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Abstract
The abundance of short-range radios, such as Bluetooth,

in the current office and urban environments opens up new
possibilities for data modeling and analysis. Although indi-
vidual devices are constantly moving and active only sporad-
ically, various environments have specific statistical charac-
teristics. Mobile handsets are often personal in nature, so the
statistics reflect also behavioral patterns of their users.

In this paper we first demonstrate how prototypical pat-
terns of behavior may be found in data produced by Blue-
tooth scanning. It appears that cyclical nature of the patterns
reflect well various daily routines of test persons. Our second
model demonstrates that rich Bluetooth environments are of-
ten stable enough so that they can be used for locationing
without any base stations.
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1 Introduction

In recent years the penetration of devices providing short
range wireless connectivity has increased rapidly. The Blue-
tooth radio especially is largely integrated in mobile phones,
PDAs and laptops. Every week 10 million Bluetooth radios
are shipped, resulting in an estimated 550 million shipped
Bluetooth devices in 2006 [11].

The short range radio can be used to connect to sensors
distributed in the environment. Mobile phones, often provid-
ing the wireless connectivity, have the computing power as
well as memory to collect, process and store various sensor
data. Additionally mobile phones are perceived as personal
devices mainly being at the same location as the users are.

The abundance of Bluetooth-enabled devices, plus their
implicit role as personal identifiers, make Bluetooth sensing
a valuable source of information. Numerous existing studies
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utilize the phone as part of a sensor network, for example
in telemonitoring and telemedicine [8, 10], tracking and po-
sitioning [7, 1], context awareness [3] and social proximity
sensing [13, 9].

In the following we demonstrate and explore the potential
of rich Bluetooth environments. We will show that it is possi-
ble to derive complex behavioral patterns from the collected
Bluetooth data, in the tradition of Reality Mining [9]. We
will also present a probabilistic model for indoor location-
ing, related to ideas presented in [6] and [1]. In contrast to
many previous approaches, our model does not require any
stationary beacons. We conclude with some ideas for future
work.
2 Data

The Bluetooth class 2 radio has a maximum range of 10
meters and therefore provides information of the Bluetooth
devices in the proximity of the scanning device. An appli-
cation was running on the mobile phone which scanned ap-
proximately every thirty seconds for other Bluetooth devices
in the proximity. The scanning results were sent via GPRS
to a backend server.

Fourteen mobile phones with this application were dis-
tributed to selected users working in an office building.
The users were encouraged to carry this Bluetooth scanning
phone, additional to their personal phone, with them while
being in the building. We also asked the users to leave the
phone over night in their office for recharging.

We placed fifteen passive Bluetooth beacons in the build-
ing, which provided us the ground-truth for positioning. The
beacons were standard off-the-shelve USB Bluetooth don-
gles for PCs. Once started up, by connecting to a PC, the
Bluetooth adapters were disconnected from the PC without
interrupting the power supply (use of a battery pack) and
placed at defined locations.

The Bluetooth scanning data of users were collected on
the backend server for approximately 10 days. It was pos-
sible for us to monitor the data reception to ensure that all
phones and beacons were operating properly. The data set
consists of 2,867,167 rows of

(PhoneID, timestamp,MAC)

tuples. Some of detected MACs correspond to known loca-
tions (beacon MACs).

Even though our test site might not correspond to a typ-
ical office environment of today, the trend is obvious: Ur-



Table 1. Bluetooth Data Summary
Description

Quantity

Total number of BT scans 73 588
Total number of BT devices detected 854 926
Number of individual BT addresses detected 1 299
Average number of BT devices detected on one
scan

11.6

Max. number of BT devices detected on one
scan

52

ban areas are becoming increasingly covered by various un-
controlled short-range radios, such as Bluetooth, WiFi and
ZigBee. Table 1 summarizes our data set, collected within
four days by fourteen people in one building. One should
note especially the remarkable number of unique BT ad-
dresses (1299) and the high average number of detected de-
vices (11.6). We see that rich environments like this provide
fruitful ground for data-intensive tasks, such as probabilistic
modeling.
3 Behavioral Patterns

The data was collected using mobile phones that were
constantly scanning for Bluetooth devices in vicinity. Since
we are interested in detecting general trends in the device’s
Bluetooth surroundings, we restrict the analysis to the num-
ber of detected BT devices at each moment. Each of the
devices produced a time series of Bluetooth densities which
is characteristic to the person who was carrying the phone.

