
Magrathea: Building and Analyzing Ubiquitous and Social Systems

Jukka Perkiö and Petri Myllymäki

Helsinki Institute for Information Technology

Department of Computer Science

P.O. Box 68, FI-00014 University of Helsinki, Finland

{jperkio, myllymak}@cs.helsinki.fi

Abstract

Ubiquitous systems are rapidly becoming a more and

more commonplace part of our everyday life. These sys-

tems may contain different classes of very heterogeneous

components that have to function seamlessly together. A

prime example of a class of ubiquitous components is given

by the personal mobile devices. They are all pervasive

and emerge in many forms: mobile handsets, PDAs, etc.

Their features and computational powers make them a very

capable platform. We present a pervasive agent- and sensing

platform Magrathea that can be run on different kinds of

computational devices. Magrathea can be used to build

complex pervasive systems. As a practical example of the

usage of this platform, we use it on top of personal mobile

devices to investigate the structure of social networks of

different individuals and to simulate viral behavior of agents.

We also discuss analytical tools to further investigate, model

and simulate the data obtained through our platform.

1. Introduction

Today’s mobile devices offer a very capable and appealing

platform to function as a part of pervasive systems. Some

requirements for the components of ubiquitous systems are

ability to sense, mobility, wireless connectivity, computa-

tional powers etc. Since the components of such systems

tend to be rather heterogeneous, not all the components have

to posses all the properties. Nevertheless, personal mobile

devices such as mobile phones, PDAs, etc. tend to have a

rather large subset of desired features already available.

The scope of different tasks that these systems are de-

signed to handle is vast and it is growing as the systems

become more commonplace. Currently the trend seems to be

that the systems are designed for specific tasks and the inter-

operability between different systems is not very good. In the

long run this is bound to change, since the more pervasive

systems one strives for, the more interoperable they have to

be. Agent Oriented Programming (AOP) as a programming

paradigm is one possibility to try to make both designing and

implementing interoperable ubiquitous systems easier. AOP

also forces modularity in design and implementation, which

is a clear benefit when dealing with high requirements for

interoperability. We present Magrathea1 a pervasive agent-

and sensing platform that can be used hardware platform

independently to build pervasive systems. Magrathea can be

run on most computers, PDAs, many mobile phones etc.

Magrathea agents are mobile agents and they can move

wirelesly between devices that run the Magrathea platform.

Consider a common scenario in which one has context

specific information needs. Location, time and the social

situation are examples of context that may affect the sit-

uation. Classic examples are the menus and price lists when

one is close to restaurants or timetables in train stations.

There are already services that advertise these things through

Bluetooth, SMS or other means of wireless connectivity.

The common factor with these kinds of services is that

they almost always function in push fashion. The user gets

the message regardless whether he or she needs the service

at that specific moment. The obvious answer for that is to

implement services in pull fashion. This way the users get

only the advertisements of services they need. For querying

location specific services, the AOP paradigm is a natural

choice. The operations are simple and there may be a large

number different services that the user is interested in given

a specific location and time.

Personalization is an important aspect for any truly ubiq-

uitous system whether it deals with tasks like the example

above or just personalizing the user interface of the gadget

of choice. Personalized agents are a good starting point for

this. A related aspect to personalization is to understand the

social relations between users. This information can be used

not only for personalization but also for inferring context e.g.

whether there is somebody of user’s social circle present in

a situation. Consider an example, where we are interested

in investigating how information or agents spread through a

population. The spreading patterns are defined by the social

relations of the given population. This can be investigated

e.g. in the spirit of reality mining [8] and [9] using Bluetooth

scan data to infer the social structure of the population. This

method is valid and provides nice understanding of the social

networks within the population. If one is mainly interested

in the spreading patterns, then we can add some degree

of accuracy to the observations by using mobile agents.

1. Preliminary results of the platform were reported in [13].

Observing spreading agents we can observe the exact path

the agent moves from individual A to individual B instead

of just knowing that that specific path exists. By changing

the parameters of the agent we can define how long one

has to spend time with another so that the hop of the agent

happens. We can also define other conditions that have to

be fulfilled. This clearly adds to the accuracy and diversity

of observations.

Another interesting avenue for research with ubiquitous

social systems is to use them for simulating viral behavior.

