds of pages. Lengthy documents are problematic not only for ranking, but
also for co-occurrence statistics. We defined the number of co-occurrences between

two tokens as A;; = |; N [;] i.e. the number of common documents in which they

32

appear. A long document, say a dissertation about bioinformatics, may speak about
genetics in the first part and about machine learning in the latter part. Following
the above definition, the document would increase co-occurrence counts between
tokens related to genetics and machine learning, which lessens topicality of the co-

occurrences.

Even if a long document is only about one topic, the current formulation is sub-
optimal. For instance, a two hundred page book about global warming is a rich
source of topical co-occurrences. The document might mention token ozone a hun-
dred times, but each co-occurrence count between ozone and all the other tokens in

the book would increase only by one.

To overcome these problems, we segment the documents. Each document is split
into fixed-size segments during tokenization. In our experiments, a typical segment
size has been 300 tokens. The choice of the segment size is based on semantical and
technical considerations. In the semantic sense, the segment size defines the context
of a token. The chosen size should reflect our belief on the extent of a token’s
influence over the document. The segment size of 300 is based on the assumption

that a token’s semantic context covers some 2-3 paragraphs.

On the other hand, the smaller the segment size, the fewer distinct co-occurrences
a document will produce. In an extreme case, the segment size of two reduces the
co-occurrence matrix to a bigram-like model. Each distinct co-occurrence increases

the space requirement of the index, as seen in Chapter 4.

Formally, we may extend the original document definition in Equation 1 to include

the segments. Document d is split to (%w segments as follows

.) N
Sfj — (tKi+17 ...,tmin(Nd7K(i+1)))7Z < |:O’ {%J} 7 (14)

where K is the segment size and ¢ gives the segment’s position in the document.

33

Correspondingly, we may define a segment set, St = {t|t € s;}. Usually we are not
interested in the actual position of a segment in the document and S%, becomes Sp
that may refer to any segment in document D. The set of all segments in document

D in denoted by Sp. Inverted sets take each segment into account separately
Tt:{SD|t€SD,DEC}. (15)

Other terms, such as A and P(q|t), which are based on inverted sets, are derived
equally for I, and I;. We use an overline to denote the segment-based version of
a term. Since conceptually the segment-based approach is not much different from
the original formulation, differences being mainly in the co-occurrence matrix and in
the document score, we may use the original formulation for clarity in the following

sections. All the results are applicable to the segment-based approach as well.

We can now give a new definition of the document score,
S(D) =5 > 3 Plah). (16)
SeSp teS
Since segments are of equal length K (although the last segments in documents
may be shorter), there is no need for a segment-specific normalization term, like Ap
above. However, documents may contain a varying number of segments, so for the

document score we take the average of the segment scores.

One could consider also a more sophisticated way to segment documents. The
segments might be overlapping or they could be of varying size depending on their
contents. Overlapping segments would be expensive to implement with the current

approach, as shown in Chapter 4, and their benefits are not clear.

Advanced segmentation schemes for content-based search have been considered in
the literature. For instance, [CYWMO04| compares ranking quality between non-
segmented documents, fixed-size segments, a segmentation scheme based on HTML

tags, and a scheme based on the visual layout of a web page. In the study, fixed-size

34

segments return consistently the best, or the second best results, right behind an
expensive layout-based approach that was introduced in the paper. Especially, the

fixed-size segments improved results compared to full documents.

3.4 Query Interface

Consider that instead of a singular ¢, we have a set of query words, ¢ € (). The

original scoring function in Equation 10 could be easily extended as follows,

ShH(D) = p > [] Plalt). (17)

teD qeqQ
However, this is not the only option. Think of the semantic viewpoint: What is the
user’s intention when she adds more tokens to the query? We have two alternatives:
Either she wants to extend the query to cover more documents, or she wants to
constrain the query to a more specific subset of documents. The former is called

disjunctive and the latter conjunctive query.

Traditional keyword-based search engines, such as Google, are usually conjunctive,
since in the disjunctive scheme a long query can easily produce impractically many
results. Moreover, the higher number of documents match the query, the tougher it
is for the ranking method to ensure that the most relevant ones are ranked on top —
especially if the query is ambiguous. However, this is not an issue with AinoRank,
as we can affect the ranking behavior and the result set size independently from

each other, as we will describe in the following.

Keys & Cues

The first design criterion for AinoRank was usability. Even though our ranking

method might be highly predictable, robust, and scalable, ultimately input from

35

the user defines whether the results are of any use — the right answer to a wrong

question does not help the user much.

As stated in the design criterion, the query interface should take into account the
discrepancy between the user’s true information need and the actual query. More-
over, since another design criterion of ours, predictability, required that the user
must be able to re-phrase the query easily if the original query failed, we must not
resort to guess-work with respect to the user’s intentions. If the system was eager
to guess, and it guesses wrong, and the user tries to re-phrase the query only to see
another bad guess, the query interface becomes a frustrating cat-and-mouse play for

the user.

In order to better understand the problem, let us consider what the users typically
search for. Based on a sample of 100-200 queries from a query log of the AltaVista
Web search engine, Rose and Levinson analyzed and interpreted typical search goals

of the Web users [RL04|. The results, as presented in their paper, are summarized

in Table 2.

First, consider that no ranking method was available: Search engine would return
the documents that match the exact query tokens in some random order. Which
of the query types in Table 2 would likely return a relevant document among the
top ten results in this case? Navigational (1), locate (2.4), and download (3.1)
queries might work due to proper nouns in the query. Some query types, such as
undirected (2.2) and obtain (3.4), might sometimes work if the query contained a
rare, specific word. If the goal was really broad or vague, such in undirected (2.2)
and entertainment (3.2) queries, the results might be satisfactory because of the

"anything goes" attitude.

This is the baseline. Under no circumstances should a sophisticated ranking method

produce worse results than no ranking at all. This requirement might feel trivial,

36

soLonb vISIARIY UO paseq [F(Y| wosutao] 23 9s0y Aq s[ROS YdIRAG g d[qR],

08§ °OU JusumdOop 8snoy,
¢ sueTd uosse, ¢,PURTST
STTIT®, f.Suisired
ursjue o yoel eaxg,

4 I9LIDAUOD

ainseauw, °,Isyjlesn,

W 'B'T UT BISWED 9ATT,
¢ 9011 otaouw ouxod xxX,

,Swox ewew, °¢,91TT BRZEY,,

,Sxededsmeu

BPTIOTY, ‘,SOT1ISISATUN
wepIoaswe, °,ToARId,

. pIes

suoyd, ‘,smoputsa eITod,

«S3YSTen y3Ta Juryren,
‘,8Butyows Suraatmnb drey,

__.H.H-

%1zl ¢,sseupuriq 1070,
wKutys

sTeqeu exe Lym, ¢, Lanfut

pue yiesp TTeqsseq,
nwS93ep UOTROST® $00Cu
¢, Jo8xeyoxsdns e ST qeUM,

w¥00q entq £rreY,
¢ ,Teatdsoy LaTsisATun
o¥np, ‘,SOUITITR BYOTE,

‘JOSIT 92INO0SAI 91} S9SN 0) JueM] 9SNEIQ JN(‘UOIJRULIOJUT dUWIOS UL 0}

11 urure3qo J0U UL] "TWIAIDS 9} UO 91 Je Yoo[1sul osre wed [nq ‘mo 91 qurd
Kew T -osn 0} 193ndwod & o4mMbal j0U S00OP ey} 92IN0SAI ' UTR)CO 09 SI [R0F AJA]
PUY T 931S oM 9Y) U0

s[qe[reAr adIAles /weldold Iar[joue SUIST 9DINOSAI ® [}1M JORIS)UL 0) ST [ROS AT\
‘oded

J[NSdd O} UO d[qe[reae swall Surmara Aq Ajdurs peaurejrojue oq 09 s [e03 AN
‘[NJosn 9q 09 9ITADP

Iojo I0 Ioynduiod AUI WO o 9JSNUI JRY) 9JINOSOI B PROUMOP 07 ST [ROS ATA]
‘soded gom UO S[qrR[IeAR (UOIJRULIOJUT J0U) 9DINOSSOI ® UIR)QO 0} ST [e0F AT\
‘Te08 poymadsun ‘SUIATIopun

owIOS oAdIYDR dw Surday 10J sejepIpued o JYSIW YOIYM JO Yoes ‘(JesIT 9sI]
JINSOI YDIRAS 9 "9'T) S9YIs qom polsadsns a[qisnerd Jo Is1] ® 393 03 ST [e0S AT\
‘paurelqo oq

ued 1onpold I0 9DIAIOS PIIOM [ROI SUIOS 9IoYM /IDTIYM N0 PUL 0 ST [e08 AN

"SUOTIOTLISUL I0 ‘SUOI)s933NS ‘SeOpI ‘0dIAPR 198 0] juem |
WX Imoqe e [}, Se pejerdiojur aq
jydrur o1doy 10y Arenb y -ordoy Aur jnoqe Suryifions /Suryjdue wresy og juem |

qydep
POUIRI}STOOUN IIM SUO IO ‘UOIISOND papus-uado Ue 0} IoMSUR UR 195 0} JUBM |

‘IOMSTUR STONSIqUIBUIL ‘O[SUIS © SBY 1B} UOIISOND © 01 Iamsue UR 195 09 jUBM |
-01doy Aw noqe remoryred Ul SUIYIOWOS UILd[O} jUeMm |

‘soded qom SULMaIA I0 Fuipeal £q SUTYIOWOS UIRS] 0 SI [BOS AN

TN Y2 mouy j,uop | sdeysad 1o

‘TN o2 Surd4) ury} JUSTUSAUOD SIOW S,31 Y] SI JUIYDILIS UI,] UOSBII ATUO
OU, “PuUIW Ul dARY ApeBaJ[e [IR} 9318qom UMOUy ogIads 09 03 0} ST [e03 AN

ureyqQ ¢
1RIN] €€
JUOWUIR}IDIUG 7€
profuMo(T°¢
92INOSIY

ST 6T
918007 7
OIAPY €7

Po3aaIIpuf) ¢'¢

wd(7’1

PosO[) T'T'¢
pejoalld 1°¢

[euoljyeuLIOJUT "7

[euoIjeSIARN] ‘T

ordurexy

uondroso(

[e05) YoIeag

37

but considering the heterogeneity of the goals, it is easy to focus on optimizing one of
them and forget the others. For example, one might build a sophisticated question-
answering system to serve open informational needs (2.1.2) and the resulting system
might be unable to serve simple navigational or download queries that contain a
single product number. Naturally, if the system does not aim at being a general-

purpose search engine, specificity is justified.

