
Pp. 54–65 in Towards the Semantic Web and Web Services, Proceedings of the
XML Finland 2002 Conference, edited by E. Hyvönen and M. Klemettinen.
HIIT Publications.

Building and Maintaining Web Taxonomies

Wray Buntine, Sami Perttu and Henry Tirri

Helsinki Inst. of Information Technology
HIIT, P.O. Box 9800

FIN-02015 HUT, Finland
{wray.buntine,sami.perttu,henry.tirri}@hiit.fi

Abstract. A recognized problem for internet commerce is the task of
building a product taxonomy from web pages, without access to corpo-
rate databases, and then populating a database with link information
about service, spare parts, reviews, product specifications, product fam-
ily, etc. A key precursor for this task is the ability to build classification
hierarchies in an unsupervised manner of web pages potentially useful.
However, a nasty aspect of the real world is that most web pages have
multiple facets. A web page might contain information about cameras
and computers, as well as having both specification and sale data. We
are interested in methods for unsupervised learning of multiple facet
models which automatically allow these multiple facets to be extracted
or predicted from examples. We will present some examples using the
Reuters 2000 XML Corpus containing 800,000 Reuters newswires from
the year beginning 20th August 1996. Our system, called Ydin, inputs
XML/XHTML pages and displays results using a custom web interface.
It extracts different facets and provides a navigation tool for investigating
the results.

1 Introduction

A recognized problem for internet commerce is the task of building a consumer
guide, building a product taxonomy from web pages, without access to corpo-
rate databases, and then populating a database with link information about
service, repair, spare parts, reviews, product specifications, product family and
company home pages, and purchase information from retailers. While within
individual corporations this task is arguably well-handled by using the emerg-
ing standards and methodology of the semantic web, for web services such as
consumer guides, where collections of disparate information sources would be
used, top-down standards enforcement is not a realistic option, and nor will be
labor intensive knowledge engineering in general. Many believe more automatic
methods are required to build the ontologies and other knowledge structures
needed [1], such as semantic-based search and the automated construction of
taxonomies from web data.

While we do not believe full automation of the task (building consumer
guides) is generally feasible, significant support for the task is provided by the
ability to build classification hierarchies, that is, taxonomies, in a supervised or

54

unsupervised manner. However, a nasty aspect of the real world is that most web-
pages have multiple facets. A web page might contain information about cameras
and computers, as well as having both specification and sale data. Whereas an-
other page might mix a product index with partial specification and sales data.
We are interested in methods for supervised and unsupervised learning of multi-
faceted models, where facets cover both the content and the style (e.g., index,
sales, specs, etc.).

Clustering or unsupervised learning is a standard method for analysing dis-
crete data such as documents, and is now being used in industry to create tax-
onomies from web pages. A rich variety of methods exist borrowing theory and
algorithms from a broad spectrum of computer science: spectral (eigenvector)
methods, kd-trees [3], using existing high-performance graph partitioning algo-
rithms from CAD [4], hierarchical algorithms [5] and data merging algorithms
[6], etc. These methods are used both to structure a corporation’s document
database, and to organise results from a web search.

These methods have one significant drawback for typical application in ar-
eas such as document analysis: each document is to be classified exclusively to
one class. Their models make no allowance for instance, for a product page to
have 40% digital camera content and 30% laptop computer content, and 10% of
strictly sales jargon. Rather these methods require pages to be 100% one way
or another, and any uncertainty is only about whether to place the 100% into
one or the other class. In practice documents invariable mix a few topics, readily
seen by inspection of the human-classified Reuters newswire, so the automated
construction of topic hierarchies needs to reflect this. One alternative is to make
clustering multi-faceted whereby a document can be assigned proportionally (i.e.,
using a convex combination) across a number of clusters rather than uniquely
to one cluster.

A different task, supervised multi-faceted learning, covers the same kind of
problem: a document can belong to several classes simultaneously, though per-
haps with varying degrees. However, in this case, the taxonomy (or classification
hierarchy) is pre-supplied. Given a set of pre-assigned classes for each document,
one is to build a predictive classifier that will assign a set of classes to new doc-
uments. This supervised multi-faceted task has been addressed quite well in the
literature, oftentimes by modifying an existing classification algorithm, for in-
stance the multi-class multi-label perceptron of Crammer and Singer [7]. In our
internet commerce example, the way to use these techniques is to have an expert
build a taxonomy, assign say 20 pages to each node, train a classification system
on these examples, and then classify the remaining pages under consideration.
However, because this requires a pre-existing taxonomy, it does not address the
general discovery task we proposed.

