
Design and Implementation of a Content-Based Search Engine

Ville H. Tuulos

Helsinki May 26, 2007

Master's Thesis

UNIVERSITY OF HELSINKI
Department of Computer Science



Faculty of Science Department of Computer Science

Ville H. Tuulos

Design and Implementation of a Content-Based Search Engine

Computer Science

Master's Thesis May 26, 2007 93

Text processing, Statistical information retrieval, Language models, Search engines

Kumpula Science Library, serial number C-

This thesis presents a system to �nd interesting textual content among tens of mil-
lions of documents. This is made possible by a novel content-based ranking method
and a simple, structured query interface, which are presented in this thesis. The
ranking method allows the user to utilize the full co-occurrence matrix of all words
in the corpus to bring out relevant material. The user may explicitly de�ne her
conception of relevance by guiding the ranking with single words.

This thesis presents the design and implementation of the system. The basic for-
mulation of the content-based ranking method is computationally rather expensive
and therefore also an e�cient algorithm is given. The index structures of the sys-
tem have been speci�cally designed to support the ranking scheme. The system is
distributable to a cluster of servers, allowing reasonable scalability.

We present three real-world deployments of the system. The largest of the deploy-
ments was a publicly available Web search engine, Aino, which covered over four
million pages in the .FI domain.

ACM Computing Classi�cation

H.3.1 Content Analysis and Indexing
H.3.3 Information Search and Retrieval
I.2.7 Natural Language Processing

Tiedekunta/Osasto � Fakultet/Sektion � Faculty Laitos � Institution � Department

Tekijä � Författare � Author

Työn nimi � Arbetets titel � Title

Oppiaine � Läroämne � Subject

Työn laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pages

Tiivistelmä � Referat � Abstract

Avainsanat � Nyckelord � Keywords

Säilytyspaikka � Förvaringsställe � Where deposited

Muita tietoja � övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI



ii

Contents

1 Introduction 1

2 Prior Work 4

2.1 Ranking Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Existing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 AinoRank 14

3.1 Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Co-occurrence Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Query Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Implementation 48

4.1 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Brute-Force Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Top-K Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Demonstrations 79

5.1 Web Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 E-Mail Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Patent Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusions 86

References 87



iii

List of Algorithms

1 Brute-force scoring algorithm . . . . . . . . . . . . . . . . . . . . . . 65
2 Brute-force ranking algorithm . . . . . . . . . . . . . . . . . . . . . . 66
3 Top-K ranking algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 71

List of Figures

1 Indexing times with respect to size of the corpus . . . . . . . . . . . . 11

2 Index sizes with respect to size of the corpus . . . . . . . . . . . . . . 12

3 A co-occurrence matrix. Dark cells depict frequent co-occurrences. . . 17

4 Zip�an distribution of frequencies of Wikipedia tokens . . . . . . . . 19

5 Number of co-occurring tokens for each Wikipedia token . . . . . . . 19

6 Co-occurrence matrix of 3000 Wikipedia tokens . . . . . . . . . . . . 20

7 Conditional distributions of some tokens from the Reuters corpus . . 23

8 Alternative Venn-diagrams for multi-token cues . . . . . . . . . . . . 44

9 Architecture of Aino . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10 Index structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11 Distribution of delta values . . . . . . . . . . . . . . . . . . . . . . . . 56

12 Decoding performance with an in-memory index . . . . . . . . . . . . 59

13 Frequency of L2-cache misses in decoding . . . . . . . . . . . . . . . . 59

14 Decoding performance with an on-disk index . . . . . . . . . . . . . . 61

15 Distribution of token scores Ω for three queries . . . . . . . . . . . . . 68

16 Cumulative score mass of the best half of token scores Ω for three
queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

17 Distribution of document scores after the highest scoring half of Ω
has been processed for three queries . . . . . . . . . . . . . . . . . . . 70

18 The two ranking algorithms compared . . . . . . . . . . . . . . . . . 75

19 Aino.hiit.�: Front page . . . . . . . . . . . . . . . . . . . . . . . . . . 80

20 Aino.hiit.�: Result page . . . . . . . . . . . . . . . . . . . . . . . . . 81

21 Mail Archive Miner: Social network analysis with AinoRank . . . . . 83

22 Patent Cruncher: Keyword sets with AinoRank . . . . . . . . . . . . 85

23 Patent Cruncher: Patent search . . . . . . . . . . . . . . . . . . . . . 85



iv

List of Tables

1 Di�erent ranking approaches . . . . . . . . . . . . . . . . . . . . . . . 5

2 Search goals by Rose & Levinson [RL04] based on AltaVista queries . 36

3 Some strategies to achieve search goals with Keys & Cues . . . . . . . 41

4 Mapping from the query interface to the ranking behavior . . . . . . 43

5 Highest scoring tokens for some queries in Aino.hiit.� . . . . . . . . . 81



v

Acknowledgements

Many people have provided help and inspiration for this thesis. First, I would like

to thank Professor Henry Tirri for challenging me to develop a search engine in the

�rst place and Professor Petri Myllymäki for his support throughout the process.

I would like to thank my colleagues in the Complex Systems Computation Group,

especially the following three people on our IRC channel #finni: Special thanks

go to Antti Tuominen for HooWWWer and his 7517 supportive comments, Tomi

Silander for his 3627 insightful comments, and Pekka Tonteri for building necessary

infrastructure and helping me with his 3872 comments. Last but not least, a huge

hug to my wife Heli Tuulos for helping me with the math.



1

1 Introduction

This thesis presents an e�cient design and implementation of a content-based search

engine. Content-based means that the system utilizes information available in the

documents in a holistic manner to determine what might be interesting to the user.

We focus on textual content that is written in a natural language as opposed to,

say, images included in the documents. We call the presented system a search

engine, as it contains components to retrieve and index documents, and it provides

a mechanism to return a ranked subset of the documents according to the user's

requests. By e�cient, we mean that the system should be able to process millions

of documents in a reasonable time and respond to queries with a low average latency.

This thesis consists of four main contributions:

• Design and implementation of a full-�edged search engine, Aino,

• a novel content-based ranking method, AinoRank,

• an e�cient algorithm that implements the previous,

• and several applications of the system to real-world document collections.

A brief overview of relevant prior work is given in section 2. Then, Chapter 3

presents the ranking method, AinoRank. Chapter 4 introduces the architecture and

the main elements of our system as well as several algorithms that implement the

previous ranking method. Finally, Chapter 5 gives a summary of some real-world

applications of the system. Chapter 6 concludes the thesis.

The starting point of this thesis is based on my personal background. I have been

interested in natural language processing since I was �fteen. In those days, Neural

Networks Research Center at the Helsinki University of Technology released the

�rst demonstrations of the WEBSOMmethod [KHLK98], which visualizes document
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collections using a model called Self-Organizing Map [Koh01]. I found this intriguing

and soon I got an opportunity to take these ideas forward in a spin-o� company. In

this context, I helped to design and implement a content-based information retrieval

platform [HT02], which was the �rst of its kind for me.

In 2003 I joined the Complex Systems Computation Group at the University of

Helsinki. The group had a strong background in statistical and information-theoretic

modeling, which matched well with my interests. The group was applying an

advanced statistical model, Multinomial Principal Component Analysis (MPCA)

[BJ06], to content-based search with promising results. We produced some nice

demonstrations [TT04, BLP+04] which, however, raised new questions in my mind.

Two things bothered me both in WEBSOM and MPCA. First, I felt helpless with

opaqueness of the methods. Both methods relied on certain elaborate theoretical

assumptions that were not directly related to the modeled phenomenon, namely

language. I did not feel comfortable with the exploratory "let's change some param-

eters and see what happens" approach. The problem of opaqueness was re�ected

also in the user interfaces. It was hard to tell exactly how to get desired results

and in case of unsuccessful queries, how to improve them. I started to feel that

natural language is a phenomenon so complex that we should avoid adding to this

complexity in our models � at least until we understand the underlying data better.

The second unanswered question was about losing information. Practically all so-

phisticated methods in information retrieval seem to take as granted that most of

the tokens do not carry any important information or they are redundant. Often

features that are considered unimportant are thrown away either by explicitly us-

ing some stopword lists or by frequency limits, or by using some automatic feature

selection or dimensionality reduction method. I could not see how one could decide

what should be thrown away a priori, before seeing any queries. Naturally we could

base the decision on some statistical measure but often the choice felt unjusti�ed.
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I felt that before I could continue with more sophisticated methods, I needed to

understand the basics better. I wanted a system that would be transparent and

whose inevitable fallacies could easily be circumvented by the user. Also I wanted

a system that would not make any unjusti�ed decisions before seeing what the user

considers important in her queries. And due to my personal sense of aesthetics, I

wanted a rather minimalistic, but robust and e�cient implementation.



4

2 Prior Work

Aino's legacy comes from many sources. Firstly, there is the decades-long tradition of

information retrieval. Secondly, there is almost an equally old tradition of statistical

modeling of language. Finally, there is a rather recent trend of producing free search

engines.

In the following, we �rst give an overview of di�erent ranking methods. After this, we

present some free search engines and information retrieval packages. The presented

systems vary from drop-in search solutions to complex academic testbeds of state-

of-the-art information retrieval methods. This selection is deliberate, as Aino falls

somewhere in between these two extremes. To justify this claim, we present a rough

comparison between the presented systems and Aino in the end of the section.

2.1 Ranking Methods

Consider that you are given a corpus of documents. Then you get a query consisting

of one or more words. Now your task is to order documents in the corpus according

to their relevance with respect to the query. This operation is commonly called

ranking.

Besides ordinary words, in many cases the document corpus contains some auxiliary

information that can be utilized in ranking. As of 2007, the three most popular Web

search engines, Google [Goo07], Yahoo [Yah07], and MSN Live [MSN07], utilize hy-

perlinks in their ranking algorithms. A well-known example of a link-based ranking

algorithm is Google's PageRank [PBMW98].

An approach based on hyperlinks is justi�ed in the Web, as statistically hyperlinks

tend to point at the content that many people �nd interesting [PBMW98]. Similarly

to hyperlinks, other kinds of structures within the document can be utilized in
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Query type

Keyword Example Natural Language
C
or
p
u
s
ty
p
e Hypertext Google, Yahoo More Similar Pages

by Yahoo, Google

Ask.com, QuASM

Structured XIRQL SQL-QBE Precise, NALIX

Plain Text Lucene, Aino WEBSOM, Ydin Various QA systems

Table 1: Di�erent ranking approaches

ranking as well. For instance, some ranking algorithms such as [LYJ05, FG04], can

utilize any structure encoded in XML.

Not only the corpus, but also the query may come in di�erent forms. A typical

Web search engine accepts a short list of keywords with some modi�ers, such as

quotes to denote phrases. In contrast to earlier systems, which required explicit

Boolean operators to structure the query, current systems often rely on implicit,

algorithm-speci�c heuristics to decide how to handle multiple keywords.

Some systems provide a function like �Query by Example� (QBE) or �More Similar

Documents�. In these systems, a short excerpt of text or even a full document may

be used as a query. Some sophisticated systems let the user input the query or a

question in natural language, e.g. in plain English.

Table 1 presents a survey of some existing systems that utilize di�erent types of

queries and corpora for ranking. Let us start with the systems based on hypertex-

tual content: If the query interface is based on keywords, the system is similar to

contemporary Web search engines, such as Google and Yahoo. Web search engines

often provide a function called �similar pages�, which resembles Query by Example

functionality. In this case, however, the similarity measure is based on the topology

of the link-graph and not on the textual content.
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Ask.com is a major Web search engine that lets the user search for pages in plain

English. The results are ranked with a link-based ranking scheme, similarly to

keyword-based Web search engines. A di�erent kind of approach is taken by the

QuASM system [PBC+02] that uses HTML tables to �nd answers to questions given

in plain English.

Nowadays majority of research on structured information retrieval focuses on XML

and Semantic Web technologies; for an overview, see [Leh06]. Earlier, a substantial

amount of related research focused on designing various extensions to the Simple

Query Language (SQL). XQuery [XQu07] is a standard query language for retrieving

di�erent parts of an XML document. On top of this, various layers have been

proposed to support keyword search, for instance, XIRQL [FG04].

Domain Relational Calculus [LP77] is an early example of a method that allows

querying of structured (relational) data by example. It is followed by many query

by example systems for SQL, such as the IBM's QBE [RG02]. Roughly speaking,

these systems let the user specify a template or a set of constraints that the results

must satisfy. Also, several research prototypes exist for compiling natural language

queries to SQL, e.g. with Precise [PEK03] and to XML queries e.g. with NALIX

[LYJ05].

Content-Based Information Retrieval is a vague concept, which is used to refer

to various information retrieval settings and approaches. Often the concept refers

to retrieval of non-textual data, such as images or videos [BR99]. In the litera-

ture, content-based queries are brodaly de�ned as �queries exploiting data content�

[BR99].

Along these lines, we can interpret that content-based refers to systems that utilize

the bulk content of the corpus in a holistic manner, instead of relying on some speci�c

features of the data, such as links, tables, or other structural elements. According
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to this interpretation, the last row in table 1 can be seen to refer to content-based

systems.

The work presented in this thesis belongs to the category characterized by plain text

corpora and keyword queries. Many other academic or open source search engines,

such as the ones presented in the following section, belong to this category. Some

ranking schemes bene�t directly from longer queries that contain more information

about the user's interests � in this case the system may work with single keywords

but the best results are produced when a long example document is given as the

query: Systems of this kind include WEBSOM [KHLK98] and many other system

based on language modeling approach [PC98], such as Ydin [BLP+04]. Many tra-

ditional question-answering (QA) systems belong to the category on the lower right

corner. For recent examples, see publications in the TREC Question Answering

track [VB06].

An important characteristic missing from Table 1 is how the query actually a�ects

ranking. Some algorithms, such as PageRank [PBMW98], assign a static score to

each document independently from the query. The main bene�t of this approach

is that query processing becomes extremely e�cient as the query is only needed to

determine the matching subset of documents that are already ranked. We call this

approach static ranking.