Let us make another thought experiment: Take a sheet of paper and cover the first
two columns in Table 2. Now, assume that the example queries were shown to you
in some random order. Could you assign each query to the corresponding search
goal just by looking at the queries? If you had no previous knowledge, how would
you know whether pella windows refers to a Web site (1), to a location (2.4), to
a computer program (3.1), or to an off-line document (3.4)? Similarly, given the
query travel, would you return the Web site www.travel.com (1), an encyclopedia
page about traveling in general (2.1.2), or blog articles about traveling experiences

of an individual (2.3)7

As a human being can not guess intentions of another reliably, it feels unreasonable
to try to solve the question computationally. One can not expect that the user
provides enough information to make the queries unambiguous and her intentions
clear in the first place. The only reliable source that can explicate the intentions is
the user herself. Our approach is to let the user to use the system as a tool that
does not make any guesses but it does what it is told to do in a predictable way.
It is left on the user’s explicit responsibility to command the tool to return desired

results.

We call this approach Keys é Cues. The core concept is that the user may control
the set of matching documents and their ranking independently from each other.
In this sense, the query interface is structured or multi-faceted: Query tokens may

have different roles in the query string, namely, each token is either a key or a cue.

38

Similar ideas and rationales for this structured query approach can be found e.g. in

[KJ98, Bro95].

Keys correspond to the standard keyword interface, like, say, in Google. Cues are
used to rank the documents that match to the keys, using for instance Equation 16
above. Note that due to the nature of the ranking scheme, cues do not have to occur
as such in the matched documents. Instead, all tokens that co-occur with the cues
in the corpus are taken into account in ranking. One can think that keys are used

to filter the desired content from the corpus and cues are used to sort the results.

It would be infeasible and nonsensical to try to distinguish keys and cues auto-
matically in the query. The roles of the tokens depend fully on the user’s implicit
intention. All tokens t € 7 are equally valid as keys and cues. The distinction
depends on the user, on query by query basis. Since the distinction between the
roles must be explicit, we reserve a special character, usually a slash ’/’, to denote
the cues. Another approach would be to let the user type keys and cues in two

separate input boxes.

Consider the following queries that exemplify various use cases of the query interface:

apple /computer Key apple is ambiguous. The user may explicate her intention
and disambiguate the query with a single cue. In this case, all returned docu-
ments contain token apple and the top-ranking results are about OS X, iPods,

and MacBooks etc.

computer /apple In this case, all documents containing token computer are re-
turned. The top-ranking results talk probably about the Apple products as in
the previous case, but they could be also about some similar products, such
as BeBox or Windows Vista, which are often characterized in the apple-like

terminology.

cluster /k-means The disambiguating cue can be also a specific term from the

39

desired context. In this case, documents related to various clustering methods

are ranked on top — not only the ones that discuss about the k-means method.

book /buddha Cues can be used to specify the desired theme. In this case, the
user is interested in religious books. The opposite query, buddha /book would

return information specifically about Buddhism.

site:en.wikipedia.org /biology On the Web, a key can be used to specify a site

of interest. A cue can be used to sort contents of the site in a desired way.

george bush /foreign /politics Cues can specify an abstract concept that would

be difficult to express in keywords.

nokia /suxors /rulez Since any tokens, also rare ones, can be used as cues, one
can use untypical forms of words or even misspellings to specify a certain style
for documents. In this case, the top-ranking results are probably opinionated

forum comments about mobile phones.

airplane /b52 A rare token as cue is often a good way to specify a detailed topic

of interest — in this case, large bomber planes.

test /19 /23 /29 /31 Since the ranking scheme is rather straighforward and me-
chanical, it is also very flexible. In this case, the top results are probably about

number theory and primality tests.

saddam hussein /uno /dos /tres Since tokens of one language are highly co-
occurring, one can use any foreign words as cues to specify a desired language

for the top results.

/how /tall /is /the /eiffel /tower Unintentionally, one can pose questions in
plain English and surprisingly often get an answer to the question within the

top-ranking results. The reason for this is that common interrogative words,

40

such as how above, get only a small weight due to their high frequency — simi-
larly to other common words as is and the above. Thus, only topical words,
tall, eiffel, and tower in this case, get any remarkable weight and they
bring the documents that are related to the question on top. The small effect
caused by the interrogative tokens is often enough to raise the explicit answers

to the question amongst the very first results.

If the user does not specify any cues, we use keys as cues. The rationale is that
a query like computer /computer or george bush /george /bush should return
in some sense most prototypical examples of documents that match to the keys.
Moreover, this way the user may start to use the system similarly to other well-

known search engines that do not let the user to affect the ranking explicitly.

Table 3 shows some strategies how Keys & Cues may be used to achieve the search
goals of Table 2. Three strategies are used: First, if the query contains a proper
noun or other specific token, typically cues are not needed (1). Secondly, if the user
is interested in a particular topic, the most specific, and the most infrequent, token
is used as the key and the broader specifiers as cues (2.1.2, 2.3). Thirdly, if the
desired information should appear in a specific context or it should be presented in
some particular style, indirect cues may be used. For example, in case of general
interest, one may use some general, non-specific words as cues (2.1.1, 2.2). If a
commercial context is desired, words related to selling and buying often produce
the wanted result (2.4). Similarly, any word that refers to the desired use or origin
of the information, may be a good cue (3.1, 3.4). If the results should appear in a
web page of particular style, one may utilize previous knowledge of the structure of
such pages to formulate matching cues (2.5, 3.2, 3.3). Note that these strategies are
given only as illustrative examples of use. In practice, each user finds best strategies

of her own through trial and error.

41

Search Goal

Keys & Cues example

1. Navigational

2. Informational
2.1 Directed
2.1.1 Closed
2.1.2 Open

2.2 Undirected

2.3 Advice

2.4 Locate

2.5 List

3. Resource

3.1 Download

3.2 Entertainment

3.3 Interact

3.4 Obtain

"aloha airlines", "duke university hospital",

"kelly blue book"

"supercharger /what", "2004 election dates /list"
"baseball /death /injury", "metals /why /shiny"
"color blindness /cause /effect", "jfk jr /life
/work"

"smoking /help /quit", "weights /walking"

"pella windows /shop /sell", "phone card /street
/address"

"travel /list /http /com", "amsterdam universities

/links"

"kazaa lite /download", "mame roms /zip /gz"

"free xxx /porno /movie", "l.a. live /camera"
"weather /cookies /javascript", "measure converter
/login /register"

"free jack o lantern patterns /images'", "lesson
plans /handout", "house document no. 587

/scanned"

Table 3: Some strategies to achieve search goals with Keys & Cues

42

The Keys & Cues query interface corresponds to the original design criteria as
follows. It takes into account the user’s implicit information need by letting the
user control both the set of returned documents (keys) and their ranking (cues)
separately. The user may steer the results freely towards the desired search goal by

using the two facets. In this sense, the system should be usable in many situations.

Considering robustness, it is important that also rare tokens are allowed as cues, as
this allows the user to experiment with the system using her own name or with her
favorite dog breed etc. When the user sees how the system performs in a field that is
already familiar to her, she may transfer this understanding to other, more general

cases.

The user should be able to form a mental model of the system, either consciously
or unconsciously. The ranking scheme is easy to explain in layman terms: "You can
affect how the results are sorted by giving the system some cues about your interests.
The cues may be any words. The more words a document contains that are related to
your cues, the higher rank it will get.” Now, if the system returns undesired results,
the user may re-phrase the query with other cues. Since the user has some idea how
the system works and she may trust that the results are robust regardless of the
query, she can make a sophisticated guess or predict which cues would produce best

results in her particular situation.

The next section shows how the system tries to ensure predictability and robustness

in case of multiple cues.

Multi-Token Cues

Traditionally, the quality of a ranking scheme has been measured by two metrics:
Precision, or how many of the results are relevant, and recall, or how many of all

relevant results were returned [BR99|. However, the user does not judge results in

43

Precision Recall

Add / Remove kw conjunctive kw disjunctive, AinoRank

Modify AinoRank

Table 4: Mapping from the query interface to the ranking behavior

these terms. The user can either feel that the results are bad (low precision) or she

may want to see more good results (low recall).

A textual query interface gives the user two ways to affect the results: She may
either add and remove query tokens or she may modify any existing tokens. Table
4 summarizes the user interface options (add / remove, modify) and the ranking
behavior (precision, recall), which the user may want to tune via the query interface.
Entries "kw conjunctive" and "kw disjunctive" show how a keyword-based search
engine, that utilizes either a conjunctive or disjunctive query interface, works. Note
that in a "kw conjunctive" system, like in Google, there is no easy way to increase

recall. Similarly increasing precision is difficult in a "kw disjunctive" system.

If only ranking is considered, there is one way to map controls to behaviors, which
is clearly more usable than the others: If the user wants more results, she adds
new tokens that describe what kind of new results should be returned. If the user
wants to change the results, she may change the query tokens. The term AinoRank
represents this mapping in Table 4. Consider the other alternatives: If recall was
to be increased by modifying tokens, the user is challenged with a difficult semantic
question, namely which token could possibly produce more results. Correspondingly,
it would feel strange to increase precision by adding more words, since usually one
wants to increase precision if the results are bad, i.e. the current query did not

produce good results. In this case, it feels most natural to change the query instead.

Based on the discussion above, we can now re-formulate Equation 17, which was our

44

Corpus Corpus

o

Figure 8: Alternative Venn-diagrams for multi-token cues

first attempt to handle multi-token queries. Now we know that each token g € Q)
should extend the coverage of the ranking. The ranking should take into account
more "semantic categories", as defined by the new tokens. For instance, consider
that the user has ranked the results first with token Chevrolet and she notices that
the results are too specific, as she is interested in American cars in general. She
adds tokens Hummer and Lincoln. Now she would vaguely expect that the results
are ranked according to what is common in Chevrolets, Hummers, and Lincolns —
namely that they are all American cars. Our ranking scheme should aim at this
result. Furthermore, the scheme should ensure that individual tokens in the query
do not interfere with each other, so that the user may add any new tokens to the

query independently without unexpected side-effects.

Let us remind how P(q|t) definition reduces to inverted sets

A |1, N L]
P(glt) = =2 = =4 18
(alt) = 35 = =T (18)

Consider that we have multiple cue tokens, W = {qi, ..., ¢, }. Correspondingly, we
have inverted sets, W; = {I,,...,I,,}. The Venn diagram in Figure 8 illustrates
the case for the three first tokens. If cue tokens are semantically related, it is likely

that there exists a set of documents that contains occurrences of all cues. This set

45

is the intersection I//V\I =N rew, I, depicted by the darkest area on the left Venn
diagram. In the case of Equation 17, the weight is multiplied for the tokens that
occur in the intersection, {t € D|D € V[/E}, since each cue token g € W amplifies
the effect of these tokens in the summation. Correspondingly the relative weight of
the other tokens is decreased. Thus, if the user adds new cue tokens that are highly
overlapping with the previous cue tokens, she may inadvertently amplify the weight
of the old cue and the cue coverage does not extend as the user intended. Since
the user can not know which tokens are overlapping, the ranking mechanism must

include measures against this phenomenon.

The current solution in AinoRank is as follows. Given cue tokens (), we define the
corresponding cue set, QQ, as follows

o= (19)

q€@

A cue set corresponding to W above is depicted on the right in Figure 8. In this
scheme, a new cue token ¢,,; changes the cue coverage only to the extent that
the token g, 1 provides new information. If it happens that a new token is highly
related to the previous ones, say I,, C I,,, it does not add any new information and

the cues are unaffected, which the user can see easily.