Suppose we are interested in knowing how a certain viral

agent behaves in a certain population, e.g. people in an office

building etc. We can try simulating this using computer

simulations. In reality this kind of simulations may be very

complex and computationally expensive but for the sake of

illustration we assume a very simple simulation where we

build a model for the behavior of the population and another

model for the behavior of the viral agent. This kind of

approach is well justified and used in many epidemiological

simulations. However models are always approximations of

the phenomena that one tries to model. Clearly the accuracy

of the simulation depends on the quality of the models that

we use. In this case we have two models, one for the viral

agent, and one for the human population that is in contact

with the viral agent.

Suppose now that we can greatly improve the quality of

the model for the population. This unquestionably improves

the quality of the simulation as a whole. As all computer

models are approximations of the real phenomena, the

highest possible quality is attainable not through the use

of models but through the use of accurate observations of

the phenomena. Now the question is how can we accurately

observe a real phenomena and at the same time run a

simulation about it. In our example case we have two

models, one for the viral agent and one for the population.

One can observe the behavior of viral agents in laboratory

conditions but on a real population it is not possible to

do a controllable study both for the ethical and technical

reasons. Hence we clearly need a computer model for the

behavior of the viral agent. The behavior of the population

on the other hand is quite possible to observe to a very high

accuracy given a suitable ubiquitous system. Personal mobile

devices with wireless connectivity provide means for the

kind of ubiquitous system that would make the simulation of

our example case more accurate. With wireless connectivity

we are able to detect other devices in proximity very fast

and with the computing capabilities of these devices we

can run a model of the viral agent on that device. The

model of the viral agent can also propagate from one

device to another, hence infecting other devices in proximity

according to the model coded in the agent. In our simple

example simulation we have two approximative models that

define the accuracy of the simulation. Now we are able to

replace the other model – the model for the population – by

accurate observations, and hence our simulation in that part

is close to perfect.

One very important question related to all pervasive

systems are the privacy and security concerns that raise from

the close observation of individuals’ daily activities. One can

not emphasize that too much. Concerning our platform, the

main principle to the privacy issues is that the users are

aware of the purpose and implications and that the research

has their consent. Also the underlying technical solutions

must guarantee some minimum level of protection, so that

unauthorized access to the data is not possible. From the

security point of view the platform has to be designed so

that unauthorized agents can not be run on it.

The rest of this paper is organized as follows: In Section

2 we present the design, architecture and implementation of

the platform, in Section 3 we discuss the analytical tools

to utilize the empirical data that the platform produces, in

Section 4 we present results of empirical- and simulated

experiments that validate the functionality of our platform.

Finally in Section 5 we present our conclusions.

2. Design, architecture and implementation

In this section we describe the design choices, architecture

and the implementation of the Magrathea platform. We

also discuss the security and privacy implications of the

Magrathea platform.

2.1. Design principles and choices

The most important design principle of the Magrathea

platform is simplicity: the platform provides only the basic

functionality and the more complex application logic are

left as the responsibility of the agents. On the other hand

the platform must be able to provide enough services for the

agents so that they can be of reasonable size and complexity.

Even though currently the nature of our platform is in

the research domain, the security and privacy issues are

important. In [11] the authors discuss questions related to

specific mobile applications that expose the social location of

individual in social networks. They present some guidelines

for the design of such systems. Our work, mainly as a

research platform, differs from mobile applications quite a

lot, but the issues raised in [11] are valid however and have

to be considered as one can also see a path for our work to

be extended to the commercial direction.

From the security point of view one has to consider

questions related to the agent execution and and spreading.

There has to be mechanisms to prevent unauthorized agents

to be executed and a mechanism for limiting the operations

available to the agents has to exist. On the mobile phone

domain – which is the domain we use the platform in these

experiments – there are two barriers that limit the allowed

operations in the device. The hard one is the Symbian OS

platform security [15], and the soft one are the limits set

by the Magrathea platform. The latter one is important

when one runs the platform on other devices than Symbian

based mobile phones, for example desktop computers. The

Symbian platform security is based on using digital cer-

tificates and digital signatures that specify the capabilities

each program running on Symbian OS can have. As our

platform is coded using the Python programming language

the hard limit, on Symbian based mobile phones, is set by

the capabilities that are granted to the Python interpreter

that we use. Our principle is to use only the minimum

set of capabilities that are needed by a fully functioning

platform. The second limit is set by the platform itself. The

platform can check which agents are allowed to perform

certain operations. This can be achieved through the use

of digital signatures [14]. Currently we have implemented

resembling functionality in lightweight manner using MD5

checksums.