An alternative approach is to re-rank the corpus against every query � we call this

dynamic ranking. This approach is more �exible, as it does not �x the ranking

before seeing any query, but the computational cost may be high. In the following

chapter, a novel dynamic ranking approach is presented.
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2.2 Existing Systems

Considering the vast number of possible interpretations of �search� and the ease

of implementing something resembling search, it is understandable that there is a

plethora of software packages available for this purpose.

However, implementing a truly scalable search engine is not so trivial. We restrict

the discussion to systems that claim to scale to millions of documents. Also, we

require that the system should be rather complete, so an e�cient implementation

of, say, a bare inverted index is not enough. Furthermore, the system should not be

domain-speci�c, which often allows remarkable optimizations by sacri�cing general-

ity. Instead, we are interested in systems that are aimed at indexing and querying

unspeci�ed, mostly unstructured corpora of natural language.

Comparing implementations is often rather unfruitful. The most relevant compar-

ison deals with the results or the perceived quality of search. This is a deep sub-

ject, which is covered for instance by the TREC text retrieval competitions [VB06].

Comparing scalability or performance is di�cult as well, since any attempt to index

a huge number documents requires detailed tuning of the system, which in turn

requires intimate knowledge of the implementation at hand. Comparing the per-

formance of query processing is even more di�cult, since each system balances the

trade-o� between ranking quality and speed di�erently.

However, by comparing systems we may clarify our own position. This is the main

motivation for the following section, which will brie�y introduce some systems re-

sembling ours and their relationship to this work.

Ht://Dig

The �rst version of ht://Dig [Ht:95] was released already in 1995, which makes it

one of the oldest software packages for searching web pages. Ht://Dig consists of
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a collection of small command-line tools for indexing and querying web pages. It

is mainly aimed at individual web sites, but technically it should be applicable to

small intranets as well, given that the documents are suitably organized on disk.

Ht://Dig is implemented in C++.

The system provides a simple query interface based on Boolean ranking [BR99]

and a variation of it using approximate keyword matching. Although Ht://Dig

was popular during its early days, its development has been ceased for years and

it is surpassed by more modern systems. Despite the system's lack of technical

or academic merit, its simple Unix-style architecture provided some inspiration for

Aino.

Lucene

As of 2007, Lucene [Cut97] is the most widely used open-source search package.

Lucene includes an e�cient indexing mechanism and facilities for building highly

scalable search engines, including a Web crawler Nutch. The main implementation

is in Java, although partial ports to various programming languages exist. According

to the project's web site, Lucene's ranking method is "a combination of the Vector

Space Model (VSM) of Information Retrieval and the Boolean model to determine

how relevant a given Document is to a User's query".

Developers are encouraged to integrate the Lucene's object-oriented architecture into

their own search interfaces. Also, the architecture makes it possible to implement

missing functionalities behind the given interfaces. In contrast, the design and

implementation of Aino was dictated by our data-intensive ranking method, which

required careful attention to performance.



10

Lemur and Indri

Lemur is a C/C++ toolkit for language modelling, which forms the basis for the

search engine Indri [MC04]. They have been developed in a joint project by the

Computer Science Department at the University of Massachusetts and the School of

Computer Science at Carnegie Mellon University. In contrast to the above systems,

they are targeted at the academic community needing a testbed for advanced infor-

mation retrieval algorithms. Lemur / Indri supports a versatile INQUERY query

language [CCH92] and ranking using inference networks [MC04].

Lemur's strong focus on statistical language modelling and its success in the TREC

competition [VB06] make it inspirational for Aino.

Terrier

Terrier is a full-�edged search engine and information retrieval platform by the

information retrieval research group at University of Glasgow [OAP+06]. Terrier

implements various novel probabilistic ranking algorithms, such as the Divergence

from Randomness model [AVR02]. It is targeted both at practical applications and

academic research.

In the Aino's point of view, Terrier belongs to the same category of large-scale prob-

abilistic information retrieval research platforms as Lemur. Terrier is implemented

in Java.

Comparison

The presented systems are motivated by di�erent goals, which are deeply re�ected

in the design of each system. However, some basic tasks are common to all the

systems: Namely, they have to read input documents, perform some preprocessing
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Figure 1: Indexing times with respect to size of the corpus

tasks, and construct an index.

Being e�cient in these tasks is mostly a matter of careful engineering. In theoretical

point of view, these tasks are more or less trivial. However, in terms of scalability

this phase is essential: The system must achieve high indexing throughput to be able

to handle millions of documents in a reasonable time. At the same time, the system

must produce e�cient index structures so that latencies in the query processing

phase will be low.

We compared raw indexing performance of the presented systems. Unfortunately

Ht://Dig had to be excluded from the benchmark due to its exceptional slowness;

processing of the smallest data set took more than eight minutes. This might be due

to the fact that it is designed to receive its input from an integrated Web crawler

that is remarkably suboptimal in local environments.

The test collection consisted of 100,000 documents from Wikipedia, the free en-
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cyclopedia [Wik07]. We tested the indexing performance with varying number of

documents. The results are shown in Figure 1. Each system was run with compara-

ble default parameters. It is clear that the systems may be tweaked to achieve higher

throughput but it should be reasonable to assume that Figure 1 depicts the overall

trend. Here, Aino and Indri seem to scale rather logarithmically and they outper-

form the other two systems. This might be due to di�erences between C/C++,

the language of choice for Aino and Indri, and Java, which is used by Terrier and

Lucene.

We also measured sizes of the resulting indices; the results are shown in Figure 2.

One should be extremely careful in interpreting the results, since the systems do

not index exactly the same types of information. In this case, it is reasonable to

believe that Aino, Terrier, and Lucene index approximately the same amount of

information and their mutual di�erences are caused by di�erent encoding methods.
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Aino performs well in the comparison. It shows modest linear behavior with respect

to the number of documents and a good balance between the indexing speed and the

index size. Chapter 4, which describes the implementation, will give some reasons

for this.

As mentioned earlier in this section, macro-scale benchmarks of this kind are often

unfruitful and unfair. Due to modular architecture of each system, it should not

be di�cult to replace ine�cient algorithms with e�cient ones, at least in theory.

Moreover, most of the systems focus on improving the ranking quality, not e�ciency

of indexing. Thus, one should not underestimate quality of the other systems based

on this comparison but it should be interpreted as a further motivation for the design

and implementation of Aino instead.
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3 AinoRank

This chapter forms the core of this thesis. We start with our desiderata for content-

based ranking. Then, Section 3.2 introduces the theoretical basis for the method.

Section 3.3 formulates the actual method step by step, starting from a simpli�ed

case. We then proceed to explain how the method appears to the user in Section

3.4. Finally, we bring all the pieces together in Section 3.5 that gives the �nal

formulation for AinoRank.

3.1 Design Criteria

AinoRank was motivated by the following design criteria: We need a content-based

ranking algorithm that is usable, predictable, robust, and it should scale to millions

of documents. In the following, we provide background for each of the criteria.

Users of Web search engines seldom browse the search results beyond the top ten

hits. Based on 15,000,000 clicks on search results in the AOL Web search logs

[AOL06], we know that the �rst result is 3.5 times more popular than the second,

which in turn is four times more popular than the tenth result. In total, the top ten

results account for 90% of all clicks in the data and the top-100 for 99% of them.

Thus, an important usability goal for our ranking algorithm is to get the most

relevant documents to the top ten set. However, the user's conception of relevance,

i.e. what the user feels important, is often weakly mediated in the query: The

query may carry little information (e.g. �cat�), it may be broad (�foreign politics�),

or ambiguous (�apple� � computer or fruit?). Yet in all these cases we can assume

that the user has a speci�c information need, although it is not well articulated

in the query. In order to be truly usable, the system should take into account

this discrepancy between the true information need and the actual query, while
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respecting the user's desire to use only minimum e�ort to formulate the queries.

It is reasonable to assume that our ranking algorithm will not be perfect in the �rst

place; it is likely to miss relevant documents. In these cases, the user should be

able to circumvent errors by rephrasing the query. Rephrasing is likelier to improve

the results if the user is able to predict, at least to some degree, how the system

behaves. Traditional information retrieval systems, which were based on Boolean

queries, were excellent in predictability once the user had become familiar with

Boolean expressions. On the other hand, behavior of a sophisticated statistical

model may seem opaque even to the system developers. Predictability is not just a

usability goal � it makes also system development easier.

By robustness we refer to several criteria: The system should be resistant against

noise, as otherwise it can not be used with arbitrary web pages. The system should

not be highly sensitive to parametrization. It should perform similarly on di�erent

corpora, so that it does not require extensive domain-speci�c customization. Like-

wise, the system should perform similarly with di�erent queries i.e. its behavior

should not change drastically with varying input. In particular, the system should

take all occurring words into account, regardless of their frequency. These criteria

try to ensure that the system is easy to deploy in di�erent environments, it adapts

to various use cases, and its behavior does not change abruptly.

There is not a single good de�nition for scalability in information retrieval. In

some sense dynamic ranking is inherently non-scalable, since in the worst case,

ranking cost increases linearly with respect to number of documents. However, we

can assume that the computational power of commodity hardware increases faster

than the number of interesting documents to be searched, at least outside the Web.

In many cases, one would like to trade CPU cycles for higher quality results. Our

goal should be a method that can easily bene�t from new hardware in terms of faster

results and from larger corpora in terms of higher quality results.
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Lacking a good formal de�nition, we de�ne that a scalable ranking method should

handle the largest intranet with hardware costing $40,000 at most. This de�nition

was inspired by a keynote talk at the SIGIR 2005 conference, which was given by a

Google's Distinguished Engineer Amit Singhal. As of 2007, we can assume that the

largest intranets contain some 10-50 million searchable documents.

3.2 Co-occurrence Matrix

Let us begin with some de�nitions. In the following discussion, the basic atom is

token. Informally, we may think that tokens are words, but this conception may be

misleading. For instance, whitespace-delimited substrings that are extracted from a

random Web page often do not correspond to words in any language. Consider the

following "words" from Wikipedia:

solvayprocessworks504r, pageantofsteam, addc3, lamanna

These are valid tokens. What actually counts as a token is determined by the tok-

enizer. Tokenizer splits documents to tokens as a part of the preprocessing pipeline.

Depending on its parametrization, it may allow digits, dashes, apostrophes, or other

special characters to occur in tokens.

A document is a Nd-length �nite sequence of tokens.

d = (t1, ..., tNd
). (1)

A document may naturally contain multiple occurrences of the same token. If we

lose the order in the document, we get a multiset

D′ = {t1, ..., tNd
}. (2)

Like with ordinary sets, order is ignored but multiplicity of tokens is explicitly

signi�cant. This gives us a so called bag of words representation for document,

which is dominant in the information retrieval tradition [BR99].
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Figure 3: A co-occurrence matrix. Dark cells depict frequent co-occurrences.

If we ignore token frequencies within a document, we may cast multiset D′ to an

ordinary set D. An alternative document representation is given later on. The set

of all D is called a corpus C. The set of all distinct tokens that occur in C is denoted

by T .

When two distinct tokens belong to the same bag of words, we say that the tokens

co-occur.The most fundamental concept in this thesis is the co-occurrence matrix.

The co-occurrence matrix tells how many times any two tokens co-occur in the

corpus.

For each token t ∈ T we may de�ne an inverted set i.e. the set of all documents in

which t occurs. Let It denote the inverted set for the token t, formally

It = {D ∈ C|t ∈ D}. (3)

By de�nition, It is non-empty for each t ∈ T . Now let us pick two tokens m, n ∈ T .

If the intersection

A = Im ∩ In (4)

is non-empty, words m and n co-occur i.e. they appear at least once in the same
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document. We may enumerate all possible token pairs in a T × T matrix Λ and

de�ne

Λij = |Ii ∩ Ij|. (5)

The co-occurrence relation is naturally symmetrical: If token m co-occurs with token

n, n co-occurs with m equally often. Thus the upper and lower triangular matrices

contain the same information i.e. the co-occurrence matrix is symmetric. This can

be easily seen in Figure 3 that contains a co-occurrence matrix of six words. Since

a token always co-occurs with itself, the diagonal values correspond to the number

of documents in which the token appears in the corpus C.

Technically, the co-occurrence matrix grows quadratically with respect to the num-

ber of tokens. Even with medium-scale corpora, its space requirements are enor-

mous. A 100,000 document subset of Wikipedia contains approximately one million

tokens1. If we used only one bit per value on average, the matrix would require

approximately 1012 bits or 116 gigabytes of space � or half of this if only the lower

triangular matrix is saved. Still, the space requirement is huge for any Intranet-scale

corpora. Although one can get terabytes of disk space nowadays o� the shelf, the

average sizes of RAM and CPU caches are measured in giga- and megabytes, which

makes any operations on the full matrix slow.

Fortunately, most of the tokens are infrequent. Figure 4 shows the distribution of

frequencies of the aforementioned subset of Wikipedia. About 64% of tokens occur

only in one document. Infrequent tokens are likely to co-occur with frequent tokens,

but each of them co-occur only with a small number of other rare tokens. This can

be seen in Figure 5 that shows the number of co-occurring tokens for each token in

the Wikipedia subset. Infrequent tokens co-occur typically only with 10-200 other

tokens. The median number of co-occurrences per token is 154 in this corpus. This

1A good rule of thumb for the relationship between the size of a Web corpus and the number

of tokens in it is that asymptotically every new document introduces one new token.
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Figure 6: Co-occurrence matrix of 3000 Wikipedia tokens

implies that the co-occurrence matrix is sparse. In the Wikipedia subset, only 0.1%

of the matrix is populated.