To handle multi-token cues in the desired manner, we do not estimate individual
cues q € () independently. Instead, we estimate the probability of the cue set as a

whole:

P(QIt) = ‘(%Ll” (20)

The document score is estimated accordingly
§4(D) = Ap 3" P(QI). (21)

teD
A philosophically inclined reader may contrast the concept of cue set to that of ex-

tension in semantics and semiotics [Lac96]. In the literature, the idea of representing

46

concepts as sets [Kor85| or areas in space [Gar00| is not new. Even though the above
formulation of cue sets is justified only in pragmatic terms, one may consider it as
a reminiscence of many previous, semantically more justified, approaches.

3.5 Discussion

We are now ready to formulate the final document score for AinoRank,

B o > P

SeS tesS
zz'@““ (22)
SGS tes |[t
. 1 qu m[t’
- o > e
SGSD tes

This final score is based on segmented documents and cue sets. Formally, the pro-
posed search engine works as follows. The user submits a query via the query
interface. The query is a tuple (IC, Q) where K is a sequence of key tokens that are
used to filter a matching set of documents from the corpus. We may define this
result set as follows

R = {D € C|match(D,K) = 1}, (23)

where the function match returns 1 if the given document D matches with the given
keys K. The actual behavior of match is explained in section 4.1. Documents in
the result set are then scored using the second item of the query tuple, the cues Q.
Based on Equation 22 above, we get a scored result set in which each document is

accompanied by its score
Sz ={(D,Sp)|D € R}. (24)
The results are then ranked according to descending score

7(Sg) = (D1, ... Dir)), Sp, > Sp._.- (25)

47

The ranked results 7 are finally shown to the user.

There are well-known algorithms to implement operations in Equations 23 and 25,
namely keyword matching and sorting, efficiently. In the following chapter we will
show that it is possible to implement operations required by Equations 22 and 24

in a moderately scalable manner as well.

48

4 Implementation

On the surface level, a Web search engine is a simple device, at least when com-
pared to a full-fledged relational database system. Its core data structures may be
immutable as all queries are read-only. Data and queries are mostly unstructured
and the supported query language is minimal compared to, say, Simple Query Lan-
guage for relational databases [RG02|. Few precautions are needed against data loss,

since the data is backed up in the Web anyway.

Scale is the challenge. Even medium-sized intranets, or subsets of the Internet,
are measured in tens of millions of documents nowadays. The system may have to
serve tens of millions of queries per day. Another great challenge for Web search is
crawling, or how to collect the Web pages in the first place. Despite these challenges,
current commercial web search engines manage to provide a remarkably smooth user

experience.

Given that the core challenges are "solved" by commercial offerings in the case of
static ranking, this thesis focuses on a further challenge: We investigate whether
dynamic ranking, utilizing co-occurrences in the corpus, could be a feasible option

for an intranet or for small-scale Web search in the future.

To study the question, we have implemented an efficient search engine, Aino. Aino
includes a full, distributable preprocessing pipeline from character set normalization
and language recognition to HTML tag removal and tokenization. Based on the
output of the preprocessing pipeline, efficient indices are built that are optimized

for content-based ranking. The indices are explained in detail in Section 4.1 below.

Query processing, which includes keyword matching and ranking, is described in
the following sections 4.2 and 4.3 — the former presents a straightforward brute-
force algorithm for the ranking scheme that was presented in Chapter 3, and the

latter an optimized version of it. Finally, we show briefly in section 4.4 how the

49

1. Data Harvesting
Crawler

2. Preprocessing I

Character set Language)
H guag H Tokenizer H Index Encoder

Normalization Recognizer

l ...

|
i {
index index index
block block block

3. Query Processing
Query Processor

Query Interface

Figure 9: Architecture of Aino

system is distributable to a cluster of servers.

Architecture

A short introduction to the anatomy of a search engine is needed in order to follow
the next sections. The subject is well covered in several books, e.g. [WMB99, BR99].
The description of the early Google architecture [PB98| gives a concise technical

overview of some implementation issues as well.

Figure 9 illustrates the essential parts. We divide the process in three distinct

phases:
1. Data harvesting or crawling
2. Preprocessing and indexing

3. Query processing

During the first phase, data is collected for indexing. After all, a search engine

can not search for anything it has not seen before. Depending on the application

50

domain, data may originate from the Web, an email archive, or from any other
source. Collecting or crawling Web pages is a complex issue in itself and it is not
covered in this thesis. However, Aino is accompanied by an advanced Web crawler

called HooWWWer [Tuo05], which was developed in a sister project to Aino.

The purpose of the next phase, indexing, is to extract all necessary information from
the raw document stream produced in the first phase to efficient data structures,
which are then utilized by the query processing in the third phase. Documents may
be in various formats and they may have been written in various languages using
exotic character sets. The first step is to normalize all documents into a common
format, typically to raw text encoded in Unicode or ASCII. Raw text is then fed to
a language recognizer, which uses 4-grams to detect language with high accuracy.
The basic method is explained in [CT94|. Aino uses a highly optimized version of

the method.

The next step is tokenization, which was briefly introduced in section 3.2. During to-
kenization raw text is split into substrings or tokens, which become atomic elements
of documents. Depending on parametrization, tokenizer may take into account com-
pound words, phrases, dates, and numbers. Tokenizer maintains a mapping from
tokens to 32 bit identifiers. At this point in the preprocessing pipeline, raw text
stream is converted to a stream of integer identifiers. In practice, segments of a

document are represented as fixed-length lists of integers.

Tokenized feeds the encoded documents to the indexer. Indexing consists of several
phases during which various parts of the index are constructed. Traditionally, the
main purpose of the index has been to speed up query processing with an inverted
index. Inverted index is a mapping from tokens (token IDs) to all documents that
contain at least one occurrence of the corresponding token. Using this index, search
engine can quickly return all documents that contain tokens of the query. In our

case, the index is also used for ranking. The index of Aino is explained in detail in

o1

the following section.

Size of the index grows in proportion to the size of the indexed corpus. Instead
of having a single monolithic index, the index is split into smaller blocks, as de-
picted in Figure 9. These blocks may be distributed to several servers, which allows
distributed query processing. The preprocessing pipeline is executed as a batch
process, independently from query processing. In a Web search engine, the indices
might be updated e.g. once per night. After the indexing pipeline has finished,
the index blocks stay constant: Query processor uses them only to match and rank

documents according to queries.

Query processing consists of two parts: First, the front-end is responsible for show-
ing the Web interface of the system and for processing incoming HT'TP requests.
Secondly, there is the back-end that interacts with the indices. The back-end is also
responsible for decorating the results, which mainly involves generating keyword-
in-context (KWIC) [BR99| descriptions for matching documents. Each description
is an excerpt from the document that includes at least some of the query tokens.
Moreover the query processing back-end is responsible for caching the results to

speed up processing of frequent queries.

When the user submits a query to the system, the query processing proceeds as
explained in section 3.5. However several technical factors make the processing
more complicated than the theoretical setting: First, the query must be parsed and
validated and it must be checked against the query cache. Secondly, query processing
is typically distributed to a cluster of servers, which requires a mechanism to dispatch
new queries to the cluster and collect and combine the results. This is explained
in section 4.4. Finally, ranked and decorated results are rendered to a HTML page

and returned to the user.

Some details were omitted in the above description. Most importantly, Aino sup-

52

ports stemming of inflected word forms using the Snowball stemming software
[Por01]. This increases quality of ranking especially for languages in which inflected
words occur frequently, such as in Finnish. Due to language recognition, tokens in
each document may be stemmed according to the stemming rules specific to the

document’s language.

Both the original inflected form and the corresponding stem are stored in the index.
This ensures that the document is findable although the stemming process may be
inaccurate, or if the user is interested in the inflected form in particular. Thus, stems
are used mainly to improve semantic quality of the co-occurrence statistics. In the
index, stems are stored as special meta-tokens. Meta-tokens may include also other
document-specific information, such as date, author, or category. Meta-tokens are

used in ranking similarly to ordinary tokens.

4.1 Index

Index is an immutable data structure whose purpose is to organize searchable data to
such a layout that search operations can be performed efficiently. In our case, index

must support efficient keyword matching and collection of co-occurrence statistics.

The following sections describe how we implemented the index. First, different parts
of the index are characterized. Secondly, encoding of the index data is explained and
justified. Thirdly, we explain the two main operations on the index, query matching

and collection of co-occurrence statistics.

Structure

The index consists of three sections: inverted index, forward index, and position
index. Each section has a separate table of contents (TOC) that maps a key to an

address in the section body. The index file begins with a header that stores sizes of

23

Header

Inverted TOC
Forward TOC

Position TOC

Inverted Index

Forward Index

Position Index

Figure 10: Index structure

the sections and some other bookkeeping information. This structure is presented

in Figure 10.

Using the notation from the section 3.2, body of the inverted index stores I, for
each t € 7, i.e. for each token ¢ a list of segments in which ¢ occurs. TOC of the
inverted index stores tuples (¢, B), where B is an offset to the corresponding I, in
the body. Since the tuples are ordered by ¢, we can find I; for any ¢ in O(log|7|)

time using binary search.

Body of the forward index stores the document segments, or Sp for each D € C.
TOC of the forward index contains tuples (D, B), where B again points at the
corresponding segment in the body. Given a segment ID s, the corresponding Sp
can be found in the constant time simply by referring to B in the sth entry in
the TOC. The key D in the tuple specifies the document ID which this segment
belongs to. Thus, the mapping from a segment ID to the corresponding document

ID, s — D, is a constant-time operation as well.

Position index stores locations of occurrences for each token in each document. This
information is needed by the phrase queries that require the query tokens to appear

in a fixed order in the matching documents. The body contains a list of tokens and

54

lists of their positions. TOC contains tuples (s, B), where B points at the body as
above and s is the ID of the first segment that belongs to this document. Thus,
also the mapping from a document ID to its segments, D — s, is a constant-time

operation.

If the corpus is large, a separate index is built for each set of K documents, where
K typically varies between 100,000 and 2,000,000 documents, depending on the
nature of the corpus. Fach index block should fit into the main memory of the
server that hosts the index, so that expensive disk 10 can be avoided. This form
of parallelization is rather efficient as only the TOC of the inverted index contains

overlapping entries between the index blocks.

The TOC’s and the index sections are saved to a file consequently. When the index
is loaded, the header and the TOC’s are memory mapped to the process’ address
space. The area that stays constantly in memory is shown in gray in Figure 10.
Parts of the section bodies are brought to the process’ address space on demand
basis. This makes possible to use indices that are larger than 3GB, which is the
maximum size of the address space available for a single process in Linux. Thus the
only limitation for the index size is the total size of the TOC’s and available disk
space. However, indices that do not fit into the main memory are impractically slow

for any realistic multi-user setting.