The privacy point of view is twofold: How to prevent

unauthorized access of the data and how to protect users’

privacy when the platform is in use. As our platform is

not a production environment and not in commercial use,

these issues are dealt with trust based approach. This does

not mean that we do not take these issues seriously. The

solution for preventing unauthorized access is to use digital

signatures. That mechanism is good and proven in many

fields of computer science, electronic commerce, etc. The

privacy issues are dealt case by case depending on the types

of systems one is building. As one use case of the platform

is investigating social networks, it is quite clear that the

privacy concerns have to be dealt with. Most importantly all

the users have to understand the nature of the system. The

platform does not provide other forms of privacy protection

than the fact that for each device only the neighboring

devices are visible and the agents’ spreading path is not

visible in the spreading agents themselves.

As our approach is based on trust, the communication

between devices is not encrypted, and the platform does

not provide services for encryption. The platform provides

services only for digital signatures. There are no limitations

for the agents encrypting parts of the data though, but such

functionality is solely on the responsibility of the agents.

2.2. Architecture

The Magrathea architecture shares characteristics from

both client–server and peer to peer architectures. From the

device and communication centric viewpoint the architec-

ture is clearly a peer to peer one, since the devices are

communicating directly without any servers in the middle.

On the other hand, from the platform centric viewpoint,

the architecture is a client–server one, since the platform

performs the role of a server for the multitude of agents that

play the role of client. In this case the clients use services

of both the server on the local device and the remote device.

The Magrathea platform consists of the following com-

ponents.

• Control server is the server – normally in the Internet

– that controls remotely the individual devices. The

control is done in pull fashion, i.e. the devices report

to the server periodically and then act according the

server instructions. The control server is also used for

storing log data from the device.

• Platform controller is the local controller in the device

that is responsible for controlling the platform behavior

in the local device. Platform controller communicates

with the control server and uses the platform services.

• Magrathea server listens for the connections from

other Magrathea devices and uses platform services to

authenticate requests and store the agents in the device.

• Platform services are the services that the platform

controller and Magrathea server use for authenticating

requests, communicating with the control server and

other communication needs.

• Agent scheduler is responsible for executing periodi-

cally the stored agents in the device. The scheduler uses

the platform services for checking agent privileges.

• Agent storage is a simple storage in a device for the

agents.

• Agent services are the services for the agents i.e. the

clients in the device. These services include APIs for

agent propagation, controlling the life span of the

agents, querying for other agents in the device, querying

for other devices in proximity etc. These services also

include most of the standard operations of the used

scripting language.

Figure 1 shows the dependencies between different compo-

nents.

The modus operandi of the Magrathea platform is simple.

The aim is to provide all the agents a fair execution and the

complex application logic is left as the responsibility of the

agents. When a Magrathea device starts up, it performs a

series of tasks that are listed and explained in detail below.

1) Start up the platform controller and set up the internal

data structures for the existing data in the device. The

data includes the Internet access point, control server

address and possible existing agents in the device.

2) Set up the Internet connection for the connection to

the control server. The access point to use and the

control server ip–address are the only parameters that

have to be preconfigured in the device.

3) Connect to the control server and receive a static ip-

address for the WiFi connectivity. We chose this kind

of address assignment over more elegant strategies

(see e.g. [12]) because of the underlying design prin-

ciple of simplicity and the resulting reliability. At this

Agent storage

Agent services

Agent schedulerPlatform controller

Magrathea server Platform services

Figure 1. The dependencies of Magrathea platform components.

import magrathea, random

magrathea.propagate(0.75)

todie = random.random()

if todie <= 0.1:

magrathea.die_out()

Figure 2. Example of a dummy Magrathea agent with-

out any specific application logic. The agent propagates

to the neighboring devices with the probability of 0.75

and dies out with the probability of 0.1.

point also a list of other authorized devices and their

addresses is downloaded.

4) Receive the possible new agents. The main strategy

for spreading agents is randomly pass them to the

neighboring devices but this way specific devices may

be handled appropriately if the system requires that.

Also receive possible configuration changes for the

device.

5) Start up the Magrathea server to listen for connections

from other devices through the wireless connectivity.

6) Start up the agent scheduler. The strategy for agent

scheduler is simple periodic execution of the agents in

the device in random order. That is the only strategy

that guarantees fair execution of all agents in case

there are more agents on the device than it is possible

to execute in one cycle of the scheduler. This strategy

is also nicely in line with our design philosophy. For

the possible new agents it is guaranteed that they will

be executed once before the already existing agents

on the device. After the first execution the strategy is

same for all the agents.