Several authors have recently developed methods that address the task of
multi-faceted clustering. These are discrete analogues to principle components
analysis (PCA) intended to handle discrete or positive only count data of the kind
used in the bag-of-words representation of web pages. By their discrete relatively
efficient nature, they offer significant computational advantages over the more

55

general non-linear methods of Karhunen and others [8]. These new methods
include probabilistic latent semantic analysis [9] latent Dirichlet allocation [10],
multinomial PCA [11]. A good discussion of the motivation for these techniques
can be found in [9].

In this paper we present an application of multinomial PCA to the new
Reuters Corpus1, containing over 806, 791 news items from 1996 and 1997. This
gave us the opportunity to evaluate the effectiveness and scaling potential of
the algorithm for the task of automatically constructing taxonomies from large
collections of web pages.

2 Contrasting Clustering and Multi-Faceted Clustering

For concreteness, consider the problem in terms of the usual “bag of words”
representation for a document [12], popular for analysing web pages. Here the
items making up the sample are documents and the features are the counts of
words in the document, and counts of any stylistic features considered relevant
(though ignored here). A document is represented as a sparse vector of words
and their occurrence counts. All positional information is lost. With J different
words/features, the dimensionality for words/features, each document becomes
a vector x ∈ ZJ , where the total

∑
j xj might be known. Traditional clustering

becomes the problem of forming a mapping into a single integer (i.e., a class
assignment or discretization, ZJ 7→ {1, . . . ,K}, where K is the number of clus-
ters). Whereas techniques such as PCA form a mapping into a real-valued vector
of lower dimension (i.e., ZJ 7→ RK where K is considerably less than J).

The problem we consider, however, is to represent the document as a convex
combination, thus to form a mapping into a lower dimension probability vector
(i.e., ZI 7→ CK where CK denotes the subspace of RK where every entry is non-
negative and the entries sum to 1, m ∈ CK implies 0 ≤ mk ≤ 1 and

∑
k mk = 1).

For instance, suppose we are performing a coarse clustering of newswires
into topics: the topics found might be “sports”, “business”, “travel”, “interna-
tional”, “politics”, “domestic”, and “cultural”. Consider a document about a
major sports-star and the overlap of his honeymoon with a big game. Then tra-
ditional clustering might output the following: “the document is about sports”.
A more refined clustering system that represents uncertainties as well might out-
put: “with 90% probability the entire document is about sports, with 7% prob-
ability it is about cultural, and 3% probability about something else”. General
multinomial PCA considered in this paper might output: “50% of the document
is about sports, 35% of the document is about cultural, 7% about business, 5%
about international”. The supposed business content is really a discussion of the
hotel for the honeymoon and the supposed international content comes from the
location of the honeymoon. Note here general multinomial PCA plays the role of
dimensionality reduction, and places similar kinds of words into the same bucket
for compression purposes rather than any real topic identification.

1 Volume 1: English Language, 1996-08-20 to 1997-08-19.

56

The problem we consider is also to perform multi-faceted clustering, which
serves the purpose of extracting multiple mutually occurring topics from a doc-
ument. Suppose m is the probability vector (m ∈ CK) corresponding to a par-
ticular document. For multi-faceted clustering, m should have most entries zero,
and only a few entries significantly depart from zero. A measure we shall use for
this is entropy, H(m) =

∑
j mj log(1/mj). Thus multi-faceted clustering prefers

low entropy vectors from CK , i.e., those where the entropy is much less than
log K. In the limit, when the average entropy of the probability vectors is 0, the
mapping becomes equivalent to standard clustering. With the simple honeymoon
example above, the output could be reduced to: “70% of the document is about
sports, 30% of the document is about cultural”. This makes the document have
2H(m) = 1.85 effective topics, as opposed to the original PCA example above
with more proportions (0.5,0.35,0.07,0.05) which had 2H(m) = 3.17 topics.

