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Abstract. This article presents a unified theory for analysis of com-
ponents in discrete data, and compares the methods with techniques
such as independent component analysis (ICA), non-negative matrix
factorisation (NMF) and latent Dirichlet allocation (LDA). The main
families of algorithms discussed are mean field, Gibbs sampling, and
Rao-Blackwellised Gibbs sampling. Applications are presented for voting
records from the United States Senate for 2003, and the use of compo-
nents in subsequent classification.

1 Introduction

Principal component analysis (PCA), latent semantic indexing (LSI), and inde-
pendent component analysis (ICA, see [19]) are key methods in the statistical
engineering toolbox. They have a long history, are used in many different ways,
and under different names. They were primarily developed in the engineering
community where the notion of a filter is common, and maximum likelihood
methods less so. They are usually applied to measurements and real valued
data, and used for feature extraction or data summarization.

Relatively recently the statistical computing community has become aware of
seemingly similar approaches for discrete data that appears under many names:
grade of membership (GOM) [31], probabilistic latent semantic indexing (PLSI)
[17], non-negative matrix factorisation (NMF) [23], genotype inference using ad-
mixtures [29], latent Dirichlet allocation (LDA) [5], multinomial PCA (MPCA)
[6], multiple aspect modelling [26], and Gamma-Poisson models (GaP) [9]. We
refer to these methods jointly as Discrete PCA (DPCA), and this article provides
a unifying model for them. Note also, that it is possible these methods existed
in reduced form in other statistical fields perhaps decades earlier.

These methods are applied in the social sciences, demographics and med-
ical informatics, genotype inference, text and image analysis, and information
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retrieval. By far the largest body of applied work in this area (using citation
indexes) is in genotype inference due to the Structure program [29]. A grow-
ing body of work is in text classification and topic modelling (see [16, 8]), and
language modelling in information retrieval (see [1, 7, 9]).

Here we present in Section 3 a unified theory for analysis of components in dis-
crete data, and compare the methods with related techniques. The main families
of algorithms discussed are mean field, Gibbs sampling, and Rao-Blackwellised
Gibbs sampling in Section 5. Applications are presented in Section 6 for voting
records from the United States Senate for 2003, and the use of components in
subsequent classification.

2 Views of DPCA

One interpretation of the DPCA methods is that they are a way of approximating
large sparse discrete matrices. Suppose we have a 500,000 documents made up
of 1,500,000 different words. A document such as a page out of Dr. Zeuss’s The
Cat in The Hat, is first given as a sequence of words.

So, as fast as I could, I went after my net. And I said, “With my net I
can bet them I bet, I bet, with my net, I can get those Things yet!”

It can be put in the bag of words representation, where word order is lost, as a
list of words and their counts in brackets:

so (1) as (2) fast (1) I(7) could (1) went (1) after (1) my (3) net (3) and
(1) said (1) with (2) can (2) bet (3) them (1) get (1) those (1) things (1)
yet (1)

This sparse vector can be represented as a vector in full word space with 1,499, 981
zeroes and the counts above making the non-zero entries in the appropriate
places. Given a matrix made up of rows of such vectors of non-negative integers
dominated by zeros, it is called here a large sparse discrete matrix.

Bag of words is a basic representation in information retrieval [2]. The al-
ternative is sequence of words. In DPCA, either representation can be used and
the models act the same, up to any word order effects introduced by incremental
algorithms. This detail is made precise in subsequent sections.

In this section, we argue from various perspectives that large sparse discrete
data is not well suited to standard PCA, which is implicitly Gaussian, or ICA
methods, which are justified using continuous data.

2.1 DPCA as Approximation

In the PCA method, one seeks to approximate a large matrix by a product
of smaller matrices, by eliminating the lower-order eigenvectors, the least con-
tributing components in the least squares sense. This is represented in Figure 1.
If there are I documents, J words and K components, then the matrix on the
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Fig. 1. The Matrix View: matrix product (b) approximates sparse discrete matrix (a)

left has I = J entries and the two matrices on the right have (I 4+ J) x K entries.
This represents a simplification when K < I, J. We can view DPCA methods
as seeking the same goal in the case where the matrices are sparse and discrete.

When applying PCA to large sparse discrete matrices, interpretation becomes
difficult. Negative values appear in the component matrices, so they cannot be
interpreted as “typical documents” in any usual sense. This applies to many other
kinds of sparse discrete data: low intensity images (such as astronomical images)
and verb-noun data used in language models introduced by [27], for instance.
DPCA, then, places constraints on the approximating matrices in Figure 1(b)
so that they are also non-negative.

Also, there are fundamentally two different kinds of large sample approximat-
ing distributions that dominate discrete statistics: the Poisson and the Gaussian.
For instance, a large sample binomial is approximated as a Poisson when the
probability is small and as a Gaussian otherwise [30]. Thus in image analysis
based on analogue to digital converters, where data is counts, Gaussian errors
can sometimes be assumed, but the Poisson should be used if counts are small.
DPCA then avoids Gaussian modelling of the data.