7) Periodically connect to the control server and pull

possible new agents and configuration changes and act

accordingly.

Figure 2 shows an example Magrathea agent.

2.3. The implementation

The platform is implemented in Python2, which is also

available3 for Symbian series 60 mobile phones. For the

experiments in this paper we use only these phones. The

specific model that we use is the Nokia N80 phone. This

phone has Bluetooth and WiFi (802.11g) connectivity addi-

tional to the EDGE/GSM 850/900/1800/1900 and WCDMA

2100 standards, a three megapixel camera and support for

the Python programming language.

As means of communication between the devices we use

WiFi. WiFi is both reliable and fast means of communica-

tion. The other option for inter device communication would

be the Bluetooth, but we chose WiFi over Bluetooth for the

reliability reasons. It appears that the WiFi communication in

this context simply is far more reliable than Bluetooth both

in connection breaking and the device crashing. On the other

hand the WiFi communication is much more expensive in

terms of battery life and we use the WiFi radio at its lowest

transmission power. Low transmission power also means

short range, which is exactly what we need. Combining both

means of communication would be ideal but remembering

our main design principle, which is simplicity, we chose to

use only WiFi.

The implementation is done using Python scripts and

Python extensions implemented in C++. This choice is jus-

tified by the rapid development phase that the use of Python

makes possible. Python is a full interpreted programming

language, which provides both simple scripting capabilities

and state of the art object orientated features. Aside of being

implemented mostly in Python, all the agents are coded in

Python as well, which makes the coding of agents a very

fast process. Since the Python implementation for series 60

phones is not as complete as the standard version of Python,

the needed extensions were implemented using standard

Symbian C++ APIs.

2. http://www.python.org

3. http://sourceforge.net/projects/pys60

Symbol Explanation

G A graph.

V Set of nodes (vertices) in a graph.

E Set of edges in a graph.

A Adjacency matrix of a graph.

D Connectivity matrix of a graph.

S System matrix of a graph.

λ1,S Largest eigenvalue of system matrix

λ1,A Largest eigenvalue of adjacency matrix

dG(i) Degree of node i.
ηi Fitness of node i.
Πi Probability of node i acquiring a link to/from a new node

in fitness model.

ρ(η) Fitness distribution for fitness model.

θ Multinomial parameters.

l Number of links to add when adding node to graph.

Z Scaling constant.

β Agent birth rate. This is the probability that the agent infects

neighboring node and it is coded in the model of the agent.

δ Agent death rate. This is the probability that an agent dies

spontaneously in an infected node and it is coded in the

model of the agent.

Table 1. The notation used throughout the paper.

3. Modelling Magrathea behavior

At the conceptual level the system consists of agents and

carriers. If the carriers are people, as is the case here, the

resulting graph resembles the social graph of the population.

It is not the true social graph however as it also contains

connections between people who just happen to be in the

proximity of each other even though they may be total

strangers to each other. The empirical data that the system

produces relates to three aspects of the system that are:

• The evolution of the network of relations between the

carriers,

• the behavior of the population of carriers and

• the spreading of viral agents within the population.

We discuss each of the three aspects below. Table 1

summarizes the used notation.

3.1. The evolution of the social graph

A simple generative model for graphs is the variant of

Erdős-Rényi model [10], which assumes edges to be added

independently to the graph with uniform probability. This

model generates graphs that one hardly finds in realistic

situations such as the Internet, citation networks or some

social networks [1]. This model is not interesting for our

purposes since the degree distribution of nodes will be such

that the model does not produce scale-free graphs.

Fitness model [3] is based on the idea that nodes compete

in order to acquire a link to/from another node. The fitness of

a node is the inherent competitive quality of each particular

node. The more fit the node is, the more it acquires links to

other nodes. The model starts with a small number of nodes

and then at each step samples the fitness parameter η from

distribution ρ(η) and adds new nodes to the system so that

a node i already in the system acquires a link to the new

node with probability

Πi =
ηidG(i)

∑
j ηjdG(j)

. (1)

The basic form of fitness model assumes that the number

of new links added to the system when a new node is

added is constant. When one considers the formation of

social networks in real social situations this may not be

realistic. We take this into account by additionally sampling

the number of links l to add at each node addition from a

special case4 of multinomial distribution, i.e.

l ∼ Multinomial(1, θ).