Encoding

The index is made of lists of identifiers. An identifier list, or an array of 32-bit
integers, is the only data type used in the index. Each index section employs lists
for a particular purpose: Inverted index contains lists of segment IDs for each token
ID, forward index contains lists of token IDs for each segment, and position index

contains a list of positions for each token in a document.

%)

A straightforward approach would be to encode the lists as such. A plain array of
CPU word-width values is extremely efficient to access. The downside is that an
index that uses 32 bits per value takes a lot of space. Moreover, the space is wasted
for nothing, since the index seldom contains up to 4 billion segments or tokens,
which would justify the need for 32-bit values. Before building the index, one could
calculate the maximum number of bits needed per value and use, say, only 11 bits
per item. However, the benefits of easy and efficient addressing would be lost since
the items would not be aligned to byte boundaries. Also, quite likely most of the
values are smaller than the maximum, thus using the maximum number of bits per

value is wasteful.

A well-known solution to this problem is Delta Coding [BR99|. First, list of identifiers

is sorted to ascending order
(v1, Vg, vy,), Wwhere v; > v;_1. (26)

Now we may equivalently present the list as differences (or deltas, hence the name)

of each pair of items
(w1, wa, wy,), where w; = v; — v;_1. (27)

The benefit is that even though individual items may have arbitrarily large values,
their differences map to a smaller scale. In practice, in the index small deltas are
vastly more common than large ones, which can be seen in Figure 11. The figure
shows the empirical distribution of deltas for the aforementioned Wikipedia subset.
The upper distribution is for the forward index, showing deltas for token IDs, and
the lower graph shows deltas of segment IDs in the inverted index. The peculiar
peak in the upper graph is due to a gap in the token ID mapping: Here the most
frequent tokens are assigned an ID below 2000 and the other tokens an ID above

that. The peak corresponds to the delta between the frequent and non-frequent IDs.

% of all values in the index

% of all values in the index

10 p

0.1}

0.01 |

1e-03 [

le-04

le-05

10

01
0.01
1le-03
le-04

1e-05 F

le-06

Distribution of delta values in the forward index

10 100 1000 10000
delta value

Distribution of delta values in the inverted index

10 100 1000
delta value

Figure 11: Distribution of delta values

o6

o7

We need an efficient way to encode the deltas so that the frequent small deltas are
assigned a small number of bits per value. We might use a general-purpose entropy
encoding scheme, such as Huffman or Arithmetic coding to assign codewords to values
according to their probability of occurrence [Mac03]. However, since the distribution
of values is known beforehand and it follows roughly exponential distribution so that
small values are much more probable than large ones, we may use some static coding

method for speed and simplicity.

Golomb coding is a static coding scheme that is optimal for geometric distributions

[WMB99]. Each input value z is divided into two parts, the quotient ¢ and the

o=

r=x—qM —1.

remainder 7:

(28)

The quotient g is encoded in unary coding and the remainder r in truncated binary
encoding that is a slightly more efficient version of the normal binary code. Here
M is a tunable parameter. In practice, we estimate the best M for each list to be

encoded and store it together with the list.

If we choose M to be a power of two, division becomes a bit-shift operation and the
remainder can be found with a single bit-mask operation. This special case, which
yields an efficient implementation, is called Rice coding. This code, together with

delta coding, is used to encode lists of identifiers in the index.

Compared to plain 32-bit values, Rice coding gives compression ratio of approxi-
mately two in the forward index and over three in the inverted index. Thus, the
encoding makes the index considerably smaller than the corresponding index with
32-bits per value. However, disk space is not a scarce resource nowadays. Indices
are not moved during their lifetime, so the space requirement is not a major con-

sideration with this respect either. In contrast, we are concerned about speed of

o8

usage.

Space and time efficiencies are interrelated via the memory hierarchy in modern
computers. The closer an item is stored to the CPU, the faster it can be accessed.
A modern X86-64 CPU has 16 x 8 bytes of space in the general-purpose registers,
which is the fastest storage area, and typically 64KB in the I.-1 cache and one
megabyte of space in the L-2 cache that are the next fastest storages. A server in
a computation cluster may have 4GB of RAM and some 500GB of local disk space,

which is partly cached to the main memory by the operating system.

However, there are many factors, such as quality of the implementation, compiler
settings, and configuration of the operating system, which affect how efficiently the
memory hierarchy can be utilized. To better understand the behavior of different en-
codings in practice, we have made some empirical measurements with the Wikipedia
subset. The measurements were taken on a server with 2.1GHz Intel Core 2 Duo

CPU with 2MB L-2 cache and 4GB of RAM.

To simulate real index usage, we performed two kinds of test runs: First, all items
in the index were accessed sequentially from the first to the last (label "full" in the
graphs). Secondly, items were accessed sequentially but randomly skipping some 10-
20 items, which simulates processing of a subset of the index ("random"). Each data
point is an average of four test runs, each of which was performed with a different
random seed. Identical test runs, with identical random seeds, were performed for
a delta / rice -encoded index ("rice") and for an index with 32-bit values ("32bit").
Both the indices contained identical data. Index size varied from 100,000 segments
to 100,000,000 segments. The largest index took 19GB with 32-bit values and 5.3GB

with rice encoding.

Figure 12 shows processing times for different test runs when the index is small

enough to fit into the disk cache as whole. One can notice that a sequential full

processing time in seconds

L2 cache misses

100 . ——

I 3I2bilt /I r::mdom 40—‘*,%
rice / random ---x¢/-
9 | 32bit / full ---3x/--
80
70
60
50
40
30 |
20
10 +
100000 le+06 le+07
number of segments
Figure 12: Decoding performance with an in-memory index
60000 ———— . ——— ——— .
32bit/ random —+—
rice / random ---x---
32bit / full ---x---
rice / full &
50000
40000
30000
20000
10000
0 e —

100000
number of segments

Figure 13: Frequency of L2-cache misses in decoding

60

sweep over the index is the most cache-friendly, and fastest, way to access the data.
Random access becomes increasingly expensive with large indices, when the disk
cache does not already contain the requested data and it must be fetched from the

disk first.

The most important characteristic of Figure 12 is that the processing times are
approximately the same for the rice-encoded index and the 32-bit version. This is
not evident, as decoding the rice / delta-encoded values takes 20-30 times more CPU
cycles than using the 32-bit values directly. The main cause for this is that the rice
coding compensates the larger decoding cost with more efficient cache utilization.
Given compression rations of 2-3, we may fit twice as many rice-encoded document

segments in the L-2 cache compared to the sparser segments using 32-bit values.

Modern CPUs include a Performance Measurement Unit (PMU) that collects var-
ious statistics on the CPU performance during actual workload. We used OProfile
module for Linux [Lev02| to sample the number of L-2 cache misses with different
test runs. The results are depicted in Figure 13. As suggested by Figure 12, the full
sweep over the index manages to use the cache more efficiently. In this case, rice
encoding produces approximately 50% less cache misses, which is comparable to the
actual compression ratio. When segments are processed in short random intervals,
rice encoding is clearly more efficient. In this case, rice encoding increases the prob-
ability of hitting the next segment in the cache, as a larger number of segments fits
into the cache at once. Correspondingly, a new segment request can easily reach

over existing 32-bit segments in the cache and cause an expensive cache flush.

Similarly, a dense coding scheme is beneficial if the index is much larger than the
available disk cache. This is the case in Figure 14. Whereas in the case of Figure 12
the index was memory mapped as whole for processing, here the index is processed
in a block-by-block manner. The disk cache may selectively keep some pages in

memory. As the runs were repeated four times for each data point with different

61

600 T T —
32bit / random —+—
rice / random ---x---
32bit / full ---x--- |
rice / full —-8-
500
4 400 |
c
o
[S]
[}
2]
£
3]
€ 300
()]
=
[9]
[%]
[}
S
5 200 -
100 |
0% .)) L
1le+06 le+07 1le+08

number of segments

Figure 14: Decoding performance with an on-disk index

random seeds, rice-encoded index benefited from a larger amount of segments in the

cached pages.

To conclude, with large corpora dense encoding is justified. If the index is small
enough to fit into the main memory with 32-bit values, a dense encoding scheme does
not bring any benefits. However, if the corpus is large, dense encoding makes possible
to process more segments in the main memory of a single server with minimal
performance hit. In any case, one should make sure that the index fits into the main

memory as the gap between the disk and CPU speed is enormous.

Operations

In section 3.5 we briefly introduced function match(D,) whose purpose was to
determine whether query keys K match with a document D. In the following, we

describe how match is implemented. Our "query language" supports four different

62

match operations:

keyword(s) Given a query Q = (q1,¢2, .-, ¢n), each token is first mapped to the
corresponding token ID using binary search in the lexicon. Then inverted lists

are retrieved from the inverted index. The result set is formed as follows:
R=)1, (29)

q€Q

In total, keyword matching requires two O(log|7|) binary search operations
per query token and the final intersection that requires O(|Q|M log N) op-
erations where M = |mingqg I,| and N = |max,cq I,| when intersection is

implemented with binary search.

negation Aino supports negation operator, —, which excludes the given token z
from the result set. This is implemented by treating set I, as its own comple-

ment when computing the keyword intersection as above.

range The system for e-mail search, which is described in section 5.2, lets the user
retrieve all emails received over a given time period. This is implemented
by assigning each document (e-mail) a meta-token that corresponds to the
timestamp of an e-mail. A range of consecutive meta-tokens IDs were reserved

for this purpose. In this case, a range query was implemented as follows:

R = 1;, (30)

—-

Il
|

(2

where F' and L are the start and end date IDs correspondingly. The time
requirement is O((L — F')log |T| + |R]).

phrase A phrase query, e.g. "George W. Bush" is matched using the position
index. Let P = (p1,pa, ..., pn) denote the phrase tokens. First, the intersection
of inverted lists of p € P is computed as with normal keywords. This returns

a list of documents that contain all the phrase tokens in some order. For each

63

document in the intersection, we then validate that the tokens occur in the

desired order.

Let L, denote a list of locations for token p in a document D. Now we may
pick the rarest phrase token in the document, M = min,cp |L,|, and check
the locations of the other tokens with respect to it. Since the check can
be done with binary search, the order of phrase tokens can be validated in
O(M(|P| —1)log N) time per document, where N = max,cp|L,|. However,
since |P| and M are typically really small, almost always less than ten, the

validation is a reasonably fast operation.

Next, we explain the second operation supported by the index, namely collection of
co-occurrence statistics for content-based ranking. Recall the original definition for
the co-occurrence count between tokens ¢ and j in Equation 5, namely A;; = |I;N ;.
Using the inverted index, we could evaluate this value in a straightforward manner
in O(log|T| + Mlog N) time, where M = min(|[;],|/;|) and N = max(|[;|,|];]).
Here we assume that a simple set-intersection algorithm is used: For each item in
the shorter inverted list, we check whether the item exists in the longer list using
binary search. The additional log|7 | term is due to finding the inverted lists in the

first place.