One should note that the downward curve is not very steep in Figure 5. Especially

the �rst 10,000-50,000 most frequent tokens, which often correspond to common

English words, have lots of co-occurrences with other tokens. For the purpose of

content analysis, this is bene�cial. A high number of co-occurrences translates to a

rich characterization of the usage of a token. On the other hand, one can see that

only few tokens co-occur with more than 10-20% of all tokens in the corpus, which

implies that the tokens have discriminative power.

In addition to Figure 5 that shows the number of distinct co-occurrences for each

token, it is useful to have a general idea how the absolute values of the co-occurrence

matrix Λ are distributed. Figure 6 shows a co-occurrence matrix of 3000 tokens from

the Wikipedia subset. The tokens are ordered according to their frequency in the

full Wikipedia; the highest frequency being 52,000 and the lowest 2200 � token
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frequencies decrease from left to right and from top to bottom. The dark area in the

upper-left corner corresponds to high Λ values between the most frequent tokens,

which are in the range from 100,000 to 130,000 co-occurrences. In the lower-right

corner, the co-occurrences are in the range from 40,000 to 60,000. The visible vertical

stripes correspond to tokens that are frequent in the full Wikipedia, but not frequent

in the subset that was used to generate the matrix. As only few displays can show

over 1000 dots per inch, the image is quantized to �t into smaller space.

We can derive some empirical probabilities from the matrix. The prior probability

for seeing a token m in the corpus is

P (m) =

∑
n∈T Λmn∑

l∈T
∑

n∈T Λnl

(6)

We can also de�ne the conditional probability of seeing token m given that we have

seen n:

P (m|n) =
P (m, n)

P (n)
=

Λmn∑
l∈T Λnl

(7)

This probability will have a central role in the following ranking scheme. Moreover,

since items of Λ are unbounded sizes of intersections, they are not convenient for vi-

sualization as such. In the following, we will visualize co-occurrence data as P (m|n)

distributions instead. Note that in contrast to raw co-occurrence matrices the con-

ditional distribution tables are not symmetrical, since in general P (m|n) 6= P (n|m).

Semantics

Justifying the semantic validity of any formal ranking method is di�cult, as long

as we do not have a widely accepted formalism for natural language or human

cognition. Actually, this can be seen as one motivation for using rather simple and

pragmatic models: We cannot justify the use of complex models over simple ones,

especially if the complex model is not as usable, predictable, robust and scalable

as the simple model, even though the simple model might be clearly inadequate
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semantically. In other words, since we can not justify any model in semantic terms,

there is no reason to use a more complex model than the simplest one that can be

justi�ed in pragmatic terms. More discussion about this viewpoint for content-based

search can be found in [TS05].

Co-occurrence data has a long history in linguistics. An early seminal work in the

�eld, "Methods in Structural Linguistics" by Zellig Harris [Har60], states that

The main research of descriptive linguistics, and the only relation

which will be accepted as relevant in the present survey, is the distribu-

tion or arrangement within the �ow of speech of some parts or features

relatively to others. The present survey is thus explicitly limited to ques-

tions of distribution i.e. of the freedom of occurrence of portions of an

utterance relatively to each other.

Taking "freedom of occurrence" as the basis for research is an attractive approach,

as it allows objective and rigorous study of the language based on empirical data.

Clearly, there are some implicit rules or conventions in the language which constrain

how and which individual units may occur with each other, at least statistically.

For instance, consider two real-world examples in Figure 7. The �gures contain

two manually selected subsets of tokens from the Reuters corpus of news articles

[LYRL04]. In the �rst example, two thematically di�erent sets of tokens were cho-

sen: The �rst three words are about agriculture and the next three words about

metallurgy. The example shows that if one sees a word related to agriculture in a

document, it is much more probable to see another word related to agriculture in

the document than a word related to metallurgy. This phenomenon agrees with the

common sense.

The second example in Figure 7 shows �ve tokens that are closely related to oil in-

dustry and �ve other tokens that are common words in English. If you see a common
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Figure 7: Conditional distributions of some tokens from the Reuters corpus
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English word in a document, you can not be con�dent that the document is about

oil, or you can not know what other common words might appear in the document.

However, if you see a word related to oil, with moderately high con�dence you can

expect to see other oil-related words in the document as well. This exempli�es the

discriminative power of tokens that are highly related to a certain topic or theme.

In the linguistic point of view, the use of co-occurrence data has some drawbacks:

Firstly, it can not explain how language is generated in the �rst place � for elabora-

tion, see for instance Noam Chomsky's in�uential works [Cho69, Cho72]. Secondly,

the real-world co-occurrence data contains a complex mixture of several linguistic

phenomena from phonetics and morphology to stylistic and pragmatic issues. In

other words, the data seems extremely noisy for rigorous study.

For content-based search, the above issues are not critical. A search engine does

not have to process language similarly to the human brain. In our approach, this is

deliberately avoided since mimicking the brain inadequately often leads to serious

problems in usability and predictability, which were our original design criteria. As

long as we do not have adequate machinery for handling semantics computationally,

it is better to leave semantics to the user and give the user a powerful, but non-

intelligent tool2. In our case, the tool could be characterized as "an automated token

relationship analyzer".

Regarding the second issue above, the mixture of di�erent phenomena can be seen

as an asset for content-based search. In information retrieval, the primary uses

for co-occurrence analysis have traditionally been word-sense disambiguation and

automatic thesaurus construction [BR99]. In addition to these, co-occurrences can

be used, for instance, in automatic style analysis [UK05] and language recognition

[CT94]. These applications are possible due to the richness of phenomena that are

2We call this tool-centric approach to language modelling practically adequate. For elaboration,

see [TS05]
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present in co-occurrence data.

The previous methods of information retrieval are not perfect. Depending on the

measure, their accuracies are typically in the range from 50% to 95%. For instance,

this is the case with a survey of methods for style analysis in [UK05]. False results

are often attributable to co-occurrence data that contains many interleaved linguistic

phenomena, as mentioned above, and the model is unable to de-noise or de-interleave

the data in order to solve a particular task perfectly.

However, if we give the user tools that are powerful enough to handle the data

smoothly, she may use them to solve the aforementioned tasks "manually", on case

by case basis. The bene�t of this approach is that the user is able to interpret the

results, despite the interleaved levels of information, and act accordingly, since the

human brain is perfectly tuned to the task of producing and understanding natural

language. Metaphorically, one can consider machinery for e�cient co-occurrence

analysis as the engine of a car. Whereas the traditional information retrieval aims

at building a perfect auto-pilot to drive the car, we want to give the user a perfect

steering wheel.

Statistical Models and Co-Occurrence Data

Many statistical models for information retrieval are based on the co-occurrence

data. Strong statistical dependencies are abundant in the data, as Figure 5 above

suggests. Often dependencies can be given a natural interpretation by a human

observer, as in the case of Figure 7 above. As the data is a rich and complex mixture

of dependencies due to the various linguistic phenomena it captures, many di�erent

statistical model families are able to capture at least some of the dependencies.

Generally speaking, any captured dependency is meaningful to a human observer,

since, after all, all the dependencies were generated by the human brain in the �rst
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place. Thus, it is not surprising that almost any statistical model, which is applied

to co-occurrence data, seems to produce at least some meaningful results.

For exploratory data analysis, the above phenomenon is bene�cial to some degree.

For example so called Word Category Maps, which are based on the Self-Organizing

Map model [Koh01], can be used to visualize and cluster frequently co-occurring

tokens [HPK95]. The results are often intriguing and easily interpretable to a human

observer. However, it is di�cult to formulate a rigorous way to use the model,

say, for word sense disambiguation, which would work without the human observer.

Similarly, if the observer wanted to analyze some other dependencies in the data,

in contrast to the ones that the model happens to capture, it is not clear how the

model should be modi�ed.

The results are dominated by implicit and explicit modeling assumptions and the

chosen parameter estimation procedure, whose relation to semantics is not often

fully understood and thus di�cult to tune. For users and applications, such as

content-based search, models seem rather opaque. This observation motivated us

to take predictability as one of the design criteria � the user should be able to see

through the model in order to be able to use it in an e�cient manner.

Another modeling dilemma is directly related to the nature of search: What infor-

mation we can a�ord to lose a priori, before seeing any query? For instance, various

methods of dimensionality reduction are commonly used in information retrieval for

de-noising and to reduce the computational burden of the models [BR99]. The aim

is to reduce the number of distinct tokens in T , either by grouping similar tokens

together or by �ltering out the ones that have no statistical signi�cance.

However, as with the Wikipedia subset above, over half of the tokens may occur only

once in the corpus. They have hardly any statistical signi�cance. Yet if the user

searches for a rare token, say, a model number of a microchip, the system should be
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able to rank the results accordingly and maybe return other microchip data-sheets

that contain some related information. This motivates the criterion of robustness.

The quality of the results should not drop drastically with rare queries.

Some models are based on the working assumption that an unknown generative pro-

cess has produced the tokens in documents � these models are called latent-variable

models. The model is used to estimate these unknown, or latent, factors. In the

case of co-occurrence data, the factors often correspond to semantically meaningful

themes or topics that appear in the corpus. For instance, in the case of Figure

7, a latent variable model would likely recognize that tokens livestock, poultry,

and agriculture are generated by a common topic. In this sense, a latent variable

model can be used to group tokens together to form higher-level "concepts". Com-

monly used models for this task include Multinomial Principal Component Analysis

[BP03], Latent Dirichlet Allocation [BNJ03], and Probabilistic Latent Semantic Anal-

ysis [Hof99]. Theoretically, these models are closely related to each other [BJ06].

When a probabilistic model is used for content-based ranking, a so called Language

Model formalism is dominant nowadays. In this formalism, document ranking is

based on query likelihood [PC98]:

log P (Q|D) =
∑
q∈Q

log P (q|D), (8)

where Q is the query, possibly consisting of several tokens q. In this approach, the

model is used to estimate probabilities of form P (t|D) i.e. the probability of a token

t to appear in document D. Again, infrequent tokens pose a di�cult challenge to

the model: How to estimate P (t′|D) for all D ∈ C, if t′ occurs only in one document,

and thus P (t′|D) = 0 for most of the documents? This problem is known as the

Zero Probability Problem in the literature [PC98]. The problem is often solved by

various smoothing methods that try to spread the probability mass more uniformly

over the tokens. The chosen smoothing method is a major factor that distinguishes
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di�erent language models.

One can use a latent variable model as a language model. In this case, the query

becomes conditional on the latent variables, Z:

log P (Q|D) =
∑
q∈Q

∑
z∈Z

log P (q|z)P (z|D). (9)

Some examples of this approach applied to content-based ranking can be found in

[BPT04, BLPV05]. Here the latent variables Z can be seen as a bottleneck, which

compresses global co-occurrence statistics to a smaller, �xed number of dimensions,

|Z|. The largest latent-variable models that have been built for search have included

at most hundreds of topics [BLPV05]. Due to relative sophistication of the models,

scaling them up is a major challenge.

Based on the above, a latent-variable model can be seen as a dimensionality reduc-

tion method. However, in this case tokens are not �ltered out, but instead they

are grouped together by Z. For instance, consider the following observation from

[BP03]:

For instance, a "Mother Teresa" component was discovered whose

extreme documents were all about Mother Teresa but whose general

role in other documents was to isolate facets of motherhood and elderly

women.

This result is semantically understandable. However, what if the user was speci�cally

interested in geriatrics and elderly women? In this case, the model might estimate

that the query is probably about Mother Teresa and rank the results accordingly.

Similarly, a latent-variable model could easily �nd the two topics in Figure 7, namely

farming and metallurgy. Yet if the user was speci�cally interested in poultry, which

is a subset of livestock, grouping it under the topic of farming would be an over-

generalization.
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These issues of over-generalization and the lack of semantic resolution are inherent

to latent-variable models, at least in the context of search. The problems are greatly

ampli�ed when a latent-variable model of, say, 500 topics, is applied to a Web corpus

of millions of documents. Generally speaking, we can not judge beforehand which

features or tokens can be grouped together or �ltered out until we see the query.

The intention of the previous discussion is not to undervalue the statistical methods

and models for information retrieval. The discussed methods are valuable for various

purposes, such as clustering, summarization, data mining, and even domain-speci�c

search where lots of a priori information on relevance is available. However, the

points made are applicable to general, Web-like, search. To a large extent, the

design criteria of predictability, robustness, and scalability were motivated by the

need to address the issues discussed above. The following section will describe our

solution.

3.3 Method

This section presents AinoRank, a content-based ranking method. The method in

itself is simple, which is deliberate. The central questions are whether the method

can be seen to ful�l the original design criteria and whether it is possible to imple-

ment the method in a scalable manner. We start with a simple special case and

gradually extend the description to cover the whole method.

Consider that we have a corpus of documents, C. The user submits a query, q ∈ T

to the system. We require that the query token occurs in the corpus at least once.

We start with a simpli�ed assumption that the query consists of only one token, q.

The ranking method assigns a score, S ′q(D) for each document D ∈ C. The system

returns a ranked sequence of documents (D1, D2, ..., DN) so that S ′q(Di) > S ′q(Di+1).
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In this case, AinoRank assigns score to a document as follows

S ′q(D) = λD

∑
t∈D

P (q|t), (10)

where λD is a document-speci�c normalization term and P (q|t) is estimated using

the full co-occurrence matrix as speci�ed in Equation 7.

We can formulate scoring of all D ∈ C in matrix form as follows. Let D be a C × T

matrix containing the documents. A row from the T × T conditional distribution

table corresponding to the query q is denoted by q. The document normalization

factors [λD], D ∈ C are entries of a diagonal matrix N. Now scoring can be formu-

lated as follows

s = NDq, (11)

where s is a |C|-dimensional vector containing the document scores.