3 Overview of the Multinomial PCA Method

We give a brief review of the multinomial PCA method and algorithm here as a
basis for the experimental work presented later.

3.1 The Basic Model

To begin, consider Tipping et al.’s representation of standard PCA [13]. The
hidden variable m is sampled from K-dimensional Gaussian noise. Each entry
represents the strength of the corresponding component and can be positive or
negative. This is folded with the J ×K matrix of component means Ω and then
used as a mean for J-dimensional Gaussian noise.

m ∼ Gaussian(0, IK)
x ∼ Gaussian(Ωm + µ, IJσ)

This relies on the data being real-valued and somewhat Gaussian, which fails
badly for some image and document data. Techniques such as ICA address this
problem using a more general non-linear framework [8].

A discrete analogue to the above formulation is first to draw a probability
vector m that represents the proportional weighting of components, and then
to mix it with a matrix Ω whose columns represent a word probability vector
for a component. This yields a distribution over the word counts x:

m ∼ Dirichlet(α)
x ∼ Multinomial(Ωm, L)

Here L is the total number of words in the document, and α is a vector of K-
dimensional parameters to the Dirichlet. Thus, the mean of each entry xj is a
convex combination of a row of Ω.

57

3.2 The Basic Algorithm

Basic algorithms for this problem as casted use the hidden variable framework of
the Expectation-Maximization (EM) algorithm and its variants widely used in
clustering (e.g., [14]). This yields an algorithm that estimates the model param-
eters Ω, the distribution of words per component, from the document mixing
proportions m, then in turn estimates the mixing proportions m from the model
parameters Ω. This iterative approach is termed a re-estimation algorithm. The
version we use applies a so-called variational extension of the EM algorithm [11],
and was first applied to this problem by Blei, Ng, and Jordan [10]. However, they
ran their algorithm on the old Reuters Corpus maintained by David Lewis that
contains about 20,000 documents, using a network of computers in parallel, and
only built 20 component models. It is difficult to assess the properties of their
results from the simple experiments they reported.

3.3 Scaling Up the Algorithm

If 1000 component models are to be built, that would mean 806, 791, 000 floats
are needed to store the estimate of m, denoted here as m̂, which would require
3.2Gb if stored naively.

Thus, in order to run the system on the full Reuters data set, we needed to
make some changes to our software. First, we store each entry of m̂ in 16-bits as
a factor of 2−16, which reduces the storage requirement to 1.6Gb. Note that part
way through the run, this becomes sparse, but initially at least the full 1.6Gb is
used. Second, we process the m̂ data using sparse vector processing. Part way
through the run, m̂ becomes sparse and a single cycle runs by up to three times
faster. Third, we process the m̂ data directly off the disk using memory mapping
(mmap() in Linux) and do not keep the full matrix in memory. It turns out that
the processing per document is sufficiently slow that this use of disk makes no
difference in speed. The Ω matrix, of size 260Mb (with 1000 components and
65, 000 words), needs to be stored in main memory since access to it is effectively
random.

Space requirements for runtime are O(K ∗ (I +J)+S) where S is the size of
the input data represented as sparse vectors, and each iteration takes O(K ∗(I +
J + S)). Thus the computational requirements are comparable to an algorithm
for extracting the top K eigenvectors usually used for PCA. Convergence is
maybe 10-30 iterations, depending on the accuracy required, slower than its PCA
counterpart. Our code is written in C using Open Source tools and libraries such
as the GNU Scientific Library (GSL), and we intend to release an Open Source
version once development is sufficiently advanced.

4 Reuters Experiments

We collected bag-of-words data from the new Reuters Corpus, containing 806, 791
news items from 1996 and 1997. On average, each news item is 225 words long,

58

which translates to a total of 180 million word instances. About 390, 000 of
these are distinct words; we kept the most frequent 65, 000 in the dictionary,
accounting for 99.995% of the data. This lets us store the full set of documents
in a bag-of-words format in 220 MB which can be kept for random access in a
computer’s main memory. The individual documents themselves, when individ-
ually compressed, take up about 3 GB on disk. We were able to process the full
806, 791 Reuters news documents on a single desktop Linux computer with 1 GB
of memory and a 1.3 GHz processor in an overnight run. Parallel processing (e.g.,
[10]) is the next technique which we will need when running the algorithms on
20 GB web/HTML repositories. Runs were done training on 700, 000 documents
and using the remainder as a hold-out set to ensure safe stopping and prevent
over-fitting.