However, in order to rank documents with respect to a query token ¢, we would have
to evaluate all possible co-occurrences with ¢, which would require O(|7|M log N)
time where N = maxe7 |I;| or O(|T|N) if hashing was used. Given that number
of tokens |7 | may be in the order of millions and the longest inverted list N in the

same scale, this cannot be considered a particularly efficient approach.

Let us consider another approach. We may utilize the fact that we are interested in
all tokens that co-occur with a given query token ¢, namely 7, = {t € D|D € I,}.

As one can easily see from this formulation, set 7}, can be constructed by going

64

through all the documents in I,. Moreover, one can compute all values Ay, t € T,
by going through documents D € I, and counting occurrences of all tokens in the
documents. By using the forward index, we can collect all co-occurrence statistics

for ¢ in O(K|I,|) time, where K is the segment size.

Multi-token queries are handled in a similar manner. Instead of going through doc-
uments D € I,, we process the documents in the cueset, D € Q. An interesting
side-effect of this approach is that the cost to collect the statistics is directly pro-
portional to the frequency of the query token. We may utilize this fact to speed up

processing, as we will suggest in section 4.4.

4.2 Brute-Force Algorithm

Recall the formal overview on how our search engine processes a query in section
3.5. First, the query is parsed to keys K and cues). Then, the result set R is
formed that includes documents that match to the keys . The cues @) are used to
form a cue set Q of documents from which the co-occurrence statistics are collected.
Using the collected statistics, documents in the resultset are scored, ranked, and

finally shown to the user.

In a full-fledged search engine, query processing involves many other non-trivial
details in addition to the above operations, such as caching and snippet generation.
Most of these tasks are handled by Query Interface, as depicted in Figure 9. However,
here we concentrate on operations that are directly related to AinoRank, which is

the main contribution of this thesis.
We may divide query processing to three phases:

1. Matching
2. Scoring

3. Ranking

65

Algorithm 1 Brute-force scoring algorithm

1: procedure BRUTESCORE(Q)

2 Q0

3 for all S, € Q do

4: for allt € Sp do

5: Qt] — Qt] + 1 > Accumulate |Q N 14|
6 end for

7 end for

8 for all ¢ € 2 do

9 Q[t] — |[_115|Q[t] > Normalize the token scores
10: end for

11: return ()

12: end procedure

Matching, which produces the result set R, is a rather straightforward operation, as
described in the previous section. When the inverted index and the position index
are used, involved operations are not particularly demanding computationally. The
core operation is set intersection — a state-of-the-art algorithm to this problem is

presented e.g. in [BY04].

In the following, we present an algorithm for scoring, plus a sketch of an optimized
version, and two different algorithms for ranking. The first algorithms for scoring
and ranking, which are presented in this section, are rather straightforward, brute-

force incarnations of the ideas presented in the earlier sections.

Algorithm 1 is used to compute a scoretable

Q={PQ@Q[1)|P(Qt) #0,Vt € T}, (31)

where P(Q|t) is defined as in Equation 20. Considering the numerator |Q N [;| in
Equation 20, one can notice that the score can be non-zero only if Sp € Q. Thus,
it suffices that the algorithm loops through all Sp € Q. Nominator values are
accumulated on line 5 and the final score is computed on line 9. The algorithm

finishes by returning the final scoretable.

Let us analyze time complexity of Algorithm 1. Individual scoretable items Q[t]

66

Algorithm 2 Brute-force ranking algorithm

1: procedure BRUTERANK(Q, R)

2 Sr = 0

3 for all D € R do

4: Sg —0

5: for all S € Sp do

6 for allt € S do

7 SP— 83+ Q[t] > Accumulate the document score
8 end for

9: end for
10: ST — S%@ > Normalize the document score
11: Sg — Sg U (D, Sp)
12: end for
13: 7(Sr) < sort(Sgr)
14: return 7(Sg)

15: end procedure

can be accessed in O(log|7]) time using any tree-structured array. Our current
implementation uses Judy arrays that are based on cache-efficient 256-ary digital
tries [Bas04|. Token frequencies |[;| are stored in the inverted index and they can
be accessed similarly to inverted lists. The first two loops require a sweep over
the forward index. In total, lines 1-7 can be performed in O(K|Q|log|T|) time
where K is the segment size. Score normalization on lines 8-10 can be performed in
O(|T|log |7T|) time. It is worth of noticing that the only query-dependent factor in

the time requirement is |Q|, which corresponds to the frequency of query tokens.

Algorithm 2 presents a brute-force ranking algorithm that assigns scores to docu-
ments based on the scoretable €2. The algorithm implements the document score of
Equation 22. The algorithm loops through documents in the given resultset R and
for each document D, it loops through its segments. Each token in the segments
may increase the document score 3% by an amount specified by the token score
Q[t]. The document score is normalized by inverse number of segments. Finally, the

documents Si are sorted according to their scores and returned to the caller.

Time complexity is dominated by the loops. A single document can be scored in

67
O(K|Sp|log|T|) time, on lines 4-10. Correspondingly, the full resultset is scored
in O(|R|KNlog|T|) time where N = maxper |Sp|. Sorting can be performed in
O(|R]) time, for instance with Radix sort [CLR92], since integer scores can be used
as sort keys.

In total, the cost of ranking with algorithms 1 and 2 is as follows.

scoretable) Q normalization document scoring sorting
7\

_ i - al L " P
O(ranking) = O(K|Q|log |7 |)+ O(|T |log |T|) + O(|R|K N log |T|) + O(|R|)

(32)
= O(log| T|(K (|Q[+ [RIN) + [T1) + [R]).

The cost is dominated by two large factors: |Q| and |R|. The former factor is directly

proportional to frequency of cue tokens and the latter is directly proportional to

frequency of keys. Hence, a query in which both keys and cues are specific, for

instance "haggis /E113", can be evaluated with a reasonably small number of steps

whereas a really broad query, say "apple /food", takes a lot of resources to evaluate.

Fortunately, this phenomenon hints at many kinds of optimizations.

4.3 Top-K Algorithm

In order to understand how the previous algorithms could be optimized, let us see
how they behave in practice. Figure 15 shows how token scores €2, produced by
Algorithm 1 above, are distributed in case of three different queries with varying
frequencies. The most frequent query token, age, occurs in some 50,000 documents
in the Wikipedia subset. The second most frequent token, neolithic, occurs in 500
documents and damiens in ten documents. The queries have 185,000, 17,000, and
1050 co-occurring tokens, correspondingly. A notable characteristic in the distribu-
tions is that after a large number of tokens with a score of 1.0, there is a steep drop
in the scores. This suggests that only a small portion of co-occurring tokens might

have a notable effect in the document scores.

This hypothesis is further supported by Figure 16 that shows how score mass cu-

68

" age (50K)
neolithic (500) mm— -
damiens (10) m—

0.1

0.01

score

0.001

le-04

le-05

10 100 1000 10000 100000 1le+06
rank of a token in the scoretable

Figure 15: Distribution of token scores €2 for three queries

mulates with the above queries. This figure shows only the best half of the scores
of Figure 15. One can see that the best half of the scores make almost 100% of the
total score mass, besides the most frequent query age in which case the percentage is
about 90%. Based on these figures, it seems that results of the previous algorithms

could be approximated by processing only the highest scoring tokens of 2.

Above we recognized that that the size of the result set |R| is a major factor in the
cost of ranking. Each of the documents D € R has to be scored token by token
and finally the results must be sorted. Then, the ranked results are presented in a
traditional Web search interface that shows only ten results at time, starting from

the top ten results.

In practice, the users rarely bother to see more than the first ten results, as we
exemplified in Section 3.1. Thus, to a large extent, computing exact scores for all

documents in R is meaningless, as all we need is the best KC results in order.

69

100 T —— T —— — -
age (50k)
lithic (500)
90 miens (10) — _
80
70
9]
&
= 60
o
3
a 50
s
8
© 40
X
30
20
10
0

1 10 100 1000 10000 100000
rank of a token in the scoretable

Figure 16: Cumulative score mass of the best half of token scores (2 for three queries

Given that the document score function is a linear sum of form

Sp=2p > Y ¢ (33)

SeSp tes

where ¢; is a token score independent of the document and Zp is a document-
dependent normalization factor, the highest ¢, are likely to determine the highest
Sp. Theoretically, high token scores could distribute uniformly over the resultset,
but in practice in real-world corpora high scoring tokens tend to be also highly
correlated. Thus, high scores tend to cumulate to a small number of documents. This
phenomenon is visible in Figure 17 that shows how document scores are distributed
over the top-100 documents after the highest scoring half of €2 has been taken into
account, which accounts for almost 100% of the score mass. The figure suggests that
one could find the highest scoring K documents just by considering a high scoring
subset of €. This would bring considerable savings in time as we would not have to

process the full resultset R.

90 T T T T T T T T T
age (50k)
neolithic (500) m—
damiens (10) m—
80 |- —
70 E
60 —
Q
8 50 -
IS
[
1S
3 40
o
©

40 50 60
top-100 documents

70

80 90

100

70

Figure 17: Distribution of document scores after the highest scoring half of) has

been processed for three queries

71

Algorithm 3 Top-K ranking algorithm

1: procedure TOPRANK(Q, R, K, A, Bgize)

2: 7(Q2) «— sort(Q) > Scores are sorted in descending order
3 a,3,8 0

4: 10

5: repeat

6 1—1+1

7 t— 7(Q)[i] > Pick the next best token ¢
8 for all {D € I,|D e RAD ¢ a} do

9: Sp — Sp + Q[t] > Increase score for document D
10: if Sp > HeapMin(«) then > Top-K candidate?
11: Sp < DocumentScore(D, Q)

12: HeapUpdate(a, K, D, Sp)

13: end if

14: if Sp > HeapMin(3) then > Top-fs.e candidate?
15: HeapUpdate(B, Bsize, D, Sp)

16: end if

17: end for

18: J — Z;;A Q[7] > Move score potential by one token

19: until |3| = Bsi.e A HeapMin(a) > HeapMin(3) + ¢
200 Sp={DeC|D e g}

21: 7(Sgr/) < BruteRank(2,R’)

22: return 7(Sg/)

23: end procedure

Algorithm 3 presents a solution that guarantees that the X highest ranking doc-
uments have the highest scores amongst all D € R and they are returned in the
correct order. Also, the next-best scoring set of documents is probably correct and

in the correct order, although this is not strictly guaranteed.

The algorithm works as follows. Let us denote by « a candidate set of I highest
scoring documents. The algorithm continues until we can be sure that o actually
contains the best documents. Let us denote by 3 a set of documents that are likely
to get promoted to a. The algorithm stops when there is no way for the worst

document in 3 to get promoted to a.