On average, people’s daily behavior consists of repeat-
ing routines. This shows up in the recorded time series as
cyclical trends: Daily, weekly, monthly and yearly cycles
are recognizable and they can be seen as prototypical pat-
terns of behavior. However these patterns are rather coarse
and convoluted and they can be understood as mixtures of
more fine-grained patterns of behavior. As one collects more
data the average patterns become more reliable but also more
generic, gradually losing their possible specificity.

We are interested in finding out a transformation from N
observed time series t = (t1, t2, . . . , tn) of length n to M pro-
totypical vectors or patterns t̂ = (t̂1, t̂2, . . . , t̂n) of length n that
can be thought to form the original N time series. Note that
M << N. Now this can be presented as

t̂M = f (tN), (1)

where f is the transformation from the observed time series
to the prototypical components that constitute the time series.
This task is commonly known as Blind Signal Separation
problem [5]. We will use Independent Component Analysis
to approximate a solution.
3.1 Independent Component Analysis

Independent Component Analysis (ICA) [5] is a statis-
tical multivariate data-analysis method, which assumes the
observed data to be a linear mixture of some latent features.

The basic ICA model assumes following mixing model
for the latent features:

x = As,

where x are the observed data, A are the linear mixing co-
efficients and s are the latent components. Now the task is

to find inverse transformation so that we can see the latent
features as

s = A−1x.

One has to remember that the only data that we know is the
observed data x. There are many different algorithms to es-
timate the ICA. We chose to use the FastICA [4] algorithm.
A typical procedure when performing ICA is to first employ
standard Principal Component Analysis (PCA) to reduce the
dimensionality of data and then perform ICA in the lower
dimensional space. In our case transformation f in Equation
(1) assumes dimensionality reduction from N dimensions to
M using PCA and the ICA transformation.

It should be noted that in our case this model is not com-
pletely realistic as it does not consider the possible noise in
the data and also the latent features are assumed to be linearly
mixed, which may not be the case. However in practice the
use of PCA in the first stage reduces noise effectively. Alter-
natively one could use a discrete model, such as the Multino-
mial Principal Component Analysis [14], to solve the task.
3.2 Patterns in Bluetooth device density

We were looking for two kinds of patterns from our data
set that is explained in Section 2 Firstly we were interested
in seeing how the daily activity is explained through some
latent independent features and secondly we were interested
in seeing the same from a longer time period. Thus we an-
alyzed both daily and weekly behavior from the same set of
people. We were not interested in individual behavior as our
data set is too small for that kind of analysis.

We used a subset of the data containing seven people from
a time period Jan. 11.–Jan. 20. 2006 for analysis of daily
behavior and Jan. 11.–Jan. 17. 2006 for the analysis of
weekly behavior. The data contains also some anomalies like
occasionally switched off phones and some participants not
showing up in the workplace every day resulting the phones
sitting alone in the office.
3.2.1 Daily analysis

In the analysis of daily behavior the number of latent fea-
tures was chosen as five. The dimensionality was reduced
using PCA and after that the FastICA algorithm was used.

The average pattern is shown in Figure 1A. That pattern is
very comprehensible as the activity starts rising from around
8:00, reaches its peak between 13:00 and 16:00, and then
starts to go down so that around 22:00 it is to its lowest level
again. Figures 1B–1F show the independent patterns that
were found. These figures interestingly show four different
activity patterns and fifth pattern (Figure 1F) that probably
relates to the fact that some of the participating individuals
spent time in environments where there are not many people
around and that has very few Bluetooth devices. That pattern
may also be explained by the earlier mentioned anomalies in
the data. The patterns in Figures 1B–1E imply that some of
the people have a pattern of staying in the office only part of
the day. That is understandable also based on the fact that
many of the participating subjects have to spend big part of
the day in meetings that have fewer people and BT devices
present.