Fitness model also assumes that the fitness is a static

property of a node. This may not be realistic either as it

is reasonable to assume that the interestingness of a person,

e.g. an actor or politician is not constant but changes during

time. We do not consider these aspects in our experiments

but one can consult e.g. [7], [2] for further reference.

The most important aspect of this model in our setting

is that it can be used to extend the empirical results for

simulations. One only estimates the fitness distribution, the

multinomial for the number of links to introduce to the

system at each time and the link weight distribution for new

links in order to generate much larger networks with similar

properties as the empirical data.

3.2. The behavior of carriers

One can also investigate some behavioral aspects of the

carriers using the data our system produces. The two main

aspects that are available are:

• Temporal social interactions and

• the location of the carriers as a function of time.

The former is readily available from the logs of the system

and the latter is available as well, provided that there are

stationary nodes whose location are known. Given such

nodes and the recorded interactions between the carrier

nodes and the stationary nodes one can also estimate to some

degree the location of carriers that are not in proximity of

any known stationary node.

A simple model for the pair-wise co-occurrence behavior

of the nodes i and j is

p(i, j) =
1

Z
Dij . (2)

This means that the link structure of the graph and the

connection weights D are generated by the process presented

in Section 3.1 and then at each time step the appearance of

nodes i and j together is sampled as above.

4. Sometimes this distribution is called categorical distribution or simply
discrete distribution.

3.3. The spreading of viral agents

The spreading of viral agents in a given graph G = (V, E)
is defined by the properties of the viral agent and the

properties of the graph. The simplest case is when all the

connection weights between nodes are equal and the viral

agent has constant probability β to infect its neighbors and

constant probability δ of spontaneous death. In this case the

survival of viral agent is defined solely by the ratio β/δ. It
is shown in [16] that if this ratio

β/δ
<
>

1

λ1,A

,
viral agent dies out,

epidemic happens,
(3)

where λ1,A is the largest eigenvalue of the adjacency matrix

of graph G. In the above, if the (equal) connection proba-

bility (i.e. the weights) between nodes is not 100%, one has

to take that into account in the agent birth rate β.
It is not realistic to assume equal connection weights

between nodes or constant agent birth- or death rate. In

realistic social situations the strength of connections between

individuals vary and some individuals are more resistant

for some viral agents than others. The simple threshold

condition presented above does not hold for dynamic graphs.

In [5] a model for information survival in dynamic graph

topologies is presented. This model takes into account

different connection strengths between nodes, node specific

transmission probabilities and possibility of nodes dying and

resurrecting. The survivability of agents, information, etc.

is predicted by following procedure. One forms a system

matrix, which describes the graph so that the diagonal

elements give the probability of nodes staying alive and off-

diagonal elements give the probability of node i infecting

node j. The survivability of agent or information is defined

by the largest magnitude eigenvalue λ1,S of the system

matrix so that if

λ1,S
< 1,
> 1,

viral agent dies out,

epidemic happens.
(4)

For further reference one should look at [4], [5], [6], [16].

One can apply the above model with slight modifications

for analyzing the Magrathea behavior. The difference is

that instead of having node specific death and resurrection

probabilities, we use still viral agent death probabilities.

If one wants to model more complex configurations, e.g.

consider the effects of temperature or the lightness of

environment etc. these models do not suffice anymore. This

is the place where one needs simulations and empirical

observations combined and our pervasive platform enables

us to do exactly that.

4. User experiment

A user experiment was performed in February 6-19,

2008 using Nokia N80 smart mobile phones running the

Parameter Value

Number of participants 10

Length of the experiment 8 working days

Length of the agent life cycle 1 day

Initial number of agents per device 1

Contagiousness of agents Maximum (prob. 1.0)

Propagation on time 300 ± 120 s.

Propagation off time 300 ± 120 s.

Max. number of agents to propagate at one cycle 5

WiFi transmission power 4 mW

Physical setting Office building

Table 2. Summary of the experimental setting for the

user study.

Magrathea platform. The aim of the experiment was to

evaluate the platform and to investigate how the spread of

agents can be used for analyzing the structure of the social

network of participants. The experiment consisted of ten test

subjects carrying the devices and they were instructed as

follows:

1) When you go to work, turn on the phone and keep it

with you all the time until you leave for home.

2) When you leave, turn off the phone and put it in the

charger.