This formulation for S ′q(D) is similar to so called Translation Model for information

retrieval [BL99]. Translation Model is de�ned as follows:

T (q|D) =
∑
t∈D

l(t|D)r(q|t), (12)

where l(t|D) is document language model and r(q|t) translation model, following the

terminology of [BL99]. Now if we assume that the language model is uniform for all

t ∈ D, we can let λD = l(t|D). Furthermore, if we de�ne that the translation model

is based on the empirical probability P (q|t) derived from the co-occurrence matrix,

we can equal T (q|D) = S ′q(D).

Intuitively, the idea behind the above formulation is the following. We want to give a

high score to documents that contain either the query token q or many co-occurring

tokens {t|Λtq 6= ∅, t ∈ T }. Since co-occurring tokens contain many synonyms,
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hypernyms, and hyponyms of q, this scheme should reward relevant documents even

though they would not contain any occurrences of the query token q.

Naturally the co-occurrences include non-relevant tokens as well. We try to weight

relevant tokens against the non-relevant ones with P (q|t). The idea is that for

relevant tokens, Λtq should be large and Λtt (the frequency of token t) not be much

larger than that. In other words, to gain a high weight, token t should appear only

in the same documents as q, i.e. preferably It ⊆ Iq. Very frequent words have large

Λtq but also their Λtt is large and thus P (q|t) becomes small. In probabilistic terms,

we give high weight to term t if seeing it makes seeing q in the same document

probable. Correspondingly, we give a high score to document D if it contains many

tokens related to q.

The above scheme favors long documents. As each token in a document can only in-

crease the score, the more tokens the document has, the higher score it will get. This

is not bene�cial. Here the normalization term λD comes into play. A straightforward

�x is to take the average of the weights, or let

λD =
1

|D|
. (13)

This de�nition coincides with the uniform document language model, l(t|D) above

which assumes that seeing each token t ∈ D is equally probable. Semantically this

means that we favor documents that contain the maximum number of informative

i.e. rare words that co-occur with the query. This does not always produce desirable

e�ects, as we will see later on.

We employ also another approach to handle documents of varying lengths. The

lengths of web pages vary from one token (e.g. error) to full dissertations and books

of hundreds of pages. Lengthy documents are problematic not only for ranking, but

also for co-occurrence statistics. We de�ned the number of co-occurrences between

two tokens as Λij = |Ii ∩ Ij| i.e. the number of common documents in which they
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appear. A long document, say a dissertation about bioinformatics, may speak about

genetics in the �rst part and about machine learning in the latter part. Following

the above de�nition, the document would increase co-occurrence counts between

tokens related to genetics and machine learning, which lessens topicality of the co-

occurrences.

Even if a long document is only about one topic, the current formulation is sub-

optimal. For instance, a two hundred page book about global warming is a rich

source of topical co-occurrences. The document might mention token ozone a hun-

dred times, but each co-occurrence count between ozone and all the other tokens in

the book would increase only by one.

To overcome these problems, we segment the documents. Each document is split

into �xed-size segments during tokenization. In our experiments, a typical segment

size has been 300 tokens. The choice of the segment size is based on semantical and

technical considerations. In the semantic sense, the segment size de�nes the context

of a token. The chosen size should re�ect our belief on the extent of a token's

in�uence over the document. The segment size of 300 is based on the assumption

that a token's semantic context covers some 2-3 paragraphs.

On the other hand, the smaller the segment size, the fewer distinct co-occurrences

a document will produce. In an extreme case, the segment size of two reduces the

co-occurrence matrix to a bigram-like model. Each distinct co-occurrence increases

the space requirement of the index, as seen in Chapter 4.

Formally, we may extend the original document de�nition in Equation 1 to include

the segments. Document d is split to
⌈

Nd

K

⌉
segments as follows

si
d = (tKi+1, ..., tmin(Nd,K(i+1))), i ∈

[
0,

⌊
Nd

K

⌋]
, (14)

where K is the segment size and i gives the segment's position in the document.



33

Correspondingly, we may de�ne a segment set, Si
D = {t|t ∈ si

d}. Usually we are not

interested in the actual position of a segment in the document and Si
D becomes SD

that may refer to any segment in document D. The set of all segments in document

D in denoted by SD. Inverted sets take each segment into account separately

I t = {SD|t ∈ SD, D ∈ C}. (15)

Other terms, such as Λ and P (q|t), which are based on inverted sets, are derived

equally for It and I t. We use an overline to denote the segment-based version of

a term. Since conceptually the segment-based approach is not much di�erent from

the original formulation, di�erences being mainly in the co-occurrence matrix and in

the document score, we may use the original formulation for clarity in the following

sections. All the results are applicable to the segment-based approach as well.

We can now give a new de�nition of the document score,

S(D) =
1

|SD|
∑

S∈SD

∑
t∈S

P (q|t). (16)

Since segments are of equal length K (although the last segments in documents

may be shorter), there is no need for a segment-speci�c normalization term, like λD

above. However, documents may contain a varying number of segments, so for the

document score we take the average of the segment scores.

One could consider also a more sophisticated way to segment documents. The

segments might be overlapping or they could be of varying size depending on their

contents. Overlapping segments would be expensive to implement with the current

approach, as shown in Chapter 4, and their bene�ts are not clear.

Advanced segmentation schemes for content-based search have been considered in

the literature. For instance, [CYWM04] compares ranking quality between non-

segmented documents, �xed-size segments, a segmentation scheme based on HTML

tags, and a scheme based on the visual layout of a web page. In the study, �xed-size
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segments return consistently the best, or the second best results, right behind an

expensive layout-based approach that was introduced in the paper. Especially, the

�xed-size segments improved results compared to full documents.

3.4 Query Interface

Consider that instead of a singular q, we have a set of query words, q ∈ Q. The

original scoring function in Equation 10 could be easily extended as follows,

S ′Q(D) = λD

∑
t∈D

∏
q∈Q

P (q|t). (17)

However, this is not the only option. Think of the semantic viewpoint: What is the

user's intention when she adds more tokens to the query? We have two alternatives:

Either she wants to extend the query to cover more documents, or she wants to

constrain the query to a more speci�c subset of documents. The former is called

disjunctive and the latter conjunctive query.

Traditional keyword-based search engines, such as Google, are usually conjunctive,

since in the disjunctive scheme a long query can easily produce impractically many

results. Moreover, the higher number of documents match the query, the tougher it

is for the ranking method to ensure that the most relevant ones are ranked on top �

especially if the query is ambiguous. However, this is not an issue with AinoRank,

as we can a�ect the ranking behavior and the result set size independently from

each other, as we will describe in the following.

Keys & Cues

The �rst design criterion for AinoRank was usability. Even though our ranking

method might be highly predictable, robust, and scalable, ultimately input from
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the user de�nes whether the results are of any use � the right answer to a wrong

question does not help the user much.

As stated in the design criterion, the query interface should take into account the

discrepancy between the user's true information need and the actual query. More-

over, since another design criterion of ours, predictability, required that the user

must be able to re-phrase the query easily if the original query failed, we must not

resort to guess-work with respect to the user's intentions. If the system was eager

to guess, and it guesses wrong, and the user tries to re-phrase the query only to see

another bad guess, the query interface becomes a frustrating cat-and-mouse play for

the user.

In order to better understand the problem, let us consider what the users typically

search for. Based on a sample of 100-200 queries from a query log of the AltaVista

Web search engine, Rose and Levinson analyzed and interpreted typical search goals

of the Web users [RL04]. The results, as presented in their paper, are summarized

in Table 2.

First, consider that no ranking method was available: Search engine would return

the documents that match the exact query tokens in some random order. Which

of the query types in Table 2 would likely return a relevant document among the

top ten results in this case? Navigational (1), locate (2.4), and download (3.1)

queries might work due to proper nouns in the query. Some query types, such as

undirected (2.2) and obtain (3.4), might sometimes work if the query contained a

rare, speci�c word. If the goal was really broad or vague, such in undirected (2.2)

and entertainment (3.2) queries, the results might be satisfactory because of the

"anything goes" attitude.

This is the baseline. Under no circumstances should a sophisticated ranking method

produce worse results than no ranking at all. This requirement might feel trivial,
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but considering the heterogeneity of the goals, it is easy to focus on optimizing one of

them and forget the others. For example, one might build a sophisticated question-

answering system to serve open informational needs (2.1.2) and the resulting system

might be unable to serve simple navigational or download queries that contain a

single product number. Naturally, if the system does not aim at being a general-

purpose search engine, speci�city is justi�ed.

Let us make another thought experiment: Take a sheet of paper and cover the �rst

two columns in Table 2. Now, assume that the example queries were shown to you

in some random order. Could you assign each query to the corresponding search

goal just by looking at the queries? If you had no previous knowledge, how would

you know whether pella windows refers to a Web site (1), to a location (2.4), to

a computer program (3.1), or to an o�-line document (3.4)? Similarly, given the

query travel, would you return the Web site www.travel.com (1), an encyclopedia

page about traveling in general (2.1.2), or blog articles about traveling experiences

of an individual (2.3)?

As a human being can not guess intentions of another reliably, it feels unreasonable

to try to solve the question computationally. One can not expect that the user

provides enough information to make the queries unambiguous and her intentions

clear in the �rst place. The only reliable source that can explicate the intentions is

the user herself. Our approach is to let the user to use the system as a tool that

does not make any guesses but it does what it is told to do in a predictable way.

It is left on the user's explicit responsibility to command the tool to return desired

results.

We call this approach Keys & Cues. The core concept is that the user may control

the set of matching documents and their ranking independently from each other.

In this sense, the query interface is structured or multi-faceted: Query tokens may

have di�erent roles in the query string, namely, each token is either a key or a cue.



38

Similar ideas and rationales for this structured query approach can be found e.g. in

[KJ98, Bro95].

Keys correspond to the standard keyword interface, like, say, in Google. Cues are

used to rank the documents that match to the keys, using for instance Equation 16

above. Note that due to the nature of the ranking scheme, cues do not have to occur

as such in the matched documents. Instead, all tokens that co-occur with the cues

in the corpus are taken into account in ranking. One can think that keys are used

to �lter the desired content from the corpus and cues are used to sort the results.

It would be infeasible and nonsensical to try to distinguish keys and cues auto-

matically in the query. The roles of the tokens depend fully on the user's implicit

intention. All tokens t ∈ T are equally valid as keys and cues. The distinction

depends on the user, on query by query basis. Since the distinction between the

roles must be explicit, we reserve a special character, usually a slash '/', to denote

the cues. Another approach would be to let the user type keys and cues in two

separate input boxes.

Consider the following queries that exemplify various use cases of the query interface:

apple /computer Key apple is ambiguous. The user may explicate her intention

and disambiguate the query with a single cue. In this case, all returned docu-

ments contain token apple and the top-ranking results are about OS X, iPods,

and MacBooks etc.

computer /apple In this case, all documents containing token computer are re-

turned. The top-ranking results talk probably about the Apple products as in

the previous case, but they could be also about some similar products, such

as BeBox or Windows Vista, which are often characterized in the apple-like

terminology.

cluster /k-means The disambiguating cue can be also a speci�c term from the
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desired context. In this case, documents related to various clustering methods

are ranked on top � not only the ones that discuss about the k-means method.

book /buddha Cues can be used to specify the desired theme. In this case, the

user is interested in religious books. The opposite query, buddha /book would

return information speci�cally about Buddhism.

site:en.wikipedia.org /biology On the Web, a key can be used to specify a site

of interest. A cue can be used to sort contents of the site in a desired way.

george bush /foreign /politics Cues can specify an abstract concept that would

be di�cult to express in keywords.

nokia /suxors /rulez Since any tokens, also rare ones, can be used as cues, one

can use untypical forms of words or even misspellings to specify a certain style

for documents. In this case, the top-ranking results are probably opinionated

forum comments about mobile phones.

airplane /b52 A rare token as cue is often a good way to specify a detailed topic

of interest � in this case, large bomber planes.

test /19 /23 /29 /31 Since the ranking scheme is rather straighforward and me-

chanical, it is also very �exible. In this case, the top results are probably about

number theory and primality tests.

saddam hussein /uno /dos /tres Since tokens of one language are highly co-

occurring, one can use any foreign words as cues to specify a desired language

for the top results.

/how /tall /is /the /ei�el /tower Unintentionally, one can pose questions in

plain English and surprisingly often get an answer to the question within the

top-ranking results. The reason for this is that common interrogative words,
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such as how above, get only a small weight due to their high frequency � simi-

larly to other common words as is and the above. Thus, only topical words,

tall, eiffel, and tower in this case, get any remarkable weight and they

bring the documents that are related to the question on top. The small e�ect

caused by the interrogative tokens is often enough to raise the explicit answers

to the question amongst the very �rst results.

If the user does not specify any cues, we use keys as cues. The rationale is that

a query like computer /computer or george bush /george /bush should return

in some sense most prototypical examples of documents that match to the keys.

Moreover, this way the user may start to use the system similarly to other well-

known search engines that do not let the user to a�ect the ranking explicitly.