4.1 Inspecting Results

With data sizes of this magnitude, it is no longer feasible to analyze the results
from a static printout. For instance, a cross-referenced report listing details of
components, words and documents and their statistics can easily reach a few
megabytes for even 10, 000 documents. Hence, we have written a custom web
server in C++ that allows the user to examine different aspects of a model via
a web browser. The model data takes many gigabytes of space with the larger
models; only a small part of it can be kept in memory at once.

Documents, components and words each have their own pages that are dy-
namically generated and fully cross-referenced. Fig. 1 shows a part of a (origi-

Fig. 1. Color-Coded Document Display

59

nally) color-coded display of a document. In our interface, the three color com-
ponents red, green and blue can be assigned individually to different topics; in
the figure, they are all assigned to a single topic to get a gray-level display.
Each word is colored according to its frequency in the component divided by its
frequency in the data. The highlighted component seems to be about lawsuits
against tobacco companies.

Naturally, components in the model reflect the Reuters Corpus content: more
than a half of the components are related to subareas of finance and economy.
In the 1000 component run, many components correspond to breaking out these
reports into topics like “Australian stock market closing prices”, “USA Research
alerts,” “European union shipping reports,” “Corporate profits,” “Nuclear power
companies,” etc.

Table 1 summarises the components for a K = 20 component run, ordered
with the most numerous components at the top. Listed in the table, the effective

Code Description Prop. Eff. Eff. docs.
words (1000s)

01 investigations/interviews/legal 0.08 310 347
10 corporate finance 0.07 307 279
07 stock exchange 0.07 275 226
11 international finance/currency 0.07 343 212
17 international/government relations 0.06 525 196
06 corporate research/intelligence 0.08 700 191
18 EU politics, economy 0.04 528 155
19 business/markets in greater europe 0.03 405 145
12 business in asia/sth africa 0.03 492 128
05 politics 0.03 940 123
13 corporate results/forecasts 0.09 199 122
00 production/capacity 0.03 552 120
15 bonds 0.06 587 119
16 commodities 0.06 584 113
09 terrorism 0.04 656 108
14 EU records, imports/exports 0.02 617 105
03 sports, conflicts 0.03 702 104
08 soccer and cricket 0.02 692 71
04 shipping reports, tennis/golf 0.01 725 57
02 indicators/ecomony 0.01 112 38

Table 1. Component Summary for K=20

number of words in a component is the log2 entropy of the component word
vector (entry in Ω) raised to the power 2. The effective number of documents
containing a component is the log2 entropy of documents given components
(probability of being in a document given a word from the component) raised
to the power 2.

60

For this run with components, each document might have between 2 and 8
components contributing to its word distribution, many with one dominant one.
The top component (with code 01) reflects this because while it occurs in effec-
tively 43% of documents, it only makes up 8% of the component contributions,
thus when it occurs, it occurs on average as 20% of a document. Note the docu-
ments with a high proportion of the component with code 01 are all legal cases,
whereas in general the component might occur in articles including an interview
of a CEO or politician.

The following components are taken from a run for K = 300 components.
Table 2 shows two components from the model. Typical words are ordered ac-

Component 37 Component 79

Typical Words Unexpected Words Typical Words Unexpected Words

0.029 church 9.53 resplendent 0.053 internet 8.89 Vebacom
0.027 mayor 9.51 Tuckey 0.047 telecommunicat. 8.89 Viinanen
0.017 hundreds 9.51 Perafan 0.038 telecom 8.88 Dancall
0.017 pope 9.50 cobras 0.032 phone 8.88 xylitol
0.016 catholic 9.50 botulism 0.032 access 8.88 Sudirman
0.016 children 9.50 Balabagan 0.030 communications 8.88 Rhenus
0.015 people 9.50 Arreckx 0.027 telephone 8.88 Hotwired
0.014 who 9.49 Burman 0.025 service 8.88 Sunpage
0.013 roman 9.49 manifestations 0.022 mobile 8.87 Scaglia

Table 2. Top Words In Components 37 and 79

cording to their frequency in the component. Unexpected words are scored by
the log2-difference of their frequency from word prior. Component 37 is broadly
religion-related, with a large expected number of words, 580. The typical doc-
uments contain a news item about the war on flies declared by the mayor of
Manila and an item about the Pope blessing Christmas crib figurines.