Increasing the number of estimated components does not
change the situation much. From this data we always esti-



mated 4 – 5 active components and the rest were low activity
components. This implies that in this data the number of
non-redundant components is around five.
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Figure 1. Daily average BT activity pattern (A) and five
independent patterns (B–F) from a time period that cov-
ers eight working days between Jan. 11.–Jan. 20. 2006.
Pattern A is a simple average over all the data and pat-
terns B–F are the independent components estimated us-
ing FastICA algorithm.

3.2.2 Weekly analysis
The number of components for the analysis of weekly be-

havior was chosen as three since we are investigating only
seven people. As we are doing ICA it is generally a good
idea to reduce the dimensionality since that also reduces the
noise in the data and ensures that the space is better spanned
by the data.

The average prototypical weekly behavior is shown in
Figure 1A. That figure is very comprehensible as the highest

number of Bluetooth devices is during the working days and
during the nights and the weekend the activity is lower.

Figures 2B – 2D show the estimated three independent
components. As the components are estimated from only
seven different people during a week’s time they are most
likely explained by absence of some people from the work
place. E.g. Figure 2B most likely implies that a person or
some persons were not present between Jan. 11. and Jan. 16.
2006. This can be further verified by looking at the original
data and that turns out to be the case.
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Figure 2. Weekly average BT activity pattern (A) and
three independent patterns (B–D). Pattern A is simple av-
erage over all the data and patterns B–D are independent
components estimated using FastICA algorithm. Each tic
is set at 6:00 am.

3.2.3 Remarks
Presented results are only preliminary and we plan to do

a full analysis of the data using different component models.
The main result from this analysis is that it is feasible to use
this kind of methods for mining Bluetooth activity data and
that the patterns that we found are understandable. In this
kind of corporate environment these methods can be used
e.g. planning the daily functions of the environment.

4 Beaconless Locationing
A typical system for radio-based indoor locationing, e.g.

[2], builds upon a set of stationary base stations or beacons,
against which the current location is estimated. The sys-
tem is calibrated either by careful installation of the beacons
to known locations or by empirically collecting calibration
data, often signal strengths, from various locations.



Following the approach presented in [6], empirical cal-
ibration assigns a probability distribution p(o | l) for any
given location l and measured signal vector o. Now given
an observation we get posterior distribution of the location
by applying the Bayes rule

p(l | o) =
p(o | l) p(l)

p(o)
=

p(o | l) p(l)
∑l′∈L p(o | l′) p(l′)

, (2)

where p(l) is the prior probability of being at location l and
L denotes all possible location values. The posterior distri-
bution p(l | o) may be used to estimate the location give the
current observations. In [6] the above model was used to es-
timate location given WiFi signal strengths. WiFi-based esti-
mation requires careful calibration due to small number and
wide coverage of base stations, making observations some-
what sparse.

Consider that instead of base stations or beacons, we
would base the locationing on the observed Bluetooth neigh-
borhood. We assume that there are some invariant features
in the environment which characterize different locations.
Assuming that people carrying Bluetooth-enabled devices
are predictable enough and there are enough devices for ro-
bust estimation, we hypothesize that different locations have
characteristic Bluetooth surroundings which serve the pur-
pose of base stations. In contrast to WiFi base stations,
there are plenty of Bluetooth devices and their range is much
smaller, resulting to denser space of indicators. On the other
hand, mobile Bluetooth devices are much more unreliable
indicators than stationary base stations.

Let Qt = {q1, ...,qK} denote the set of Bluetooth MAC
addressed detected within time-window of [t− δ : t], where
δ is a free parameter. The primary purpose of this window
is to mitigate the effect indeterministic Bluetooth inquiring
which does not guarantee the order in which MACs of the
surrounding devices are returned. If δ is made larger than a
Bluetooth inquiry period (30s in our case), it acts also as a
rudimentary tracking model. Quite likely a proper tracking
model, as presented in [6], would improve the results when
accompanied by the MAC window.