3) You may recharge the phone during the day when

sitting in the office but only if you are sure that you

remember taking it with you any time you leave the

office.

The experiment was repeated identically daily and the

setting was following:

• When the phone is turned on, it deletes all the agents

in the system and initializes the platform with one

maximally contagious agent that is specific to the

device.

• When the phone detects another device in proximity,

the agent migrates to that device with the probability

of 1.0.

• Because of high power consumption of WiFi network

it is kept on only periodically making the propagation

functionality also periodical. The WiFi radio transmis-

sion power is set to its lowest level possible.

Table 2 summarizes the settings for the user experiment.

The experiment produced some 167000 lines of log data

that includes the agent spreading patterns and some debug

info of the system. The graph of the social network within

the test subjects is also found in this data. As the spreading

patterns are defined mostly by the social graph within the

test subjects, we first discuss that.

In Figure 3 the empirical social graph of our user exper-

iment is shown. The graph is quite densely connected but

many of the connections are rather weak, as can be seen

in Figure 4, which shows only strong connections. This is

further illustrated by the basic statistical figures shown in

0

1

34

5

6

82

7 9

Figure 3. The resulting social graph of our experiment

visualized showing all the connections.

0

1

3

8

2 4

67 5

9

Figure 4. The resulting social graph of our experiment

visualized showing only important connections when

both the succeeded and failed connection attempts are

treated similarly.

Table 3 and by the visualization of the connectivity matrix

of the graph shown in Figure 5.

It seems that within this experimental setting the fitness

of the nodes (see Table 1 and Eq. 1 for definition) is

defined firstly by the presence of the subject at the office

and secondly by the social interactions. There are reasons to

believe that the social interactions would be more important

than the mere presence at the office had the experiment been

larger, however. This is based on the fact that our experiment

was done in a very confined setting, whereas truly pervasive

setting would result richer social interactions, e.g. at home,

at hobbies, etc. It is also worth noticing that the strong

correlation of presence at the same place at the same time

implies social relation but does not necessarily mean it.

Parameter Value

Average connectivity between any two nodes 0.011

Highest connectivity between any two nodes 0.080

Lowest connectivity between any two nodes 0

Average connectivity within neighborhood of any node 0.019

Highest connectivity within neighborhood of any node 0.049

Lowest connectivity within neighborhood of any node 0.007

Average degree of nodes 5.8

Highest degree of nodes 8

Lowest degree of nodes 3

Table 3. Summary of the resulting social graph.

Figure 5. Visualized connectivity matrix for the nodes in

the social graph of our user experiment.

The user experiment was repeated daily from the state

where each device is infected by only one viral agent.

Figure 6 shows the average number of viral agents that

have spread to the device during a single day in the course

of the experiment. We measured the size of the epidemic

by the number of foreign viral agents in the system. An

agent is foreign to a device if it has not originated from

the device where it is found. In our experimental setting

the maximum possible number of foreign agents in the

system is 90 (see Table 2). Figure 7 shows the average,

fastest and slowest progression of the epidemic measured.

As we can see the progression of the spreading agents does

not reach the maximum during any day of the experiment.

Nevertheless had we run the experiment continuously long

enough without starting it over every day, the epidemic

would have spread to the maximum given the parameters

we used.

4.1. Simulations

We run simulations using two kinds of data. First we used

the empirical data and second we generated larger networks

from the empirical data. In the remaining section we present

 0

 2

 4

0 1 2 3 4 5 6 7 8 9

N
u

m
b

e
r

o
f
v
ir
a

l
a

g
e

n
ts

 i
n

 d
e

v
ic

e

Device

Average of viral agents in the device at the end of a day.

Figure 6. Daily average of foreign viral agents in a

device.

 0

 20

 40

 60

S
iz

e
 o

f
e

p
id

e
m

ic

Time (one day)

Daily observed progression of an epidemic of viral agents

Average
Fastest
Slowest

Figure 7. The daily progression of the spreading agents

when the experiment is repeated. The y-axis shows the

number of foreign agents in the whole system.

the results of simulations for two small cases as they serve

only as examples how to do simulations on top of the data

our platform produces.

As a result of the user experiment we have the complete

log of all activity within the system, which can be also

observed in real time during experiments. As an illustrative

example we chose to investigate how the epidemic would

have spread had we not started the experiment from the

beginning each day. We chose to use only the real recorded

interactions between the test subjects and examined how the

parameter β affects the evolution of the epidemic within our

test subjects. Figure 8 shows the results for this simulation.