Component 153 in table 3 is interesting in that its typical words are per-

Component 153 Component 48

Typical Words Unexpected Words Typical Words Unexpected Words

0.193 we 6.62 Ospel 0.880 loss 10.47 Penril
0.043 very 6.62 Maucher 0.015 widens 10.47 Reddi
0.042 our 6.62 Jagmetti 0.012 write 10.47 Rayrock
0.027 do 6.62 Zinkernagel 0.011 narrows 10.47 Puretec
0.023 are 6.62 Kulczyk 0.009 charges 10.47 Yuoka
0.023 good 6.61 Peltola 0.005 restructuring 10.47 jpe
0.021 can 6.61 Integrion 0.003 writedown 10.47 Dorman
0.020 is 6.61 Bols 0.003 discontinued 10.46 Schmiedeknecht
0.020 going 6.60 Cees 0.003 disposal 10.46 Digene

Table 3. Top Words In Component 153 and 48

61

sonal pronouns and opinionated words. The typical documents are invariably
interviews or press releases.

Component 48 in table 3 is an example of a low-entropy component with
an expected number of words of only 2.36. It is dominated by the word “loss”,
which has a frequency of 0.88. The typical news items are financial news about
losses. This component is basically triggered by the occurrence of the word “loss”,
making all the other high frequency words in the component more likely.

4.2 Explaining Component Dimensionality

To understand components and their relationship to the task of multi-faceted
clustering, we plotted some diagnostics extracted from the result matrices Ω and
m. The effective number of components in a document is the log2 entropy of its
component proportion vector (entry in m) for that document raised to the power
2. For instance, a document where the m vector is (0.33, 0.33, 0.33, 0, 0, 0, . . .)
would have an effective number of components of 3, and a document where
the m vector is (1/K, 1/K, . . . , 1/K, 0, 0, 0, . . .) would have an effective number
of components of K. Fig. 2 shows the relationship between document size and

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200

E
ffe

ct
iv

e
nu

m
be

r
of

 c
om

po
ne

nt
s

Word count

K=20 components run

document

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200

E
ffe

ct
iv

e
nu

m
be

r
of

 c
om

po
ne

nt
s

Word count

K=300 components run

document

Fig. 2. Document Size versus Components. (a) 20 components, (b) 300 components

number of components for the runs using K = 20 and K = 300 components.
Clearly, in this case, the number of components for each document indicates we
are operating in the regime of dimensionality reduction. Most components are
not synonym sets, they are topical sets of words. While for each component there
will be a corresponding set of documents where this dominates, the majority of
documents mix many different components.

Fig. 3 shows the effective number of words for different components runs.
For instance, for K = 20 this plots data from the fourth column of Table 1.
Components have been ordered in terms of their effective number of words, and

62

then the effective number of words plotted (which is now increasing). For the
K = 300 run for instance, some components are very specific, the extreme being
component 48 above, and some components are far more topical with a large
number of effective words. Note, however, that the components for the different
runs are very different from each other and amenable to hierarchical combination
(unlike the components obtained using PCA).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800 900 1000

E
ffe

ct
iv

e
nu

m
be

r
of

 w
or

ds

Sorted component

Component cover in words

1000 comps
300 comps

20 comps

Fig. 3. Effective words per component

5 Overview of the Ydin Server

The six modules comprising the Ydin server, some of which are described above,
are shown in Fig. 4:

XML/XHTML parser: Reads and parses XML/XHTML documents, creat-
ing a tree model of each document. XML elements are leaves in the tree.

Document analyzer: Converts document content to words and sentences.
Words are initially stemmed, i.e. reduced to a root word, and placed in
a dictionary and a word index.

Document database: Distributed storage for processed and compressed doc-
uments and information about them: dictionary, inverted index, bag-of-words
data.