Table 3 shows some strategies how Keys & Cues may be used to achieve the search

goals of Table 2. Three strategies are used: First, if the query contains a proper

noun or other speci�c token, typically cues are not needed (1). Secondly, if the user

is interested in a particular topic, the most speci�c, and the most infrequent, token

is used as the key and the broader speci�ers as cues (2.1.2, 2.3). Thirdly, if the

desired information should appear in a speci�c context or it should be presented in

some particular style, indirect cues may be used. For example, in case of general

interest, one may use some general, non-speci�c words as cues (2.1.1, 2.2). If a

commercial context is desired, words related to selling and buying often produce

the wanted result (2.4). Similarly, any word that refers to the desired use or origin

of the information, may be a good cue (3.1, 3.4). If the results should appear in a

web page of particular style, one may utilize previous knowledge of the structure of

such pages to formulate matching cues (2.5, 3.2, 3.3). Note that these strategies are

given only as illustrative examples of use. In practice, each user �nds best strategies

of her own through trial and error.
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Search Goal Keys & Cues example

1. Navigational "aloha airlines", "duke university hospital",

"kelly blue book"

2. Informational

2.1 Directed

2.1.1 Closed "supercharger /what", "2004 election dates /list"

2.1.2 Open "baseball /death /injury", "metals /why /shiny"

2.2 Undirected "color blindness /cause /effect", "jfk jr /life

/work"

2.3 Advice "smoking /help /quit", "weights /walking"

2.4 Locate "pella windows /shop /sell", "phone card /street

/address"

2.5 List "travel /list /http /com", "amsterdam universities

/links"

3. Resource

3.1 Download "kazaa lite /download", "mame roms /zip /gz"

3.2 Entertainment "free xxx /porno /movie", "l.a. live /camera"

3.3 Interact "weather /cookies /javascript", "measure converter

/login /register"

3.4 Obtain "free jack o lantern patterns /images", "lesson

plans /handout", "house document no. 587

/scanned"

Table 3: Some strategies to achieve search goals with Keys & Cues
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The Keys & Cues query interface corresponds to the original design criteria as

follows. It takes into account the user's implicit information need by letting the

user control both the set of returned documents (keys) and their ranking (cues)

separately. The user may steer the results freely towards the desired search goal by

using the two facets. In this sense, the system should be usable in many situations.

Considering robustness, it is important that also rare tokens are allowed as cues, as

this allows the user to experiment with the system using her own name or with her

favorite dog breed etc. When the user sees how the system performs in a �eld that is

already familiar to her, she may transfer this understanding to other, more general

cases.

The user should be able to form a mental model of the system, either consciously

or unconsciously. The ranking scheme is easy to explain in layman terms: "You can

a�ect how the results are sorted by giving the system some cues about your interests.

The cues may be any words. The more words a document contains that are related to

your cues, the higher rank it will get." Now, if the system returns undesired results,

the user may re-phrase the query with other cues. Since the user has some idea how

the system works and she may trust that the results are robust regardless of the

query, she can make a sophisticated guess or predict which cues would produce best

results in her particular situation.

The next section shows how the system tries to ensure predictability and robustness

in case of multiple cues.

Multi-Token Cues

Traditionally, the quality of a ranking scheme has been measured by two metrics:

Precision, or how many of the results are relevant, and recall, or how many of all

relevant results were returned [BR99]. However, the user does not judge results in
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Precision Recall

Add / Remove kw conjunctive kw disjunctive, AinoRank

Modify AinoRank

Table 4: Mapping from the query interface to the ranking behavior

these terms. The user can either feel that the results are bad (low precision) or she

may want to see more good results (low recall).

A textual query interface gives the user two ways to a�ect the results: She may

either add and remove query tokens or she may modify any existing tokens. Table

4 summarizes the user interface options (add / remove, modify) and the ranking

behavior (precision, recall), which the user may want to tune via the query interface.

Entries "kw conjunctive" and "kw disjunctive" show how a keyword-based search

engine, that utilizes either a conjunctive or disjunctive query interface, works. Note

that in a "kw conjunctive" system, like in Google, there is no easy way to increase

recall. Similarly increasing precision is di�cult in a "kw disjunctive" system.

If only ranking is considered, there is one way to map controls to behaviors, which

is clearly more usable than the others: If the user wants more results, she adds

new tokens that describe what kind of new results should be returned. If the user

wants to change the results, she may change the query tokens. The term AinoRank

represents this mapping in Table 4. Consider the other alternatives: If recall was

to be increased by modifying tokens, the user is challenged with a di�cult semantic

question, namely which token could possibly produce more results. Correspondingly,

it would feel strange to increase precision by adding more words, since usually one

wants to increase precision if the results are bad, i.e. the current query did not

produce good results. In this case, it feels most natural to change the query instead.

Based on the discussion above, we can now re-formulate Equation 17, which was our
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Figure 8: Alternative Venn-diagrams for multi-token cues

�rst attempt to handle multi-token queries. Now we know that each token q ∈ Q

should extend the coverage of the ranking. The ranking should take into account

more "semantic categories", as de�ned by the new tokens. For instance, consider

that the user has ranked the results �rst with token Chevrolet and she notices that

the results are too speci�c, as she is interested in American cars in general. She

adds tokens Hummer and Lincoln. Now she would vaguely expect that the results

are ranked according to what is common in Chevrolets, Hummers, and Lincolns �

namely that they are all American cars. Our ranking scheme should aim at this

result. Furthermore, the scheme should ensure that individual tokens in the query

do not interfere with each other, so that the user may add any new tokens to the

query independently without unexpected side-e�ects.

Let us remind how P (q|t) de�nition reduces to inverted sets

P (q|t) =
Λqt

Λtt

=
|Iq ∩ It|
|It|

. (18)

Consider that we have multiple cue tokens, W = {q1, ..., qn}. Correspondingly, we

have inverted sets, WI = {Iq1 , ..., Iqn}. The Venn diagram in Figure 8 illustrates

the case for the three �rst tokens. If cue tokens are semantically related, it is likely

that there exists a set of documents that contains occurrences of all cues. This set
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is the intersection ŴI =
⋂

I∈WI
I, depicted by the darkest area on the left Venn

diagram. In the case of Equation 17, the weight is multiplied for the tokens that

occur in the intersection, {t ∈ D|D ∈ ŴI}, since each cue token q ∈ W ampli�es

the e�ect of these tokens in the summation. Correspondingly the relative weight of

the other tokens is decreased. Thus, if the user adds new cue tokens that are highly

overlapping with the previous cue tokens, she may inadvertently amplify the weight

of the old cue and the cue coverage does not extend as the user intended. Since

the user can not know which tokens are overlapping, the ranking mechanism must

include measures against this phenomenon.

The current solution in AinoRank is as follows. Given cue tokens Q, we de�ne the

corresponding cue set, Q, as follows

Q =
⋃
q∈Q

Iq. (19)

A cue set corresponding to W above is depicted on the right in Figure 8. In this

scheme, a new cue token qn+1 changes the cue coverage only to the extent that

the token qn+1 provides new information. If it happens that a new token is highly

related to the previous ones, say Iq2 ⊂ Iq1 , it does not add any new information and

the cues are una�ected, which the user can see easily.

To handle multi-token cues in the desired manner, we do not estimate individual

cues q ∈ Q independently. Instead, we estimate the probability of the cue set as a

whole:

P (Q|t) =
|Q ∩ It|
|It|

. (20)

The document score is estimated accordingly

S ′Q(D) = λD

∑
t∈D

P (Q|t). (21)

A philosophically inclined reader may contrast the concept of cue set to that of ex-

tension in semantics and semiotics [Lac96]. In the literature, the idea of representing
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concepts as sets [Kor85] or areas in space [Gar00] is not new. Even though the above

formulation of cue sets is justi�ed only in pragmatic terms, one may consider it as

a reminiscence of many previous, semantically more justi�ed, approaches.

3.5 Discussion

We are now ready to formulate the �nal document score for AinoRank,

SQ
D =

1

|SD|
∑

S∈SD

∑
t∈S

P (Q|t)

=
1

|SD|
∑

S∈SD

∑
t∈S

|Q ∩ I t|
|I t|

=
1

|SD|
∑

S∈SD

∑
t∈S

|(
⋃

q∈Q Iq) ∩ I t|
|I t|

.

(22)

This �nal score is based on segmented documents and cue sets. Formally, the pro-

posed search engine works as follows. The user submits a query via the query

interface. The query is a tuple (K, Q) where K is a sequence of key tokens that are

used to �lter a matching set of documents from the corpus. We may de�ne this

result set as follows

R = {D ∈ C|match(D,K) = 1}, (23)

where the function match returns 1 if the given document D matches with the given

keys K. The actual behavior of match is explained in section 4.1. Documents in

the result set are then scored using the second item of the query tuple, the cues Q.

Based on Equation 22 above, we get a scored result set in which each document is

accompanied by its score

SR = {(D,SQ
D)|D ∈ R}. (24)

The results are then ranked according to descending score

τ(SR) = (D1, ..., D|R|), SQ
Di

> SQ
Di+1

. (25)
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The ranked results τ are �nally shown to the user.

There are well-known algorithms to implement operations in Equations 23 and 25,

namely keyword matching and sorting, e�ciently. In the following chapter we will

show that it is possible to implement operations required by Equations 22 and 24

in a moderately scalable manner as well.
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4 Implementation

On the surface level, a Web search engine is a simple device, at least when com-

pared to a full-�edged relational database system. Its core data structures may be

immutable as all queries are read-only. Data and queries are mostly unstructured

and the supported query language is minimal compared to, say, Simple Query Lan-

guage for relational databases [RG02]. Few precautions are needed against data loss,

since the data is backed up in the Web anyway.

Scale is the challenge. Even medium-sized intranets, or subsets of the Internet,

are measured in tens of millions of documents nowadays. The system may have to

serve tens of millions of queries per day. Another great challenge for Web search is

crawling, or how to collect the Web pages in the �rst place. Despite these challenges,

current commercial web search engines manage to provide a remarkably smooth user

experience.

Given that the core challenges are "solved" by commercial o�erings in the case of

static ranking, this thesis focuses on a further challenge: We investigate whether

dynamic ranking, utilizing co-occurrences in the corpus, could be a feasible option

for an intranet or for small-scale Web search in the future.

To study the question, we have implemented an e�cient search engine, Aino. Aino

includes a full, distributable preprocessing pipeline from character set normalization

and language recognition to HTML tag removal and tokenization. Based on the

output of the preprocessing pipeline, e�cient indices are built that are optimized

for content-based ranking. The indices are explained in detail in Section 4.1 below.

Query processing, which includes keyword matching and ranking, is described in

the following sections 4.2 and 4.3 � the former presents a straightforward brute-

force algorithm for the ranking scheme that was presented in Chapter 3, and the

latter an optimized version of it. Finally, we show brie�y in section 4.4 how the
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Figure 9: Architecture of Aino

system is distributable to a cluster of servers.

Architecture

A short introduction to the anatomy of a search engine is needed in order to follow

the next sections. The subject is well covered in several books, e.g. [WMB99, BR99].

The description of the early Google architecture [PB98] gives a concise technical

overview of some implementation issues as well.

Figure 9 illustrates the essential parts. We divide the process in three distinct

phases:

1. Data harvesting or crawling

2. Preprocessing and indexing

3. Query processing

During the �rst phase, data is collected for indexing. After all, a search engine

can not search for anything it has not seen before. Depending on the application
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domain, data may originate from the Web, an email archive, or from any other

source. Collecting or crawling Web pages is a complex issue in itself and it is not

covered in this thesis. However, Aino is accompanied by an advanced Web crawler

called HooWWWer [Tuo05], which was developed in a sister project to Aino.

The purpose of the next phase, indexing, is to extract all necessary information from

the raw document stream produced in the �rst phase to e�cient data structures,

which are then utilized by the query processing in the third phase. Documents may

be in various formats and they may have been written in various languages using

exotic character sets. The �rst step is to normalize all documents into a common

format, typically to raw text encoded in Unicode or ASCII. Raw text is then fed to

a language recognizer, which uses 4-grams to detect language with high accuracy.

The basic method is explained in [CT94]. Aino uses a highly optimized version of

the method.

The next step is tokenization, which was brie�y introduced in section 3.2. During to-

kenization raw text is split into substrings or tokens, which become atomic elements

of documents. Depending on parametrization, tokenizer may take into account com-

pound words, phrases, dates, and numbers. Tokenizer maintains a mapping from

tokens to 32 bit identi�ers. At this point in the preprocessing pipeline, raw text

stream is converted to a stream of integer identi�ers. In practice, segments of a

document are represented as �xed-length lists of integers.

Tokenized feeds the encoded documents to the indexer. Indexing consists of several

phases during which various parts of the index are constructed. Traditionally, the

main purpose of the index has been to speed up query processing with an inverted

index. Inverted index is a mapping from tokens (token IDs) to all documents that

contain at least one occurrence of the corresponding token. Using this index, search

engine can quickly return all documents that contain tokens of the query. In our

case, the index is also used for ranking. The index of Aino is explained in detail in



51

the following section.

Size of the index grows in proportion to the size of the indexed corpus. Instead

of having a single monolithic index, the index is split into smaller blocks, as de-

picted in Figure 9. These blocks may be distributed to several servers, which allows

distributed query processing. The preprocessing pipeline is executed as a batch

process, independently from query processing. In a Web search engine, the indices

might be updated e.g. once per night. After the indexing pipeline has �nished,

the index blocks stay constant: Query processor uses them only to match and rank

documents according to queries.

Query processing consists of two parts: First, the front-end is responsible for show-

ing the Web interface of the system and for processing incoming HTTP requests.

Secondly, there is the back-end that interacts with the indices. The back-end is also

responsible for decorating the results, which mainly involves generating keyword-

in-context (KWIC) [BR99] descriptions for matching documents. Each description

is an excerpt from the document that includes at least some of the query tokens.

Moreover the query processing back-end is responsible for caching the results to

speed up processing of frequent queries.

When the user submits a query to the system, the query processing proceeds as

explained in section 3.5. However several technical factors make the processing

more complicated than the theoretical setting: First, the query must be parsed and

validated and it must be checked against the query cache. Secondly, query processing

is typically distributed to a cluster of servers, which requires a mechanism to dispatch

new queries to the cluster and collect and combine the results. This is explained

in section 4.4. Finally, ranked and decorated results are rendered to a HTML page

and returned to the user.

Some details were omitted in the above description. Most importantly, Aino sup-
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ports stemming of in�ected word forms using the Snowball stemming software

[Por01]. This increases quality of ranking especially for languages in which in�ected

words occur frequently, such as in Finnish. Due to language recognition, tokens in

each document may be stemmed according to the stemming rules speci�c to the

document's language.

Both the original in�ected form and the corresponding stem are stored in the index.