The algorithm assumes that the token scores in () are sorted in descending order

— this in ensured on line 1. The algorithm proceeds by processing one token at

72

time from €, from the highest scoring one to the worst (line 7). For each token,
the score mass is distributed to all documents in which the token occurs, unless the
document belongs to « already (lines 8-9). If a document’s score is higher than
that of the lowest scoring document in the « set, the document is promoted to a.
Function HeapUpdate replaces the worst-scoring document in the given set o with
a new document D, having score Sp. If the set contains less than K documents, no
previous document is purged from the set. To speed up computation, we compute
the exact final score of document D on line 11 before adding it to . This aims
at widening the score gap between the sets o and 3. If the document score is not
enough to reach «, it might be enough for § anyway (line 14) that is expanded using

the same HeapUpdate function.

The score window ¢, computed on line 18, is crucial for determining when « cannot
change anymore. At any step 4, 0 contains the maximum amount of the score mass
that can be still allocated to a single document. In other words, d represents the
available potential for any document to get promoted to the top-IC set . Since token
scores {2 are sorted in descending order, the highest possible score mass, which is yet
to be distributed to documents, is in range [i,7 + A] where A is a free parameter.
The end condition on line 19 terminates the loop when we have distributed score
to a minimum number of documents ;.. and when the lowest-scoring document in
Bsize could not get promoted to « even if it got the full potential § of the score mass.
Since all documents D ¢ [have lower scores than the ones in 3, the end condition
means that there is not any document that could raise to o and which would be not
in (already. Necessarily, this implies that the set § contains the top-K documents.
The actual top-/C set is then determined by computing the exact document scores

for all D € /3 using Algorithm 2.

There are two free parameters, A and [,;.., that need to be set beforehand. The

latter, (.., does not affect correctness of the results, but it can affect the execution

73

time. The lower the value, the more difficult it is to grow the score gap large enough
between 3 and « to reach the end condition. On the other hand, the higher the
value, the more exact document scores must be computed on line 21. In practice,
we have used values I = 10 and f,;.. = 1000. This has also the positive effect that
the first hundreds of results are likely to be correct, which should be enough even

for the most exploratory user.

Parameter A controls the score potential. It represents our guess on the expected
amount of next-best scoring tokens that a document can reasonably contain. If the
algorithm was segment-based, i.e. I; would be I, on line 8, we could set A = K that
would guarantee that the results are always exactly correct. However, it is highly
unlikely that a document will contain high-scoring tokens only. Thus, typically we
set A = 50 that is our sophisticated guess on the maximum number of high-scoring
tokens in a segment of K = 300 tokens. Note that a slightly incorrect setting might
only trigger the end condition a bit too early, which seldom leads to drastically

misleading results.

Let us analyze time complexity of the algorithm. Scoretable €2 can be sorted in
O(]€2]) time using e.g. Radix sort. Sets o and 3 are implemented as Fibonacci heaps
[CLR92|, which makes it possible to implement function HeapMin in a constant
amortized time and HeapUpdate in O(log Bsi.e) time. The latter is practically a

constant as well, since ;.. is a fixed parameter.

If function DocumentScore is not considered (as it is not required by the algorithm),
the loop on lines 8-19 operates in O(|R|) amortized time. Here we consider both
HeapMin and HeapUpdate to be constant-time operations. In the worst case, the
outer loop on lines 5-19 goes through all tokens in 2, which results to O(|2||R|) time
complexity for both the loops together. Since R’ is of a constant size (3., the exact
scores can be computed in O(K N log |7]) time on line 21, where N = maxper |Sp|

as above.

74

Total worst-case time complexity O(|Q| + [Q||R| + KN log|T|) is unrealistically
pessimistic. In practice, inverted lists for the highest scoring tokens are short, at
least far from the |R| scale. Typically, the end condition is triggered after half of
the tokens in €2 are processed. Thus, we can approximate that the average time
complexity is in scale O((M + 1)|Q] + KN log|T|) where M is the average length
of inverted lists (M = 47.25 for the Wikipedia subset). Compared to the time
complexity of the brute-force ranking algorithm in Equation 32 this is a remarkable
improvement when |R] is large, say in the order of tens of thousands. If |R| is small,
especially when |R| < fsize, Algorithm 2 is likely to be faster and we may use it

instead. In practice, we make the choice on query by query basis.

4.4 Discussion

Algorithms 1, 2, and 3 show that it is possible to use the full co-occurrence matrix
for content-based ranking by computing parts of the matrix on fly. When the index
has a suitable layout and it is encoded in an efficient manner, performing ranking
on-line is not infeasible. Efficient dynamic ranking is made possible especially by the
fact that the exponential distribution of token frequencies is reflected in the token
and document scores, which leads to an efficient algorithm. Moreover, since a search
engine may return only the top ranking results, only a small subset of the matching

documents have to be scored, which reduces the computational load even more.

Figure 18 shows a comparison of the two ranking algorithms. On the x-axis, which
is the rightmost horizontal axis, one can see |R| i.e. the number of matching docu-
ments. On the y-axis, which is the leftmost horizontal axis, one can see frequencies
of the single query token. On the z-axis, the time used to rank the resultset either

with Algorithm 2, BruteRank, or Algorithm 3, TopRank, is shown.

Time efficiency of BruteRank is linearly dependent on the resultset size, as implied

I6)

ranking time in milliseconds

BruteRank
TopRank

3000

2500 —

2000 —

1500 o

1000 -

500 -

30
frequency of the query token

Figure 18: The two ranking algorithms compared

by Equation 32. In contrast, since TopRank ranks only the best KL documents, the
resultset size does not have a major impact on it, if the resultset is large enough.

When the resultset is really small, TopRank is less efficient than BruteRank.

Both the ranking algorithms depend on the frequency of the query tokens via |Q|
i.e. the number of co-occurring tokens. In the figure, this can be seen as a small
bump on the y-axis. However, the effect is logarithmic in the case of BruteRank and
not very strong with TopRank either, even though in the worst-case time efficiency
of TopRank is linearly dependent on |(2|. Actually, with TopRank the effect of |Q|
becomes stronger when the resultset becomes smaller, as a larger number of tokens
in {2 have to be processed in order to differentiate the top ranking documents from

the rest.

In practice however, the total ranking time is strongly dependent on |, as the

token scores €2 have to be computed via Algorithm 1, BruteScore. As BruteScore

76

uses an extremely straightforward approach to collect co-occurrence statistics, which
is rather inefficient and wasteful, there should still be room for optimization. In the
following, we present an idea how to improve Algorithm 1. After that, we briefly

explain how query processing can be parallelized.

Dense Co-occurrences

One can see from Figure 5 that the 10,000 most frequent tokens have two orders
of magnitude more co-occurring tokens than the other, less frequent ones. This
implies that most of the entries in the forward index are dominated by the most
frequent tokens, which is also a natural consequence of the Zipfian distribution of

token frequencies, as shown in Figure 4.

The token scoring Algorithm 1 accumulates token occurrences one by one. If a
query token is frequent and consequently size of the cueset Q is large, collecting the
co-occurrence statistics is an expensive operation. A straightforward solution is to
store a pre-computed co-occurrence matrix for the most frequent tokens separately.
Given the Zipfian distribution of token frequencies, there is only a small amount of

frequent tokens and consequently the size of the matrix is not astronomical.

Thus we split the forward index section (see Figure 10) into two: An explicit co-
occurrence matrix for the N most frequent tokens and a sparse forward index for
the infrequent ones. An alternative view to this dichotomy is that we use binary
encoding to store frequent co-occurrences and a kind of a unary coding for sparse
ones. Actually, one might see a peculiar correspondence between this approach and

the two-part Golomb coding that was presented in Equation 28.

Considering Algorithm 1, this makes token scoring a constant-time operation for
the N most frequent tokens, as for these, scoretable € is pre-computed in the index.

Formally, this does not change the worst-case time complexity for the algorithm but

7

it improves its average-case performance significantly.

Parallelization

Keyword matching is a so called embarrassingly parallel problem — it can be par-
allelized with no particular effort: Each block of documents can be indexed and
processed independently from others. If a static ranking scheme is used, document
ranking can be distributed as easily. This is the secret behind scalability of the

major Web search engines.

In our case, the situation is slightly more complicated. The index blocks depend on
each other via the global co-occurrence statistics: First, each block of documents con-
tributes to the global co-occurrence statistics. Secondly, document ranking within
each block depends on the common scoretable 2 that is based on the aforemen-
tioned statistics. Fortunately, the token and document scoring algorithms can be

performed in parallel and only the final results need to be shared.

We may distribute query processing to several servers or slaves, each of which handles
a single index block. The query interface or the master node, which is typically
hosted by a separate server, distributes tasks to the index nodes and receives the

results over TCP or UDP.

In Section 4.2 we introduced the three phases of query processing, namely matching,
scoring, and ranking. Correspondingly, distributed query processing can be divided

in the following phases:

1. (M) Query distribution

[\

S) Computing co-occurrence statistics

-
-

3. (M) Computing scoretable
. (M) Scoretable distribution
o

S) Matching

78
6. (S) Ranking

7. (M) Merging results

Here (M) denotes an operation performed by the master node and (S) an operation
performed by a slave. All operations marked with (S) can be performed in parallel.
Essentially, these tasks are handled by the same algorithms that were presented
above. Tasks performed by the master operate on outputs of the algorithms and

their time complexity is either O(|Q2]) or (|R|) at most.

Communication costs are dominated by the phase 4, or scoretable distribution. In
the worst case, we have to transfer scoretable of scale O(|7|) to each slave. The cost
can be reduced with various encoding schemes and compression methods but given

the gigabit Ethernets of today, this is seldom necessary.

The number of slaves required is naturally determined by the size of the corpus. In
order to keep response times low, each index block should fit into the main memory
(disk cache) of the slave that hosts the block. In practice, this limits the size of a
single index block to some 1,000,000 - 2,000,000 documents when a slave has 4GB
of RAM. An additional benefit of distributed query processing is that the system is
more robust: In case that an index node crashes, the system continues to operate
seamlessly with the remaining indices. The system is able to process queries as long

as at least one of the index nodes is operational.

We have implemented two different distributed query processing systems for Aino:
One in C using UDP multicasts and one in Erlang which is a functional programming

language that has built-in support for distributed computing [AVWW96].

79

5 Demonstrations

In this chapter we introduce three demonstration systems that are based on Aino.
The methods of this thesis were born in the Search-Ina-Box project at the Complex
Systems Computation Group of the Helsinki Institute for Information Technology.
In this project, several demonstrations were made to study and present promising
applications of content-based search. The demonstrations presented here were used
to evaluate quality and performance of AinoRank with various kinds of real-world
corpora. Thus, this chapter serves also as the conclusion, showing how methods

presented in this thesis can be, and are, applied in practice.

These demonstrations are implemented by the author, except the Web crawler
HooWWWer by Antti Tuominen [Tuo05] that is used in the first demonstrator.
The systems have been presented and described in several conference papers, which
are only summarized here. The first demonstration, a public Web search engine
covering the .FI domain, is described in part in [T'S05]. The second system for
searching e-mail archives is described in [PTBTO05| and demonstrated in [TPT05].
The third system, which is used to search and analyze patents, is developed for the

Patent Office of Finland who was a partner in the project.