MPCA: Statistical component described above to generate component models
(Ω) and document-component probability vectors (m).

HTML interface: Interfaces with the MPCA and document database mod-
ules to provide the user with a high-level view of the documents. The inter-
face has a number of optional functions:

63

MPCA
HTML

Custom

Document XHTML Web Corpus
or Crawler

User

bag−of−words
data

model data

service requests

XML/XHTML data

HTTP messages

Document
Database

parsed
documents

Web Server

Interface

Analyzer Parser

Fig. 4. Module diagram of the Ydin Server

search-by-topic: enter topical words to do a topic search
find-similar: find documents similar to the current document
component viewer: view a component in terms of common words and

typical documents
word viewer: view a word in terms of its semantically related words

Custom web server: Our server responds to HTTP requests and dispatches
them to the HTML interface, which then generates the desired pages dy-
namically. We use a custom server for maximum efficiency but a standard
web server such as Apache could be used in its place.

We are extending Ydin to the task of extracting web taxonomies, which goes
beyond component analysis.

For instance, to be able to provide links to reviews of a product the user is
interested in, we need to be able to identify which documents contain product
reviews. This entails matching the components generated by a statistical model
with the semantics we are interested in. In other words, the statistical com-
ponents need to be identified; we could use hand-made or supervised criteria
for inferring such information. Other services such as comparisons of product
features require similar functionality.

A move beyond simple bag-of-words analysis to richer context and sentential
models may be mandatory to reach this level of sophistication.

6 Conclusion

We have demonstrated that recent extensions to PCA for multinomial data pro-
vide some support for multi-faceted clustering. We argued that while multinomial

64

PCA is really a dimensionality reduction algorithm, and not designed for multi-
faceted clustering, if used right components can be extracted that are useful for
the purpose of building a taxonomy. For this, we would need at least the ability
to generate full topic hierarchies, and to perform automatic labelling/naming of
topics in the hierarchy. We expect that by doing this for multiple companies at
once, useful hierarchies could be established.

We have also presented our Ydin server which has been developed for the
purpose of exploring the results of a multinomial PCA analysis on a large repos-
itory of HTML/XML data. We are currently extending the tool with view to
building an Open Source system for information navigation and assisting the
maintenance of semantic web.

Acknowledgements Thanks to Reuters for providing their Corpus as described
in Footnote 1.

References

1. Cherry, S.: Weaving a web of ideas. IEEE Spectrum 39 (2002) 65–69
2. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence 22 (2000) 888–905
3. Moore, A.: Very fast EM-based mixture model clustering using multiresolution

kd-tree. In: Neural Information Processing Systems, Denver (1998)
4. Han, E.H., Karypis, G., Kumar, V., Mobasher, B.: Clustering based on association

rule hypergraphs. In: SIGMOD’97 Workshop on Research Issues on Data Mining
and Knowledge. (1997)

5. Vaithyanathan, S., Dom, B.: Model-based hierarchical clustering. In: UAI-2000,
Stanford (2000)

6. Bradley, P., Fayyad, U., Reina, C.: Scaling clustering algorithms to large databases.
In: Proc. KDD’98. (1998)

7. Crammer, K., Singer, Y.: A new family of online algorithms for category ranking.
In: 25th Annual Intl. ACM SIGIR Conference. (2002)

8. Karhunen, J., Pajunen, P., Oja, E.: The nonlinear PCA criterion in blind source
separation: Relations with other approaches. Neurocomputing 22 (1998) 520

9. Hofmann, T.: Probabilistic latent semantic indexing. In: Research and Develop-
ment in Information Retrieval. (1999) 50–57

10. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. In: NIPS*14. (2002) to
appear.

11. Buntine, W.: Variational extensions to EM and multinomial PCA. In: ECML
2002. (2002)

12. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley
(1999)

13. Tipping, M., Bishop, C.: Mixtures of probabilistic principal component analysers.
Neural Computation 11 (1999) 443–482

14. Kontkanen, P., Myllymaki, P., Silander, T., Tirri, H.: BAYDA: Software for
bayesian classification and feature selection. In: Knowledge Discovery and Data
Mining. (1998) 254–258

65