This ensures that the document is �ndable although the stemming process may be

inaccurate, or if the user is interested in the in�ected form in particular. Thus, stems

are used mainly to improve semantic quality of the co-occurrence statistics. In the

index, stems are stored as special meta-tokens. Meta-tokens may include also other

document-speci�c information, such as date, author, or category. Meta-tokens are

used in ranking similarly to ordinary tokens.

4.1 Index

Index is an immutable data structure whose purpose is to organize searchable data to

such a layout that search operations can be performed e�ciently. In our case, index

must support e�cient keyword matching and collection of co-occurrence statistics.

The following sections describe how we implemented the index. First, di�erent parts

of the index are characterized. Secondly, encoding of the index data is explained and

justi�ed. Thirdly, we explain the two main operations on the index, query matching

and collection of co-occurrence statistics.

Structure

The index consists of three sections: inverted index, forward index, and position

index. Each section has a separate table of contents (TOC) that maps a key to an

address in the section body. The index �le begins with a header that stores sizes of
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Figure 10: Index structure

the sections and some other bookkeeping information. This structure is presented

in Figure 10.

Using the notation from the section 3.2, body of the inverted index stores I t for

each t ∈ T , i.e. for each token t a list of segments in which t occurs. TOC of the

inverted index stores tuples (t, B), where B is an o�set to the corresponding I t in

the body. Since the tuples are ordered by t, we can �nd I t for any t in O(log |T |)

time using binary search.

Body of the forward index stores the document segments, or SD for each D ∈ C.

TOC of the forward index contains tuples (D, B), where B again points at the

corresponding segment in the body. Given a segment ID s, the corresponding SD

can be found in the constant time simply by referring to B in the sth entry in

the TOC. The key D in the tuple speci�es the document ID which this segment

belongs to. Thus, the mapping from a segment ID to the corresponding document

ID, s→ D, is a constant-time operation as well.

Position index stores locations of occurrences for each token in each document. This

information is needed by the phrase queries that require the query tokens to appear

in a �xed order in the matching documents. The body contains a list of tokens and
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lists of their positions. TOC contains tuples (s, B), where B points at the body as

above and s is the ID of the �rst segment that belongs to this document. Thus,

also the mapping from a document ID to its segments, D → s, is a constant-time

operation.

If the corpus is large, a separate index is built for each set of K documents, where

K typically varies between 100,000 and 2,000,000 documents, depending on the

nature of the corpus. Each index block should �t into the main memory of the

server that hosts the index, so that expensive disk IO can be avoided. This form

of parallelization is rather e�cient as only the TOC of the inverted index contains

overlapping entries between the index blocks.

The TOC's and the index sections are saved to a �le consequently. When the index

is loaded, the header and the TOC's are memory mapped to the process' address

space. The area that stays constantly in memory is shown in gray in Figure 10.

Parts of the section bodies are brought to the process' address space on demand

basis. This makes possible to use indices that are larger than 3GB, which is the

maximum size of the address space available for a single process in Linux. Thus the

only limitation for the index size is the total size of the TOC's and available disk

space. However, indices that do not �t into the main memory are impractically slow

for any realistic multi-user setting.

Encoding

The index is made of lists of identi�ers. An identi�er list, or an array of 32-bit

integers, is the only data type used in the index. Each index section employs lists

for a particular purpose: Inverted index contains lists of segment IDs for each token

ID, forward index contains lists of token IDs for each segment, and position index

contains a list of positions for each token in a document.
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A straightforward approach would be to encode the lists as such. A plain array of

CPU word-width values is extremely e�cient to access. The downside is that an

index that uses 32 bits per value takes a lot of space. Moreover, the space is wasted

for nothing, since the index seldom contains up to 4 billion segments or tokens,

which would justify the need for 32-bit values. Before building the index, one could

calculate the maximum number of bits needed per value and use, say, only 11 bits

per item. However, the bene�ts of easy and e�cient addressing would be lost since

the items would not be aligned to byte boundaries. Also, quite likely most of the

values are smaller than the maximum, thus using the maximum number of bits per

value is wasteful.

A well-known solution to this problem isDelta Coding [BR99]. First, list of identi�ers

is sorted to ascending order

(v1, v2, vn), where vi > vi−1. (26)

Now we may equivalently present the list as di�erences (or deltas, hence the name)

of each pair of items

(w1, w2, wn), where wi = vi − vi−1. (27)

The bene�t is that even though individual items may have arbitrarily large values,

their di�erences map to a smaller scale. In practice, in the index small deltas are

vastly more common than large ones, which can be seen in Figure 11. The �gure

shows the empirical distribution of deltas for the aforementioned Wikipedia subset.

The upper distribution is for the forward index, showing deltas for token IDs, and

the lower graph shows deltas of segment IDs in the inverted index. The peculiar

peak in the upper graph is due to a gap in the token ID mapping: Here the most

frequent tokens are assigned an ID below 2000 and the other tokens an ID above

that. The peak corresponds to the delta between the frequent and non-frequent IDs.
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We need an e�cient way to encode the deltas so that the frequent small deltas are

assigned a small number of bits per value. We might use a general-purpose entropy

encoding scheme, such as Hu�man or Arithmetic coding to assign codewords to values

according to their probability of occurrence [Mac03]. However, since the distribution

of values is known beforehand and it follows roughly exponential distribution so that

small values are much more probable than large ones, we may use some static coding

method for speed and simplicity.

Golomb coding is a static coding scheme that is optimal for geometric distributions

[WMB99]. Each input value x is divided into two parts, the quotient q and the

remainder r:

q =

⌊
(x− 1)

M

⌋
,

r = x− qM − 1.

(28)

The quotient q is encoded in unary coding and the remainder r in truncated binary

encoding that is a slightly more e�cient version of the normal binary code. Here

M is a tunable parameter. In practice, we estimate the best M for each list to be

encoded and store it together with the list.

If we choose M to be a power of two, division becomes a bit-shift operation and the

remainder can be found with a single bit-mask operation. This special case, which

yields an e�cient implementation, is called Rice coding. This code, together with

delta coding, is used to encode lists of identi�ers in the index.

Compared to plain 32-bit values, Rice coding gives compression ratio of approxi-

mately two in the forward index and over three in the inverted index. Thus, the

encoding makes the index considerably smaller than the corresponding index with

32-bits per value. However, disk space is not a scarce resource nowadays. Indices

are not moved during their lifetime, so the space requirement is not a major con-

sideration with this respect either. In contrast, we are concerned about speed of
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usage.

Space and time e�ciencies are interrelated via the memory hierarchy in modern

computers. The closer an item is stored to the CPU, the faster it can be accessed.

A modern X86-64 CPU has 16 × 8 bytes of space in the general-purpose registers,

which is the fastest storage area, and typically 64KB in the L-1 cache and one

megabyte of space in the L-2 cache that are the next fastest storages. A server in

a computation cluster may have 4GB of RAM and some 500GB of local disk space,

which is partly cached to the main memory by the operating system.

However, there are many factors, such as quality of the implementation, compiler

settings, and con�guration of the operating system, which a�ect how e�ciently the

memory hierarchy can be utilized. To better understand the behavior of di�erent en-

codings in practice, we have made some empirical measurements with the Wikipedia

subset. The measurements were taken on a server with 2.1GHz Intel Core 2 Duo

CPU with 2MB L-2 cache and 4GB of RAM.

To simulate real index usage, we performed two kinds of test runs: First, all items

in the index were accessed sequentially from the �rst to the last (label "full" in the

graphs). Secondly, items were accessed sequentially but randomly skipping some 10-

20 items, which simulates processing of a subset of the index ("random"). Each data

point is an average of four test runs, each of which was performed with a di�erent

random seed. Identical test runs, with identical random seeds, were performed for

a delta / rice -encoded index ("rice") and for an index with 32-bit values ("32bit").

Both the indices contained identical data. Index size varied from 100,000 segments

to 100,000,000 segments. The largest index took 19GB with 32-bit values and 5.3GB

with rice encoding.

Figure 12 shows processing times for di�erent test runs when the index is small

enough to �t into the disk cache as whole. One can notice that a sequential full
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sweep over the index is the most cache-friendly, and fastest, way to access the data.

Random access becomes increasingly expensive with large indices, when the disk

cache does not already contain the requested data and it must be fetched from the

disk �rst.

The most important characteristic of Figure 12 is that the processing times are

approximately the same for the rice-encoded index and the 32-bit version. This is

not evident, as decoding the rice / delta-encoded values takes 20-30 times more CPU

cycles than using the 32-bit values directly. The main cause for this is that the rice

coding compensates the larger decoding cost with more e�cient cache utilization.

Given compression rations of 2-3, we may �t twice as many rice-encoded document

segments in the L-2 cache compared to the sparser segments using 32-bit values.

Modern CPUs include a Performance Measurement Unit (PMU) that collects var-

ious statistics on the CPU performance during actual workload. We used OPro�le

module for Linux [Lev02] to sample the number of L-2 cache misses with di�erent

test runs. The results are depicted in Figure 13. As suggested by Figure 12, the full

sweep over the index manages to use the cache more e�ciently. In this case, rice

encoding produces approximately 50% less cache misses, which is comparable to the

actual compression ratio. When segments are processed in short random intervals,

rice encoding is clearly more e�cient. In this case, rice encoding increases the prob-

ability of hitting the next segment in the cache, as a larger number of segments �ts

into the cache at once. Correspondingly, a new segment request can easily reach

over existing 32-bit segments in the cache and cause an expensive cache �ush.

Similarly, a dense coding scheme is bene�cial if the index is much larger than the

available disk cache. This is the case in Figure 14. Whereas in the case of Figure 12

the index was memory mapped as whole for processing, here the index is processed

in a block-by-block manner. The disk cache may selectively keep some pages in

memory. As the runs were repeated four times for each data point with di�erent
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random seeds, rice-encoded index bene�ted from a larger amount of segments in the

cached pages.

To conclude, with large corpora dense encoding is justi�ed. If the index is small

enough to �t into the main memory with 32-bit values, a dense encoding scheme does

not bring any bene�ts. However, if the corpus is large, dense encoding makes possible

to process more segments in the main memory of a single server with minimal

performance hit. In any case, one should make sure that the index �ts into the main

memory as the gap between the disk and CPU speed is enormous.

Operations

In section 3.5 we brie�y introduced function match(D,K) whose purpose was to

determine whether query keys K match with a document D. In the following, we

describe how match is implemented. Our "query language" supports four di�erent
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match operations:

keyword(s) Given a query Q = (q1, q2, ..., qn), each token is �rst mapped to the

corresponding token ID using binary search in the lexicon. Then inverted lists

are retrieved from the inverted index. The result set is formed as follows:

R =
⋂
q∈Q

Iq. (29)

In total, keyword matching requires two O(log |T |) binary search operations

per query token and the �nal intersection that requires O(|Q|M log N) op-

erations where M = |minq∈Q Iq| and N = |maxq∈Q Iq| when intersection is

implemented with binary search.

negation Aino supports negation operator, −, which excludes the given token x

from the result set. This is implemented by treating set Ix as its own comple-

ment when computing the keyword intersection as above.

range The system for e-mail search, which is described in section 5.2, lets the user

retrieve all emails received over a given time period. This is implemented

by assigning each document (e-mail) a meta-token that corresponds to the

timestamp of an e-mail. A range of consecutive meta-tokens IDs were reserved

for this purpose. In this case, a range query was implemented as follows:

R =
L⋃

i=F

I i, (30)

where F and L are the start and end date IDs correspondingly. The time

requirement is O((L− F ) log |T |+ |R|).

phrase A phrase query, e.g. "George W. Bush" is matched using the position

index. Let P = (p1, p2, ..., pn) denote the phrase tokens. First, the intersection

of inverted lists of p ∈ P is computed as with normal keywords. This returns

a list of documents that contain all the phrase tokens in some order. For each
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document in the intersection, we then validate that the tokens occur in the

desired order.

Let Lp denote a list of locations for token p in a document D. Now we may

pick the rarest phrase token in the document, M = minp∈P |Lp|, and check

the locations of the other tokens with respect to it. Since the check can

be done with binary search, the order of phrase tokens can be validated in

O(M(|P | − 1) log N) time per document, where N = maxp∈P |Lp|. However,

since |P | and M are typically really small, almost always less than ten, the

validation is a reasonably fast operation.

Next, we explain the second operation supported by the index, namely collection of

co-occurrence statistics for content-based ranking. Recall the original de�nition for

the co-occurrence count between tokens i and j in Equation 5, namely Λij = |Ii∩Ij|.

Using the inverted index, we could evaluate this value in a straightforward manner

in O(log|T | + M log N) time, where M = min(|Ii|, |Ij|) and N = max(|Ii|, |Ij|).

Here we assume that a simple set-intersection algorithm is used: For each item in

the shorter inverted list, we check whether the item exists in the longer list using

binary search. The additional log|T | term is due to �nding the inverted lists in the

�rst place.

However, in order to rank documents with respect to a query token q, we would have

to evaluate all possible co-occurrences with q, which would require O(|T |M log N)

time where N = maxt∈T |It| or O(|T |N) if hashing was used. Given that number

of tokens |T | may be in the order of millions and the longest inverted list N in the

same scale, this cannot be considered a particularly e�cient approach.

Let us consider another approach. We may utilize the fact that we are interested in

all tokens that co-occur with a given query token q, namely Tq = {t ∈ D|D ∈ Iq}.

As one can easily see from this formulation, set Tq can be constructed by going
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through all the documents in Iq. Moreover, one can compute all values Λqt, t ∈ Tq

by going through documents D ∈ Iq and counting occurrences of all tokens in the

documents. By using the forward index, we can collect all co-occurrence statistics

for q in O(K|Iq|) time, where K is the segment size.

Multi-token queries are handled in a similar manner. Instead of going through doc-

uments D ∈ Iq, we process the documents in the cueset, D ∈ Q. An interesting

side-e�ect of this approach is that the cost to collect the statistics is directly pro-

portional to the frequency of the query token. We may utilize this fact to speed up

processing, as we will suggest in section 4.4.