As the network is connected and the agent death rate δ
is zero, the epidemic will always eventually spread to the

whole network.

 0

 30

 60

 90

S
iz

e
 o

f
e

p
id

e
m

ic

Time (whole experiment)

Simulated progression of epidemic during the whole experiment

β = 1.0, δ = 0,
β = 0.1, δ = 0

β = 0.01, δ = 0

Figure 8. Size of the simulated epidemic with different

parameters. The simulation was done using the real

recorded connections between devices. Y-axis shows

the number of foreign agents in the system as a function

of time.

For generating graphs with similar properties as the em-

pirical data we use the fitness model with the multinomial

sampling for the number of new links and we also sample

the connection weights for new links. One has to estimate

following parameters in order to generate a graph.

1) The fitness distribution: we estimated it by defining

the fitness of each empirical node to be the mean of

connections it received from other nodes and normal-

izing that by the most fit node. This resulted the fitness

being between 0 and 1. The normalized fitness scores

of the nodes were then linearly interpolated to 100

discrete bins.

2) The link distribution, i.e. the number of links to add at

each node addition: we set it to Multinomial(1, θ),
where θ = (0.7, 0.15, 0.1, 0.025, 0.025). This is not

the link distribution over the whole graph.

3) The connectivity distribution, i.e. the weight for each

new link added: we used the exact empirical distribu-

tion from our user experiment.

We tried a series of simulations on generated graphs of

different sizes. The graph in Figure 9 was generated using

the above parameters. The empirical links and nodes are

shown in darker color than the generated links and nodes.

Figure 10 shows the size of an simulated epidemic on that

graph, when the initial condition was such that every node

was initialized to have one node specific viral agent. This

setting was similar to our user experiment. As it can be seen

the virus death rate δ controls whether the epidemic forms

or not and the birth rate β affects more on the speed of the

spread of the epidemic. Figure 11 shows results on the size

of the epidemic when the initial condition was such that all

0

1

3

8

13

37

2 4

6 7

19

27

18 5 32

33

10

17

22

24

12 14

1115 16

21 26

28

30

31

9

23

41

354036

47

2042

45

34

39

2529 38

49

43 44

48

46

Figure 9. A generated graph of 50 nodes using fitness model and multinomial sampling for the number of new links

to add at each node addition. The fitness distribution is estimated from the empirical data from our experiments.

The empirical links and nodes are shown with darker color than the generated links and nodes.

 0

 500

 1000

 1500

 2000

 0 200 400 600 800

S
iz

e
 o

f
e

p
id

e
m

ic

Simulation epochs

Simulated epidemic in a generated graph

β = 0.9, δ = 0.025
β = 0.9, δ = 0.1
β = 0.9, δ = 0.4
β = 0.9, δ = 0.8

Figure 10. Size of the simulated epidemic with different

parameters in a generated 50 node graph with similar

properties as the empirical data. The initial condition

was such that each node had one node specific agent

present in the beginning of the simulation. This setting

was similar to our user experiment.

the nodes had all the agents present in the beginning of the

simulation. For both cases above the maximum size of an

epidemic is 2450.

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800

S
iz

e
 o

f
e

p
id

e
m

ic

Simulation epochs

Simulated epidemic in a generated graph

β = 0.9, δ = 0.025
β = 0.9, δ = 0.1
β = 0.9, δ = 0.4
β = 0.9, δ = 0.8

Figure 11. Size of the simulated epidemic with different

parameters in a generated 50 node graph with similar

properties as the empirical data. The initial condition

was such that every node had all the node specific

agents present in the beginning of the simulation.

In Figures 10 and 11 one also notice that the size of the

epidemic is not the same at the end of both runs. That is

because we show only 800 first simulation epochs and the

state of the simulation has not stabilized completely yet.

5. Conclusions

We have presented Magrathea: A pervasive agent- and

sensing platform in order to investigate how to use mobile

agents

• as basic building blocks for ubiquitous systems,

• to investigate the structure of social networks and

• to simulate viral behavior within a population.

The motivation for the Magrathea platform is two-fold:

First the design and implementation of ubiquitous systems,

especially with their interoperability requirements pose a

challenging task. One answer to this task is to use a single

(mobile) agent oriented programming platform on multiple

hardware platforms. Second we wanted to investigate the

use of ubiquitous systems for analyzing social networks and

run simulations of the spread of viral agents. The more

pervasive the systems are, the more possibilities for analysis

and simulations they provide.