We would like to estimate p(Qt | l, t) as above. We make
some simplifying assumptions: We ignore time in estima-
tion, assuming that observations stay rather constant in time.
Moreover we assume that MAC addresses in Q are mutu-
ally independent. This leads us to the so called Naive Bayes
model

p(l | Qt) =
1
Z

p(l)
|Qt |
∏
i=0

p(Q = qi| l), (3)

where Z is a scaling factor as above. Using this model we
may estimate a location given a set of observed MAC ad-
dresses. We considered the Maximum a Posteriori (MAP)
estimate as the desired location in evaluation.

We evaluated this locationing model with our data set.
Known beacons were separated from the data set and the
known locations were used only for training (calibrating) the
model. Testing was done with a distinct set of observation
windows, without any knowledge on beacons. This was done
with stratified 10-fold cross-validation [12]. Stratification is

Table 2. Locationing accuracies
Location Best estimate 2nd best estimate
a3 coffee 81.1 a3 coffee 11.9 a3 lab
a5 lab 78.9 main entrance 11.4 a5 lab
b5 lab 55.3 b5 lab 35.5 b525
3rd sofas 73.7 3rd sofas 15.1 a3
a3 lab 99.2 a3 lab 0.2 7th sofas
cafeteria 98.1 cafeteria 0.8 1st tables
b525 84.1 b525 13.1 b5 coffee
main entrance 96.5 main entrance 1.7 a3 lab
b5 coffee 70.9 b5 coffee 18.1 1st tables
7th sofas 55.0 7th sofas 13.8 7th offices
7th offices 89.4 7th offices 9.4 7th sofas
1st sofas 67.6 1st sofas 12.4 1st tables
5th sofas 88.0 5th sofas 5.8 7th sofas
1st tables 40.0 1st sofas 30.0 1st tables
a3 lab 62.8 a3 lab 19.1 3rd sofas

crucial, since there is much more data from some popular
locations in contrast to some individual offices.

The results are presented in table 2. For each known loca-
tion, the table shows the most frequently estimated location
in the second column and the second-most frequent estimate
in the third column. The percentage tells how often the col-
umn’s estimate was preferred over the others. The shown
results are obtained with δ = 60s. Varying δ between 10 and
120 seconds seems to have only little effect on results.

In 13 / 15 of the cases the most frequent estimate is the
correct one. More importantly, in almost all cases the third
column shows a place nearby the true location. Clearly the
places, such as cafeteria, where lots of data was collected
produce the best results. This indicates that applicability of
this method depends heavily on richness of the sensed envi-
ronment.

5 Future Work
Both modeling of behavioral patterns and beaconless lo-

cationing are based on the assumption that people are pre-
dictable – otherwise we could not find prototypical patterns
or track locations during several days reliably. Even though
routines per se are invariant, routines vary between differ-
ent individuals. We could improve locationing by taking this
fact into account.

There is not enough data to estimate a robust locationing
model for each individual separately. However as shown by
behavioral pattern analysis, many people share rather similar
routines. Thus instead of individual models, we might es-
timate specific locationing models for groups of people. In
practice, we could use methods of collaborative filtering for
this purpose.

Another line of ongoing research is to fuse Bluetooth in-
formation with other sensor data, such as images. In one
of our preliminary settings, a stationary camera produced a
stream of images in which moving objects are automatically
recognized. Combined with Bluetooth scans, we aim at asso-
ciating the objects with their most probable Bluetooth iden-
tity.

One very important aspect, that is not discussed in this
paper, are the privacy concerns that raise from the application
of these methods in real life situations. We acknowledge the



importance of these concerns and they are one of the most
important research questions for future work.

6 Conclusions
We have presented two models for utilizing rich Blue-

tooth environments. We demonstrated how a model for Blind
Signal Separation can be used to derive prototypical behav-
iors from Bluetooth data. This model gives a remarkably
fine-grained view to people’s daily routines, in contrast to
straightforward summary statistics.

We hypothesized that given enough Bluetooth devices in
the environment, we might use characteristic set of devices in
different locations as a surrogate for stationary base stations.
Stochastics of large number of detected devices would make
the system robust enough for practical use. We validated
the hypothesis with our Bluetooth data set, containing the
ground-truth about locations. The obtained results seem to
support the hypothesis.
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