4.2 Brute-Force Algorithm

Recall the formal overview on how our search engine processes a query in section

3.5. First, the query is parsed to keys K and cues Q. Then, the result set R is

formed that includes documents that match to the keys K. The cues Q are used to

form a cue set Q of documents from which the co-occurrence statistics are collected.

Using the collected statistics, documents in the resultset are scored, ranked, and

�nally shown to the user.

In a full-�edged search engine, query processing involves many other non-trivial

details in addition to the above operations, such as caching and snippet generation.

Most of these tasks are handled by Query Interface, as depicted in Figure 9. However,

here we concentrate on operations that are directly related to AinoRank, which is

the main contribution of this thesis.

We may divide query processing to three phases:

1. Matching

2. Scoring

3. Ranking
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Algorithm 1 Brute-force scoring algorithm

1: procedure BruteScore(Q)
2: Ω← ∅
3: for all SD ∈ Q do
4: for all t ∈ SD do
5: Ω[t]← Ω[t] + 1 . Accumulate |Q ∩ I t|
6: end for
7: end for
8: for all t ∈ Ω do
9: Ω[t]← 1

|It|Ω[t] . Normalize the token scores
10: end for
11: return Ω
12: end procedure

Matching, which produces the result set R, is a rather straightforward operation, as

described in the previous section. When the inverted index and the position index

are used, involved operations are not particularly demanding computationally. The

core operation is set intersection � a state-of-the-art algorithm to this problem is

presented e.g. in [BY04].

In the following, we present an algorithm for scoring, plus a sketch of an optimized

version, and two di�erent algorithms for ranking. The �rst algorithms for scoring

and ranking, which are presented in this section, are rather straightforward, brute-

force incarnations of the ideas presented in the earlier sections.

Algorithm 1 is used to compute a scoretable

Ω = {P (Q|t)|P (Q|t) 6= 0,∀t ∈ T }, (31)

where P (Q|t) is de�ned as in Equation 20. Considering the numerator |Q ∩ It| in

Equation 20, one can notice that the score can be non-zero only if SD ∈ Q. Thus,

it su�ces that the algorithm loops through all SD ∈ Q. Nominator values are

accumulated on line 5 and the �nal score is computed on line 9. The algorithm

�nishes by returning the �nal scoretable.

Let us analyze time complexity of Algorithm 1. Individual scoretable items Ω[t]
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Algorithm 2 Brute-force ranking algorithm

1: procedure BruteRank(Ω,R)
2: SR = ∅
3: for all D ∈ R do
4: SQ

D ← 0
5: for all S ∈ SD do
6: for all t ∈ S do
7: SQ

D ← S
Q
D + Ω[t] . Accumulate the document score

8: end for
9: end for
10: SQ

D ← S
Q
D

1
|SD|

. Normalize the document score

11: SR ← SR ∪ (D,SQ
D)

12: end for
13: τ(SR)← sort(SR)
14: return τ(SR)
15: end procedure

can be accessed in O(log |T |) time using any tree-structured array. Our current

implementation uses Judy arrays that are based on cache-e�cient 256-ary digital

tries [Bas04]. Token frequencies |It| are stored in the inverted index and they can

be accessed similarly to inverted lists. The �rst two loops require a sweep over

the forward index. In total, lines 1-7 can be performed in O(K|Q| log |T |) time

where K is the segment size. Score normalization on lines 8-10 can be performed in

O(|T | log |T |) time. It is worth of noticing that the only query-dependent factor in

the time requirement is |Q|, which corresponds to the frequency of query tokens.

Algorithm 2 presents a brute-force ranking algorithm that assigns scores to docu-

ments based on the scoretable Ω. The algorithm implements the document score of

Equation 22. The algorithm loops through documents in the given resultset R and

for each document D, it loops through its segments. Each token in the segments

may increase the document score SQ
D by an amount speci�ed by the token score

Ω[t]. The document score is normalized by inverse number of segments. Finally, the

documents SR are sorted according to their scores and returned to the caller.

Time complexity is dominated by the loops. A single document can be scored in
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O(K|SD| log |T |) time, on lines 4-10. Correspondingly, the full resultset is scored

in O(|R|KN log |T |) time where N = maxD∈R |SD|. Sorting can be performed in

O(|R|) time, for instance with Radix sort [CLR92], since integer scores can be used

as sort keys.

In total, the cost of ranking with algorithms 1 and 2 is as follows.

O(ranking) =

scoretable Ω︷ ︸︸ ︷
O(K|Q| log |T |) +

Ω normalization︷ ︸︸ ︷
O(|T | log |T |) +

document scoring︷ ︸︸ ︷
O(|R|KN log |T |) +

sorting︷ ︸︸ ︷
O(|R|)

= O(log|T |(K (|Q|+ |R|N) + |T |) + |R|).

(32)

The cost is dominated by two large factors: |Q| and |R|. The former factor is directly

proportional to frequency of cue tokens and the latter is directly proportional to

frequency of keys. Hence, a query in which both keys and cues are speci�c, for

instance "haggis /E113", can be evaluated with a reasonably small number of steps

whereas a really broad query, say "apple /food", takes a lot of resources to evaluate.

Fortunately, this phenomenon hints at many kinds of optimizations.

4.3 Top-K Algorithm

In order to understand how the previous algorithms could be optimized, let us see

how they behave in practice. Figure 15 shows how token scores Ω, produced by

Algorithm 1 above, are distributed in case of three di�erent queries with varying

frequencies. The most frequent query token, age, occurs in some 50,000 documents

in the Wikipedia subset. The second most frequent token, neolithic, occurs in 500

documents and damiens in ten documents. The queries have 185,000, 17,000, and

1050 co-occurring tokens, correspondingly. A notable characteristic in the distribu-

tions is that after a large number of tokens with a score of 1.0, there is a steep drop

in the scores. This suggests that only a small portion of co-occurring tokens might

have a notable e�ect in the document scores.

This hypothesis is further supported by Figure 16 that shows how score mass cu-
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Figure 15: Distribution of token scores Ω for three queries

mulates with the above queries. This �gure shows only the best half of the scores

of Figure 15. One can see that the best half of the scores make almost 100% of the

total score mass, besides the most frequent query age in which case the percentage is

about 90%. Based on these �gures, it seems that results of the previous algorithms

could be approximated by processing only the highest scoring tokens of Ω.

Above we recognized that that the size of the result set |R| is a major factor in the

cost of ranking. Each of the documents D ∈ R has to be scored token by token

and �nally the results must be sorted. Then, the ranked results are presented in a

traditional Web search interface that shows only ten results at time, starting from

the top ten results.

In practice, the users rarely bother to see more than the �rst ten results, as we

exempli�ed in Section 3.1. Thus, to a large extent, computing exact scores for all

documents in R is meaningless, as all we need is the best K results in order.



69

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  10  100  1000  10000  100000

%
 o

f t
ot

al
 s

co
re

 m
as

s

rank of a token in the scoretable

age (50k)
neolithic (500)
damiens (10)

Figure 16: Cumulative score mass of the best half of token scores Ω for three queries

Given that the document score function is a linear sum of form

SD = ZD

∑
S∈SD

∑
t∈S

φt, (33)

where φt is a token score independent of the document and ZD is a document-

dependent normalization factor, the highest φt are likely to determine the highest

SD. Theoretically, high token scores could distribute uniformly over the resultset,

but in practice in real-world corpora high scoring tokens tend to be also highly

correlated. Thus, high scores tend to cumulate to a small number of documents. This

phenomenon is visible in Figure 17 that shows how document scores are distributed

over the top-100 documents after the highest scoring half of Ω has been taken into

account, which accounts for almost 100% of the score mass. The �gure suggests that

one could �nd the highest scoring K documents just by considering a high scoring

subset of Ω. This would bring considerable savings in time as we would not have to

process the full resultset R.
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Algorithm 3 Top-K ranking algorithm

1: procedure TopRank(Ω,R,K, ∆, βsize)
2: τ(Ω)← sort(Ω) . Scores are sorted in descending order
3: α, β,S ← ∅
4: i← 0
5: repeat
6: i← i + 1
7: t← τ(Ω)[i] . Pick the next best token t
8: for all {D ∈ It|D ∈ R ∧D /∈ α} do
9: SD ← SD + Ω[t] . Increase score for document D
10: if SD > HeapMin(α) then . Top-K candidate?
11: SD ← DocumentScore(D, Ω)
12: HeapUpdate(α, K, D, SD)
13: end if
14: if SD > HeapMin(β) then . Top-βsize candidate?
15: HeapUpdate(β, βsize, D, SD)
16: end if
17: end for
18: δ ←

∑i+∆
j=i Ω[j] . Move score potential by one token

19: until |β| = βsize ∧HeapMin(α) > HeapMin(β) + δ
20: SR′ = {D ∈ C|D ∈ β}
21: τ(SR′)← BruteRank(Ω,R′)
22: return τ(SR′)
23: end procedure

Algorithm 3 presents a solution that guarantees that the K highest ranking doc-

uments have the highest scores amongst all D ∈ R and they are returned in the

correct order. Also, the next-best scoring set of documents is probably correct and

in the correct order, although this is not strictly guaranteed.

The algorithm works as follows. Let us denote by α a candidate set of K highest

scoring documents. The algorithm continues until we can be sure that α actually

contains the best documents. Let us denote by β a set of documents that are likely

to get promoted to α. The algorithm stops when there is no way for the worst

document in β to get promoted to α.

The algorithm assumes that the token scores in Ω are sorted in descending order

� this in ensured on line 1. The algorithm proceeds by processing one token at
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time from Ω, from the highest scoring one to the worst (line 7). For each token,

the score mass is distributed to all documents in which the token occurs, unless the

document belongs to α already (lines 8-9). If a document's score is higher than

that of the lowest scoring document in the α set, the document is promoted to α.

Function HeapUpdate replaces the worst-scoring document in the given set α with

a new document D, having score SD. If the set contains less than K documents, no

previous document is purged from the set. To speed up computation, we compute

the exact �nal score of document D on line 11 before adding it to α. This aims

at widening the score gap between the sets α and β. If the document score is not

enough to reach α, it might be enough for β anyway (line 14) that is expanded using

the same HeapUpdate function.

The score window δ, computed on line 18, is crucial for determining when α cannot

change anymore. At any step i, δ contains the maximum amount of the score mass

that can be still allocated to a single document. In other words, δ represents the

available potential for any document to get promoted to the top-K set α. Since token

scores Ω are sorted in descending order, the highest possible score mass, which is yet

to be distributed to documents, is in range [i, i + ∆] where ∆ is a free parameter.

The end condition on line 19 terminates the loop when we have distributed score

to a minimum number of documents βsize and when the lowest-scoring document in

βsize could not get promoted to α even if it got the full potential δ of the score mass.

Since all documents D /∈ β have lower scores than the ones in β, the end condition

means that there is not any document that could raise to α and which would be not

in β already. Necessarily, this implies that the set β contains the top-K documents.

The actual top-K set is then determined by computing the exact document scores

for all D ∈ β using Algorithm 2.

There are two free parameters, ∆ and βsize, that need to be set beforehand. The

latter, βsize, does not a�ect correctness of the results, but it can a�ect the execution
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time. The lower the value, the more di�cult it is to grow the score gap large enough

between β and α to reach the end condition. On the other hand, the higher the

value, the more exact document scores must be computed on line 21. In practice,

we have used values K = 10 and βsize = 1000. This has also the positive e�ect that

the �rst hundreds of results are likely to be correct, which should be enough even

for the most exploratory user.

Parameter ∆ controls the score potential. It represents our guess on the expected

amount of next-best scoring tokens that a document can reasonably contain. If the

algorithm was segment-based, i.e. It would be I t on line 8, we could set ∆ = K that

would guarantee that the results are always exactly correct. However, it is highly

unlikely that a document will contain high-scoring tokens only. Thus, typically we

set ∆ = 50 that is our sophisticated guess on the maximum number of high-scoring

tokens in a segment of K = 300 tokens. Note that a slightly incorrect setting might

only trigger the end condition a bit too early, which seldom leads to drastically

misleading results.

Let us analyze time complexity of the algorithm. Scoretable Ω can be sorted in

O(|Ω|) time using e.g. Radix sort. Sets α and β are implemented as Fibonacci heaps

[CLR92], which makes it possible to implement function HeapMin in a constant

amortized time and HeapUpdate in O(log βsize) time. The latter is practically a

constant as well, since βsize is a �xed parameter.

If function DocumentScore is not considered (as it is not required by the algorithm),

the loop on lines 8-19 operates in O(|R|) amortized time. Here we consider both

HeapMin and HeapUpdate to be constant-time operations. In the worst case, the

outer loop on lines 5-19 goes through all tokens in Ω, which results to O(|Ω||R|) time

complexity for both the loops together. Since R′ is of a constant size βsize, the exact

scores can be computed in O(KN log |T |) time on line 21, where N = maxD∈R |SD|

as above.
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Total worst-case time complexity O(|Ω| + |Ω||R| + KN log |T |) is unrealistically

pessimistic. In practice, inverted lists for the highest scoring tokens are short, at

least far from the |R| scale. Typically, the end condition is triggered after half of

the tokens in Ω are processed. Thus, we can approximate that the average time

complexity is in scale Θ((M + 1)|Ω| + KN log |T |) where M is the average length

of inverted lists (M = 47.25 for the Wikipedia subset). Compared to the time

complexity of the brute-force ranking algorithm in Equation 32 this is a remarkable

improvement when |R| is large, say in the order of tens of thousands. If |R| is small,

especially when |R| < βsize, Algorithm 2 is likely to be faster and we may use it

instead. In practice, we make the choice on query by query basis.