5.1 Web Search

For any method of information retrieval, Web search is the grandest challenge of
them all. There is an infinite amount of documents®, data is extremely noisy, and
any token or document may be relevant to some user. Aino was designed with this

challenge in mind in the first place.

In 2005, we collected a corpus of some 4.2 million web pages from the .FI top level

domain. For this purpose, a web crawler called HooWWWer [Tuo05] was developed

3Quite literally, if the crawler gets stuck in a cycle of the Web graph

80

petri myllymaki feinstein| hae
[Aino in English]

Vihjeita

Ainon esimerkkihaku

Klikkaa linkkia ja ihmettele tuloksia!

Aino tuntee 4272857 fi sivua
Lis&4 tietoja Ainosta

CoSCo 2005

Figure 19: Aino.hiit.fi: Front page

in a sister project of Aino. The corpus contained some 12 million tokens and the

index took 5GB of space in total.

The demonstrator was publicly available at Aino.hiit.f1i for five months from May
to September in 2005. Query processing was distributed to seven index nodes and
one node acted as the query interface. One index node crashed during the demon-
stration period due to a disk failure, but the system experienced no downtime during
its operation — a prime example of the additional robustness gained by distributed
query processing. Another, updated demonstrator with improved algorithms and

some five million documents was running on Spring 2007.

Figure 19 shows the front page of the Aino.hiit.fi web search engine and Figure
20 its result page. Table 5 shows some queries and the corresponding highest scoring

entries of the scoretable (. The results show how high-scoring tokens correspond to

81

AINO

lcaklu fresepti search

Showing 2380 results containing words kakku ordered by theme resepti.

[untitled]
sokerimaaraal kakku [tsahti, luultavasti se johtui siitd, ettd aucimme uunin luukkua paistamisen aikana. muuten kakku
oli erittain hywaa. tosin jatimme myis vadelmat ja sokerikuorrutuksen pois, kakku oli riittavan makea ilman

http:fftol=17. oulu. fi/~pkeisane/sivut/kokkaus. html

Meidan Talo
valmis kakku rengasvuoasta ja tarjoa heti. teksti, reseptija kuvausjarjestelyt nea ivars-korhonen kuva elina himanen
http:ffwww.xn--meidntalo-y2a. fifasuminen/article121339-1 html

Saarioisen reseptinayttd
jos kakku kypsyy liilkaa siita tulee kuiva. jaahtyessaidn kakku kiinteytyy, mutta j33 rakenteeltaan suklaamaisen
pehmeaksi. koristele tomusokerilla ja tarjoa kylmana. 3. kaada sokeri vadelmien paalle ja anna sulaa 2 tuntia.
http:fisk saarioinen fiftools/reseptihaku_resepti. asprid=2013

Valitse paras omenapiirakka | Pirkka.fi
irrota kakku pannun reunocista veitsen avulla. kumoa lautaselle vahan jadhtyneena ja tarjoa vield lampimana
waniljajaateldn tai vaniljakastikkeen kanssa. iohje: k-koekeittia) amerikkalainen unelma apple pie - amerikkalainen
jiras on umpinainen torttu,

w. pirkka.fifruokafarkisto/2006/9/8/valitse-paras-omenapiirakka. aspx

Figure 20: Aino.hiit.fi: Result page

Query Highest scoring entries of {2

akrr akrr05, amklc, krbio, openconf
semanttinen semanttisen, semanttisten, semanttista, semanttisesti
pragmatiikka pragmatiikan, semantiikka, fonologia, kontrastiivinen

parturi kampaamo, kampaamot, maahantuojat, kauneudenhoito
nené korva, kurkkutaudit, sisdtaudit, naistentaudit

matala korkea, pensasmainen, kasvista, lampdisesti

apy dpyvan, rahasto, dpyn, wappulehti

yxin voisittexte, iltajutust, listdkdd, burggaballonkin
halonen tarja, presidentti, tasavallan, halosen

Table 5: Highest scoring tokens for some queries in Aino.hiit.fi

82

various kinds of linguistic phenomena present in a rich corpus like the Web.

In the following, some example queries are shown with the corresponding top ranking
results. The excerpts are the actual snippets produced by the search engine. More
examples can be found in [TS05]. Notice how an ambiguous token jukola can be
disambiguated by using different cues and how cues are used to hint at a certain

disposition in the last example.

e jukola /simeoni

1. Simeoni, livhuparta, valittaa se "thmisparka, syntinen, saatana, kurja".
2. Juhani, Tuomas, Aapo, Simeoni...

3. Heikki Kinnunen (Aapo), Heikki Alho (Simeoni), Arno Virtanen (Timo),
Ilari Paatso (Lauri) ja Juha Muge ...

e jukola /juoksu

1. Nuorten Jukola 2002
2. on tullut tutkittua suunnistuskarttoja (tio-mila, jukola, tanska jne.
3. Jukola-katsastus...

e mcdonalds /kamalaa /ydk /kuvottaa

1. Face it, you smell like McDonalds and Wallmart/ By killing you I'm
akting globally, doing a small part.

2. liha tulee ulkomailta (siis jos mun mecdonalds tietdmys pitdd paikkansa).
3. McDonalds on vihdin toisenlainen ongelma, terveydellinen ongelma.

4. ‘ylikanallista medonalds’-kulttuuria, joka yksinkertaisesti havittda molem-
mat kulttuurit?

5.2 E-Mail Search

E-mails are a natural target for content-based search. They are textual, abundant,
and they lack hyperlinks, which makes link-based ranking schemes unfeasible. In
addition to search of the plain textual content, we were interested to study whether
other types of information available in the emails, such as the sender, recipient, time

and topic of the content could be used to enhance possibilities to find interesting

83

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
pmeares @cpleko.net finnin@packelnet

(foreign politics /usa) n (iraq
fwar)

foreign politics /usa

iraq Awar

dak stonehouse@tankerssystems com = sievew77@pactelnet

Kitte @2 dalca ciize ne@ven boca

nurv@starponer riet wadsend@antcom

cutix@gfherablinfinet Pi@cc hutfi
sBi@bestoom euu@ihequest net

Figure 21: Mail Archive Miner: Social network analysis with AinoRank

content. We envisioned a system that was based on a powerful content-based ranking
scheme, namely AinoRank, and on top of that, a rich set of tools was provided
to combine, analyze, and refine the results. The system is described in detail in

[PTBTO05] and it was demonstrated first in [TPT05|.

We got access to a large-scale email-archive that contained 20GB of emails from
public mailing lists. An index of 2.5 million emails was created which included
4.4 million tokens in total. The index required 3.3GB of space. In addition to
AinoRank, the system included a probabilistic model based on Multinomial Principal
Component Analysis [BJ06], which was used to capture general themes or topics in

the corpus.

On the leftmost list, Figure 21 shows three resultsets, the first of which is made by
combining results of the two previous searches. The figure shows a social network

that is automatically inferred from the chosen resultset. By choosing a node in the

84

graph, the user could restrict the results to a specific person or retrieve all emails

whose style correspond to that of the chosen person.

5.3 Patent Analysis

The Patent Office of Finland was interested to evaluate feasibility of content-based
search for patent documents. Similarly to emails and web pages, there are tens of
millions of patent documents publicly available. On the average, a patent document
is considerably longer and less noisy than an average email or a web page, which

translates into higher quality co-occurrence statistics.

The patent office had some specific needs regarding the system. As it would be used
together with a traditional patent database that supports only Boolean queries, it
should suggest topical keywords given some tokens as seeds, which in turn could
be used to query the original database. Fortunately, this requirement was rather
straightforward to fulfill using a slightly modified version of the BruteScore algo-
rithm. The user interface for this function with an example query can be seen in

Figure 22.

We indexed a smallish corpus of some 100,000 European patents. The resulting
index takes 1.2GB and consists of 1.4 million tokens. Ratio of the number of tokens
to the number of documents reflects the exceptional length of an average document.
In addition to the keyword suggest mechanism, the system includes functions to find
characteristic and discriminative tokens in a patent application and a Keys & Cues

-style interface for patent search which is shown in Figure 23.

Type in 1-6 seed keywords web
hrowser
hitp
site
page
hirnl
L] pages
url
I protocol
internet
I wide
client
[W
mail
warld
Select index services
o
SErVer
sites

Figure 22: Patent Cruncher: Keyword sets with AinoRank

Close Document

Gluery
Method for Intermet downloading files encapsulated... io
A plurality of data segments comprising portions of a file targeted for downloading are
encapsulated 504 into a set of graphics files. A reference to the set of graphics files is Select index

incorporated 506 into a web page definition. During web page painting operations G0G GOB palents =

associated with this web page definition, graphics files that encapsulate segments of the
file targeted for downloading are downloaded 706 into a browser cache. Segment data is |, - .
extracted 808, 352 fram the graphics files to recreate the file targeted for downloading Iading Niles encapsulated

Installation operations may be performed 810 in the event that the file targeted for Bry process s takes advant.
downloading is an executable file en Generierung strukturiert

ncessar-based device inst
I . Smart card with two 11O parts for linking secure a..
lE. Method and system far multinlexing smar card elec..
I? Systern and method for arbitrating clients in a hie
I . Media content descriptions the description. The me...
IB. Systemn with vitual address netwarks and split own...
I‘HJ Performance of a service on a computing platform
IH Eus bridge with a burst transfer mace bus and a si.
IWZ hechanism for starvation avoidance while maintaini
IWS Werfahren zur automatischen Softwaregenerierung li..

W14 Privacy of data nn 3 camnitar nlstiarm mistad ava

Figure 23: Patent Cruncher: Patent search

86

6 Conclusions

In the previous chapters we have described a system that helps the user to find
interesting content among tens of millions of documents. We started by present-
ing theoretical and philosophical underpinnings of statistical content-based search.
After this, we described a novel content-based ranking method, AinoRank, that
comprises of a structured query interface and a document scoring function based on
the full co-occurrence matrix of tokens. We gave an efficient algorithm to find the
highest scoring documents in the corpus. Finally, we summarized three real-world

applications of the system.

Certainly, this work is not conclusive. As we mentioned in the beginning, this
work was motivated by the need to have a solid and understandable basis for more
sophisticated approaches. Yet, the presented system has proved to be a well-placed
stepping stone for various experiments in information retrieval, as exemplified by

the Web, e-mail, and patent search applications that we described above.

There are two continuing lines of research: First, we believe that by further utilizing
distributional features of data and the scoring functions, we may improve efficiency
of the system drastically. Also we believe that the computational load could be
reduced by approximating the results instead of computing exact scores and ranks

for the documents.

Secondly, concerning usability of the system and quality of the results, we would like
the system to be even more transparent to the user than it is currently. Furthermore,
we would like to improve the ranking method semantically. The current method
does not take the full advantage of distributional features of tokens, which could
be derived from the co-occurrence statistics. Finally, we would like to clarify the
connection between this method and various probabilistic and information theoretic

formalisms.

87

References

AOLO06

AVRO02

AVWWI6

Bas04

BJ06

BL99

BLP*04

BLPV05

BNJO3

AOL search logs, http://www.aolsearchlogs.com/, 2006.