We presented the design and implementation of the Ma-

grathea platform. We also discussed the generative models

in order to further analyze different aspects of the platform,

i.e. the evolution of social networks, the behavior of agent

carriers (users) and the spread of agents within users. We

also performed a user experiment and simulations in order

to validate the functioning of our platform.

Our experiments provided us with positive results on the

main aspects of the platform. Agent oriented programming

provides means for rapid development of complex pervasive

systems on different hardware platforms. Ubiquitous systems

have potential to be used for analyzing social networks. Dis-

tributed computing and simulations on ubiquitous systems

are yet a neglected niche but there is a huge potential for that

when the pervasive systems become more matured, general

and commonplace.

One last thing worth mentioning are the almost endless

possibilities for biological viral modelling using all the time

richer sensing capabilities of personal mobile devices. The

models for viral agents can be very sophisticated using

the sensor information that the devices provide. Examples

include temperature, lightness, location, acceleration, humid-

ity, etc. The limits are set by the capabilities of the devices

and the devices are getting better all the time.

In the future we plan to further develop the platform

and use it to build and study larger scale pervasive systems

and to run larger simulations combined with richer sensing

capabilities.

Acknowledgments

This work was supported in part by the SensorPlanet

project of Nokia, by the IST Programme of the European

Community under the PASCAL Network of Excellence, and

by TEKES under the PUPS project.

References

[1] R. Albert and A.-L. Barabási. Statistical mechanics of
complex networks. Rev. Mod. Phys., 74(1):47–97, Jan 2002.

[2] L. A. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley.
Classes of small-world networks. Proc Natl Acad Sci U S A,
97(21):11149–11152, October 2000.

[3] G. Bianconi and A.-L. Barabasi. Competition and multi-
scaling in evolving networks. EPL (Europhysics Letters),
54(4):436–442, 2001.

[4] D. Chakrabarti. Tools for large graph mining. PhD thesis,
Pittsburgh, PA, USA, 2005. Chair-Faloutsos, Christos.

[5] D. Chakrabarti, J. Leskovec, C. Faloutsos, S. Madden,
C. Guestrin, and M. Faloutsos. Information survival threshold
in sensor and p2p networks. In INFOCOM, pages 1316–1324.
IEEE, 2007.

[6] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and
C. Faloutsos. Epidemic thresholds in real networks. ACM
Trans. Inf. Syst. Secur., 10(4):1–26, 2008.

[7] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of networks
with aging of sites. Phys. Rev. E, 62(2):1842–1845, Aug 2000.

[8] N. Eagle. Machine Perception and Learning of Complex
Social Systems. MIT, 2005.

[9] N. Eagle and A. S. Pentland. Reality mining: sensing complex
social systems. Personal Ubiquitous Comput., 10(4):255–268,
2006.

[10] P. Erdös and A. Rényi. On random graphs, i. Publicationes
Mathematicae (Debrecen), 6:290–297, 1959.

[11] G. Iachello, I. Smith, S. Consolvo, M. Chen, and G. D.
Abowd. Developing privacy guidelines for social location
disclosure applications and services. In SOUPS ’05: Proceed-
ings of the 2005 symposium on Usable privacy and security,
pages 65–76, New York, NY, USA, 2005. ACM Press.

[12] M. Mohsin and R. Prakash. Ip address assignment in a mobile
ad hoc network. In Proceedings of MILCOM 2002, 2002.

[13] J. Perkiö, P. Myllym̈aki, V. H. Tuulos, and P. Boda. Ma-
grathea: A mobile agent- and sensing platform. In H. R.
Arabnia and V. A. Clincy, editors, Proceedings of the 2008
International Conference on Wireless Networks, July 14-17,
2008, Las Vegas, Nevada, USA, pages 494–500. CSREA
Press, July 2008.

[14] R. L. Rivest, A. Shamir, and L. M. Adelman. A METHOD
FOR OBTAINING DIGITAL SIGNATURES AND PUBLIC-
KEY CRYPTOSYSTEMS. Technical Report MIT/LCS/TM-
82, 1977.

[15] M. Shackman. Symbian os v9 – Platform security, 2005.

[16] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. Epi-
demic spreading in real networks: An eigenvalue viewpoint.
In srds, volume 00, pages 25–34, Los Alamitos, CA, USA,
2003. IEEE Computer Society.