4.4 Discussion

Algorithms 1, 2, and 3 show that it is possible to use the full co-occurrence matrix

for content-based ranking by computing parts of the matrix on �y. When the index

has a suitable layout and it is encoded in an e�cient manner, performing ranking

on-line is not infeasible. E�cient dynamic ranking is made possible especially by the

fact that the exponential distribution of token frequencies is re�ected in the token

and document scores, which leads to an e�cient algorithm. Moreover, since a search

engine may return only the top ranking results, only a small subset of the matching

documents have to be scored, which reduces the computational load even more.

Figure 18 shows a comparison of the two ranking algorithms. On the x-axis, which

is the rightmost horizontal axis, one can see |R| i.e. the number of matching docu-

ments. On the y-axis, which is the leftmost horizontal axis, one can see frequencies

of the single query token. On the z-axis, the time used to rank the resultset either

with Algorithm 2, BruteRank, or Algorithm 3, TopRank, is shown.

Time e�ciency of BruteRank is linearly dependent on the resultset size, as implied
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by Equation 32. In contrast, since TopRank ranks only the best K documents, the

resultset size does not have a major impact on it, if the resultset is large enough.

When the resultset is really small, TopRank is less e�cient than BruteRank.

Both the ranking algorithms depend on the frequency of the query tokens via |Ω|

i.e. the number of co-occurring tokens. In the �gure, this can be seen as a small

bump on the y-axis. However, the e�ect is logarithmic in the case of BruteRank and

not very strong with TopRank either, even though in the worst-case time e�ciency

of TopRank is linearly dependent on |Ω|. Actually, with TopRank the e�ect of |Ω|

becomes stronger when the resultset becomes smaller, as a larger number of tokens

in Ω have to be processed in order to di�erentiate the top ranking documents from

the rest.

In practice however, the total ranking time is strongly dependent on |Ω|, as the

token scores Ω have to be computed via Algorithm 1, BruteScore. As BruteScore
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uses an extremely straightforward approach to collect co-occurrence statistics, which

is rather ine�cient and wasteful, there should still be room for optimization. In the

following, we present an idea how to improve Algorithm 1. After that, we brie�y

explain how query processing can be parallelized.

Dense Co-occurrences

One can see from Figure 5 that the 10,000 most frequent tokens have two orders

of magnitude more co-occurring tokens than the other, less frequent ones. This

implies that most of the entries in the forward index are dominated by the most

frequent tokens, which is also a natural consequence of the Zip�an distribution of

token frequencies, as shown in Figure 4.

The token scoring Algorithm 1 accumulates token occurrences one by one. If a

query token is frequent and consequently size of the cueset Q is large, collecting the

co-occurrence statistics is an expensive operation. A straightforward solution is to

store a pre-computed co-occurrence matrix for the most frequent tokens separately.

Given the Zip�an distribution of token frequencies, there is only a small amount of

frequent tokens and consequently the size of the matrix is not astronomical.

Thus we split the forward index section (see Figure 10) into two: An explicit co-

occurrence matrix for the N most frequent tokens and a sparse forward index for

the infrequent ones. An alternative view to this dichotomy is that we use binary

encoding to store frequent co-occurrences and a kind of a unary coding for sparse

ones. Actually, one might see a peculiar correspondence between this approach and

the two-part Golomb coding that was presented in Equation 28.

Considering Algorithm 1, this makes token scoring a constant-time operation for

the N most frequent tokens, as for these, scoretable Ω is pre-computed in the index.

Formally, this does not change the worst-case time complexity for the algorithm but
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it improves its average-case performance signi�cantly.

Parallelization

Keyword matching is a so called embarrassingly parallel problem � it can be par-

allelized with no particular e�ort: Each block of documents can be indexed and

processed independently from others. If a static ranking scheme is used, document

ranking can be distributed as easily. This is the secret behind scalability of the

major Web search engines.

In our case, the situation is slightly more complicated. The index blocks depend on

each other via the global co-occurrence statistics: First, each block of documents con-

tributes to the global co-occurrence statistics. Secondly, document ranking within

each block depends on the common scoretable Ω that is based on the aforemen-

tioned statistics. Fortunately, the token and document scoring algorithms can be

performed in parallel and only the �nal results need to be shared.

We may distribute query processing to several servers or slaves, each of which handles

a single index block. The query interface or the master node, which is typically

hosted by a separate server, distributes tasks to the index nodes and receives the

results over TCP or UDP.

In Section 4.2 we introduced the three phases of query processing, namely matching,

scoring, and ranking. Correspondingly, distributed query processing can be divided

in the following phases:

1. (M) Query distribution

2. (S) Computing co-occurrence statistics

3. (M) Computing scoretable

4. (M) Scoretable distribution

5. (S) Matching
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6. (S) Ranking

7. (M) Merging results

Here (M) denotes an operation performed by the master node and (S) an operation

performed by a slave. All operations marked with (S) can be performed in parallel.

Essentially, these tasks are handled by the same algorithms that were presented

above. Tasks performed by the master operate on outputs of the algorithms and

their time complexity is either O(|Ω|) or (|R|) at most.

Communication costs are dominated by the phase 4, or scoretable distribution. In

the worst case, we have to transfer scoretable of scale O(|T |) to each slave. The cost

can be reduced with various encoding schemes and compression methods but given

the gigabit Ethernets of today, this is seldom necessary.

The number of slaves required is naturally determined by the size of the corpus. In

order to keep response times low, each index block should �t into the main memory

(disk cache) of the slave that hosts the block. In practice, this limits the size of a

single index block to some 1,000,000 - 2,000,000 documents when a slave has 4GB

of RAM. An additional bene�t of distributed query processing is that the system is

more robust: In case that an index node crashes, the system continues to operate

seamlessly with the remaining indices. The system is able to process queries as long

as at least one of the index nodes is operational.

We have implemented two di�erent distributed query processing systems for Aino:

One in C using UDP multicasts and one in Erlang which is a functional programming

language that has built-in support for distributed computing [AVWW96].
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5 Demonstrations

In this chapter we introduce three demonstration systems that are based on Aino.

The methods of this thesis were born in the Search-Ina-Box project at the Complex

Systems Computation Group of the Helsinki Institute for Information Technology.

In this project, several demonstrations were made to study and present promising

applications of content-based search. The demonstrations presented here were used

to evaluate quality and performance of AinoRank with various kinds of real-world

corpora. Thus, this chapter serves also as the conclusion, showing how methods

presented in this thesis can be, and are, applied in practice.

These demonstrations are implemented by the author, except the Web crawler

HooWWWer by Antti Tuominen [Tuo05] that is used in the �rst demonstrator.

The systems have been presented and described in several conference papers, which

are only summarized here. The �rst demonstration, a public Web search engine

covering the .FI domain, is described in part in [TS05]. The second system for

searching e-mail archives is described in [PTBT05] and demonstrated in [TPT05].

The third system, which is used to search and analyze patents, is developed for the

Patent O�ce of Finland who was a partner in the project.

5.1 Web Search

For any method of information retrieval, Web search is the grandest challenge of

them all. There is an in�nite amount of documents3, data is extremely noisy, and

any token or document may be relevant to some user. Aino was designed with this

challenge in mind in the �rst place.

In 2005, we collected a corpus of some 4.2 million web pages from the .FI top level

domain. For this purpose, a web crawler called HooWWWer [Tuo05] was developed

3Quite literally, if the crawler gets stuck in a cycle of the Web graph
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Figure 19: Aino.hiit.�: Front page

in a sister project of Aino. The corpus contained some 12 million tokens and the

index took 5GB of space in total.

The demonstrator was publicly available at Aino.hiit.fi for �ve months from May

to September in 2005. Query processing was distributed to seven index nodes and

one node acted as the query interface. One index node crashed during the demon-

stration period due to a disk failure, but the system experienced no downtime during

its operation � a prime example of the additional robustness gained by distributed

query processing. Another, updated demonstrator with improved algorithms and

some �ve million documents was running on Spring 2007.

Figure 19 shows the front page of the Aino.hiit.fi web search engine and Figure

20 its result page. Table 5 shows some queries and the corresponding highest scoring

entries of the scoretable Ω. The results show how high-scoring tokens correspond to
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Figure 20: Aino.hiit.�: Result page

Query Highest scoring entries of Ω

akrr akrr05, amklc, krbio, openconf
semanttinen semanttisen, semanttisten, semanttista, semanttisesti
pragmatiikka pragmatiikan, semantiikka, fonologia, kontrastiivinen
parturi kampaamo, kampaamot, maahantuojat, kauneudenhoito
nenä korva, kurkkutaudit, sisätaudit, naistentaudit
matala korkea, pensasmainen, kasvista, lämpöisestä
äpy äpyvän, rähästö, äpyn, wappulehti
yxin voisittexte, iltajutust, listäkää, burggaballonkin
halonen tarja, presidentti, tasavallan, halosen

Table 5: Highest scoring tokens for some queries in Aino.hiit.�
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various kinds of linguistic phenomena present in a rich corpus like the Web.

In the following, some example queries are shown with the corresponding top ranking

results. The excerpts are the actual snippets produced by the search engine. More

examples can be found in [TS05]. Notice how an ambiguous token jukola can be

disambiguated by using di�erent cues and how cues are used to hint at a certain

disposition in the last example.

• jukola /simeoni

1. Simeoni, liuhuparta, valittaa se "ihmisparka, syntinen, saatana, kurja".

2. Juhani, Tuomas, Aapo, Simeoni...

3. Heikki Kinnunen (Aapo), Heikki Alho (Simeoni), Arno Virtanen (Timo),
Ilari Paatso (Lauri) ja Juha Muje ...

• jukola /juoksu

1. Nuorten Jukola 2002

2. on tullut tutkittua suunnistuskarttoja ( tio-mila, jukola, tanska jne.

3. Jukola-katsastus...

• mcdonalds /kamalaa /yäk /kuvottaa

1. Face it, you smell like McDonalds and Wallmart/ By killing you I'm
akting globally, doing a small part.

2. liha tulee ulkomailta (siis jos mun mcdonalds tietämys pitää paikkansa).

3. McDonalds on vähän toisenlainen ongelma, terveydellinen ongelma.

4. 'ylikanallista mcdonalds'-kulttuuria, joka yksinkertaisesti hävittää molem-
mat kulttuurit?

5.2 E-Mail Search

E-mails are a natural target for content-based search. They are textual, abundant,

and they lack hyperlinks, which makes link-based ranking schemes unfeasible. In

addition to search of the plain textual content, we were interested to study whether

other types of information available in the emails, such as the sender, recipient, time

and topic of the content could be used to enhance possibilities to �nd interesting
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Figure 21: Mail Archive Miner: Social network analysis with AinoRank

content. We envisioned a system that was based on a powerful content-based ranking

scheme, namely AinoRank, and on top of that, a rich set of tools was provided

to combine, analyze, and re�ne the results. The system is described in detail in

[PTBT05] and it was demonstrated �rst in [TPT05].

We got access to a large-scale email-archive that contained 20GB of emails from

public mailing lists. An index of 2.5 million emails was created which included

4.4 million tokens in total. The index required 3.3GB of space. In addition to

AinoRank, the system included a probabilistic model based on Multinomial Principal

Component Analysis [BJ06], which was used to capture general themes or topics in

the corpus.

On the leftmost list, Figure 21 shows three resultsets, the �rst of which is made by

combining results of the two previous searches. The �gure shows a social network

that is automatically inferred from the chosen resultset. By choosing a node in the
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graph, the user could restrict the results to a speci�c person or retrieve all emails

whose style correspond to that of the chosen person.

5.3 Patent Analysis

The Patent O�ce of Finland was interested to evaluate feasibility of content-based

search for patent documents. Similarly to emails and web pages, there are tens of

millions of patent documents publicly available. On the average, a patent document

is considerably longer and less noisy than an average email or a web page, which

translates into higher quality co-occurrence statistics.

The patent o�ce had some speci�c needs regarding the system. As it would be used

together with a traditional patent database that supports only Boolean queries, it

should suggest topical keywords given some tokens as seeds, which in turn could

be used to query the original database. Fortunately, this requirement was rather

straightforward to ful�ll using a slightly modi�ed version of the BruteScore algo-

rithm. The user interface for this function with an example query can be seen in

Figure 22.

We indexed a smallish corpus of some 100,000 European patents. The resulting

index takes 1.2GB and consists of 1.4 million tokens. Ratio of the number of tokens

to the number of documents re�ects the exceptional length of an average document.

In addition to the keyword suggest mechanism, the system includes functions to �nd

characteristic and discriminative tokens in a patent application and a Keys & Cues

-style interface for patent search which is shown in Figure 23.
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Figure 22: Patent Cruncher: Keyword sets with AinoRank

Figure 23: Patent Cruncher: Patent search
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6 Conclusions

In the previous chapters we have described a system that helps the user to �nd

interesting content among tens of millions of documents. We started by present-

ing theoretical and philosophical underpinnings of statistical content-based search.

After this, we described a novel content-based ranking method, AinoRank, that

comprises of a structured query interface and a document scoring function based on

the full co-occurrence matrix of tokens. We gave an e�cient algorithm to �nd the

highest scoring documents in the corpus. Finally, we summarized three real-world

applications of the system.

Certainly, this work is not conclusive. As we mentioned in the beginning, this

work was motivated by the need to have a solid and understandable basis for more

sophisticated approaches. Yet, the presented system has proved to be a well-placed

stepping stone for various experiments in information retrieval, as exempli�ed by

the Web, e-mail, and patent search applications that we described above.

There are two continuing lines of research: First, we believe that by further utilizing

distributional features of data and the scoring functions, we may improve e�ciency

of the system drastically. Also we believe that the computational load could be

reduced by approximating the results instead of computing exact scores and ranks

for the documents.

Secondly, concerning usability of the system and quality of the results, we would like

the system to be even more transparent to the user than it is currently. Furthermore,

we would like to improve the ranking method semantically. The current method

does not take the full advantage of distributional features of tokens, which could

be derived from the co-occurrence statistics. Finally, we would like to clarify the

connection between this method and various probabilistic and information theoretic

formalisms.
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