Amati, G. and Van Rijsbergen, C. J., Probabilistic models of informa-
tion retrieval based on measuring divergence from randomness. ACM

Transactions on Information Systems, 20,4(2002), pages 357—389.

Armstrong, J., Virding, R., Wikstrom, C. and Williams, M., Concur-

rent Programming in FErlang. Prentice Hall, second edition, 1996.
Baskins, D., Judy arrays, http://judy.sf.net/, 2004.

Buntine, W. and Jakulin, A., Discrete components analysis. In Sub-
space, Latent Structure and Feature Selection Techniques, C. Saunders,
M. Grobelnik, S. G. and Shawe-Taylor, J., editors, Springer-Verlag,
2006, pages 1-33.

Berger, A. and Lafferty, J. D., Information retrieval as statistical trans-
lation. In Research and Development in Information Retrieval, van Rijs-

bergen, C. J., editor, Cambridge University Press, 1999, pages 222-229.

Buntine, W., Lofstrom, J., Perkio, J., Perttu, S., Poroshin, V., Silander,
T., Tirri, H., Tuominen, A. and Tuulos, V., A scalable topic-based

open source search engine. International conference on web intelligence,

Wi2004. TEEE Computer Society, 2004, pages 226-234.

Buntine, W., Lofstrom, J., Perttu, S. and Valtonen, K., Topic-specific
scoring of documents for relevant retrieval. Workshop on Learning in

Web Search (LWS 2005), 2005, pages 34-41.

Blei, D. M., Ng, A. Y. and Jordan, M. I., Latent dirichlet allocation.

Journal of Machine Learning Research, 3, pages 993-1022.

BPO03

BPT04

BR99

Bro95

BY04

CCH92

Cho69

Cho72

CLR92

88

Buntine, W. and Perttu, S., Is multinomial PCA multi-faceted cluster-
ing or dimensionality reduction? Proc. 9th Int. Workshop on Artificial

Intelligence and Statistics, 2003, pages 300-307.

Buntine, W., Perttu, S. and Tuulos, V., Using discrete PCA on web
pages. Proc. of the Workshop on Statistical Approaches for Web Mining
(SAWM), M. Gori, M. C. and Nanni, M., editors, 2004, pages 99-110.

Baeza-Yates, R. and Ribeiro-Neto, B., Modern Information Retrieval.

Addison Wesley, 1999.

Brown, E. W., Fast evaluation of structured queries for information
retrieval. Proceedings of the 18th annual international ACM SIGIR
conference, New York, NY, USA, 1995, ACM Press, pages 30-38.

Baeza-Yates, R., A fast set intersection algorithm for sorted sequences.
Proceedings of the 15th Annual Symposium on Combinatorial Pattern
Matching, CPM 2004, Sahinalp, S., Muthukrishnan, S. and Dogrusoz,
U., editors, 2004, pages 400-408.

Callan, J., Croft, W. B. and Harding, S. M., The INQUERY retrieval
system. Proceedings of DEXA-92, 3rd International Conference on

Database and Expert Systems Applications, 1992, pages 78-83.
Chomsky, N., Syntactic Structures. Mouton, eighth edition, 1969.

Chomsky, N., Acquisition of language. In Chomsky: Selected Readings,

Oxford University Press, third edition, 1972.

Cormen, T. H., Leiserson, C. E. and Rivest, R. L., Introduction to

algorithms. MIT Press, sixth edition, 1992.

CT94

Cut97

CYWMO04

FG04

Gar00

Goo07

Har60

Hof99

HPK95

Ht:95

89

Cavnar, W. B. and Trenkle, J. M., N-Gram-based text categorization.
Proceedings of Third Annual Symposium on Document Analysis and

Information Retrieval, 1994, pages 61-175.
Cutting, D., Lucene, http://lucene.apache.org/, 1997.

Cai, D., Yu, S., Wen, J. and Ma, W., Block-based web search. Proc. of
the 27th annual international ACM SIGIR conference, New York, NY,
USA, 2004, ACM Press, pages 456-463.

Fuhr, N. and Grobjohann, K., XTRQL: An XML query language based
on information retrieval concepts. ACM Transactions on Information

Systems, 22,2(2004), pages 313-356.

Gardenfors, P., Conceptual Spaces: The Geometry of Thought. MIT

Press, 2000.
Google, http://www.google.com/, 2007.

Harris, Z., Methods in Structural Linguistics, 4th edition. University of
Chicago Press, 1960.

Hofmann, T., Probabilistic latent semantic indexing. Research and De-

velopment in Information Retrieval, 1999, pages 50-57.

Honkela, T., Pulkki, V. and Kohonen, T., Contextual relations of words
in Grimm tales analyzed by self-organizing map. Proc of ICANN-95,
International Conference on Artificial Neural Networks, Paris, 1995,

pages 3—7.

Ht://dig, http://www.htdig.org/, 1995.

HTO02

KHLK98

KJ98

Koh01

Kor85

Lac96

Leh06

Lev(2

LP77

90

Honkela, J. and Tuulos, V., GS textplorer — adaptive framework for
information retrieval. SIGIR ’02: Proceedings of the 25th annual in-
ternational ACM SIGIR conference, New York, NY, USA, 2002, ACM

Press, pages 456-456.

Kaski, S., Honkela, T., Lagus, K. and Kohonen, T., WEBSOM - self-
organizing maps of document collections. Neurocomputing, 21, pages

101-117.

Kekildinen, J. and Jarvelin, K., The impact of query structure and
query expansion on retrieval performance. Proceedings of the 21st an-
nual international ACM SIGIR conference, New York, NY, USA, 1998,
ACM Press, pages 130-137.

Kohonen, T., Self-Organizing Maps. Springer-Verlag, third edition,
2001.

Korfhage, R., Theoretical measures in P/Q document spaces. Proceed-
ings of the annual international ACM SIGIR conference, 1985, pages
33-40.

Lacey, A., A Dictionary of Philosophy. Routledge, 1996.

Lehtonen, M., Indexing Heterogeneous XML for Full-Text Search. Ph.D.

thesis, University of Helsinki, 2006.

Levon, J., OProfile: System-wide profiler for linux, http://oprofile.

sf.net/, 2002.

Lacroix, M. and Pirotte, A., Domain-oriented relational languages. Pro-
ceedings of the Third International Conference on Very Large Data
Bases. IEEE Computer Society, 1977, pages 370-378.

LY J05

LYRLO4

Mac03

MC04

MSNO7

OAPT06

PB98

PBCT02

91

Li, Y., Yang, . and Jagadish, H. V., NaLIX: an interactive natural
language interface for querying XML. Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, New York,
NY, USA, 2005, ACM Press, pages 900-902.

Lewis, D. D., Yang, Y., Rose, T. and Li, F., RCV1: A new bench-
mark collection for text categorization research. In Journal of Machine

Learning Research, volume 5, MIT Press, 2004, pages 361-397.

MacKay, D., Information Theory, Inference and Learning Algorithms.

Cambridge University Press, 2003.

Metzler, D. and Croft, W. B., Combining the language model and in-
ference network approaches to retrieval. Information Processing Man-

agement, 40,5(2004), pages 735-750.
MSN Live, http://www.msn.com/, 2007.

Ounis, 1., Amati, G., Plachouras, V., He, B., Macdonald, C. and Lioma,
C., Terrier: A High Performance and Scalable Information Retrieval
Platform. Proceedings of ACM SIGIR’06 Workshop on Open Source
Information Retrieval (OSIR 2006), 2006.

Page, L. and Brin, S., The anatomy of a large-scale hypertextual web
search engine. Proc. Seventh World Wide Web Conference, Brisbane,
Australia, 1998.

Pinto, D., Branstein, M., Coleman, R., Croft, W. B., King, M., Li,
W. and Wei, X., QuASM: a system for question answering using semi-
structured data. JCDL ’02: Proceedings of the 2nd ACM/IEEE-CS
joint conference on Digital libraries, New York, NY, USA, 2002, ACM

Press, pages 46-55.

PBMWO98

PC98

PEKO03

Por01

PTBTO05

RGO02

RL04

TPTO05

92
Page, L., Brin, S., Motwani, R. and Winograd, T., The pagerank cita-
tion ranking: Bringing order to the web. Technical Report, Stanford

Digital Library Technologies Project, 1998.

Ponte, J. M. and Croft, W. B., A language modeling approach to infor-
mation retrieval. Research and Development in Information Retrieval,

1998, pages 275-281.

Popescu, A., Etzioni, O. and Kautz, H., Towards a theory of natural
language interfaces to databases. Proceedings of the 8th international
conference on Intelligent user interfaces, New York, NY, USA, 2003,
ACM Press, pages 149-157.

Porter, M., Snowball stemmer, http://snowball.tartarus.org/,

2001.

Perkio, J., Tuulos, V., Buntine, W. and Tirri, H., Multi-faceted infor-
mation retrieval system for large scale email archives. Proceedings of
the IEEE/WIC/ACM Conference on Web Intelligence (WI 2005), 2005,
pages 557-5H64.

Ramakrishnan, R. and Gehrke, J., Database Management Systems.
McGraw-Hill, third edition, 2002.

Rose, D. E. and Levinson, D., Understanding user goals in web search.
WWW ’04: Proc. of the 13th international conference on World Wide
Web, New York, NY, USA, 2004, ACM Press, pages 13-19.

Tuulos, V., Perkio, J. and Tirri, H., Multi-faceted information retrieval
system for large scale email archives (description of a demonstration).
Proceedings of the 28th annual international ACM SIGIR conference,
New York, NY, USA, 2005, ACM Press, pages 683-683.

TS05

TT04

Tuo05

UKO05

VB06

Wik07

WMB99

XQuo07

YahO7

93
Tuulos, V. and Silander, T., Language pragmatics, contexts and a
search engine. International and Interdisciplinary Conference on Adap-

tive Knowledge Representation and Reasoning, 2005.

Tuulos, V. and Tirri, H., Combining topic models and social networks
for chat data mining. Proceedings of the IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence (WI'04). IEEE Computer Soci-
ety, 2004, pages 206-213.

Tuominen, A., HooWWWer homepage, http://cosco.hiit.fi/

search/hoowwwer/, 2005.

Uzuner, O. and Katz, B., A comparative study of language models for
book and author recognition. Proceedings of the Second International
Conference on Natural Language Processing - I[JCNLP 2005, volume

3651 of Lecture Notes in Computer Science. Springer, 2005.

Voorhees, E. M. and Buckland, L. P., editors, The Fifteenth Text RE-
trieval Conference Proceedings (TREC 2006). NIST, 2006.

Wikipedia, http://en.wikipedia.org/, 2007.

Witten, I. H., Moffat, A. and Bell, T. C., Managing Gigabytes - Com-
pressing and Indexing Documents and Images. Morgan Kauffman, sec-

ond edition, 1999.

XQuery 1.0: An XML query language, http://www.w3.org/TR/

xquery/, 2007.

Yahoo, http://www.yahoo.com/, 2007.