2.2 Independent Components

Independent component analysis (ICA) was also developed as an alternative
to PCA. Hyvénen and Oja [20] argue that PCA methods merely decorrelate
data, finding uncorrelated components. ICA then was developed as a way of
representing multivariate data with truly independent components. The basic
formulation is that a K-dimensional data vector w is a linear function of K in-
dependent components represented as a K-dimensional hidden vector I, w = Ol
for square matrix @. For some univariate density function g(), the independent
components are distributed as p(I) = [], g(lx). This implies

r(w|€) = [Jo(©w)) g
k

The Fast ICA algorithm [20] can be interpreted as a maximum likelihood ap-
proach based on this probability formula. In the sparse discrete case, however,



this formulation breaks down for the simple reason that w is mostly zeros: the
equation can only hold if [ and © are discrete as well and thus the gradient-
based algorithms for ICA cannot be justified. To get around this in practice,
when applying ICA to documents [4], word counts are sometimes first turned
into TF-IDF scores [2].

To arrive at a formulation more suited to discrete data, we can relax the
equality in ICA (i.e., w = Ol) to be an expectation:

Epr(,w‘l) ('LU) = Ol.

We still have independent components, but a more general relationship then
exists with the data. Correspondence between ICA and DPCA has been reported
in [7, 9]. Note with this expectation relationship, the dimension of I can now be
less than the dimension of w, and thus ® would be a rectangular matrix.

For p(w|®) in the so-called exponential family distributions [15], the ex-
pected value of w is referred to as the dual parameter, and it is usually the
parameter we know best. For the Bernoulli with probability p, the dual parame-
ter is p, for the Poisson with rate A, the dual parameter is A, and for the Gaussian
with mean y, the dual parameter is the mean. Our formulation, then, can be also
be interpreted as letting w be exponential family with dual parameter given by
(®l). Our formulation then generalises PCA in the same way that linear models
[25] generalises linear regression®.

Note, an alternative has also been presented [13] where w has an exponential
family distribution with natural parameters given by (®1). For the Bernoulli with
probability p, the natural parameter is logp/(1 — p), for the Poisson with rate
A, the natural parameter is log A and for the Gaussian with mean g, the natural
parameter is the mean. This formulation generalises PCA in the same way that
generalised linear models [25] generalises linear regression.

3 The Basic Model

A good introduction to these models from a number of viewpoints is by [5, 9, 7].
Here we present a general model and show its relationship to previous work. The
notation of words, bags and documents will be used throughout, even though
other kinds of data representations also apply. In machine learning terminology,
a word is a feature, a bag is a data vector, and a document is a sample. Notice
that the bag collects the words in the document and loses their ordering. The bag
is represented as a data vector w. It is now J-dimensional, and the hidden vector
l called the components is K-dimensional, where K < J. The term component
is used here instead of, for instance, topic. The parameter matrix ® is J x K.

3.1 Bags or Sequences of Words?

For a document d represented as a sequence of words, if w = bag(d) is its bagged
form, the bag of words, represented as a vector of counts, then for any model M

3 Though it is an artifact of statistical methods in general that linear models are best
defined as generalised linear models with a linear link function.



that consistently handles both kinds of data

)1
plw| M) = %pww) . 1)
; wj!

Note that some likelihood based methods such as maximum likelihood, some
Bayesian methods, and some other fitting methods (for instance, a cross valida-
tion technique) use the likelihood as a functional. They take values or derivatives
but otherwise do not further interact with the likelihood. The combinatoric first
term on the right hand side of Equation (1) can be dropped here safely because
it does not affect the fitting of the parameters for M. Thus for these methods,
it is irrelevant whether the data is treated as a bag or as a sequence. This is a
general property of multinomial data.

Some advanced fitting methods such as Gibbs sampling do not treat the
likelihood as a functional. They introduce hidden variables that changes the
likelihood, and they may update parts of a document in turn. For these, ordering
affects can be incurred by bagging a document, since updates for different parts
of the data will now be done in a different order. But the combinatoric first
data dependent term in Equation (1) will still be ignored and the algorithms
are effectively the same up to the ordering affects. Thus, while we consider bag
of words in this article, all the theory equally applies to the sequence of words
representation. Implementation can easily address both cases with little change
to the algorithms, just to the data handling routines.

3.2 General DPCA

The general formulation introduced in Section 2.2 is an unsupervised version of
a linear model, and it applies to the bag of words w (the sequence of words
version replaces w with d) as

w ~ PDp(Ol, 1) such that Exp, ) (w) = Ol (2)
I~ PDc(OLQ) y

where PDp(-,-) is a discrete vector valued probability distribution, PD¢o(+) is a
continuous vector valued probability density function that may introduce con-
straints on the domain of I such as non-negativity. The hyper-parameter vectors
a1 and s might also be in use. In the simplest case these two distributions are
a product of univariate distributions, so we might have I ~ PD.(«ay) for each k
as in Section 2.2.

Various cases of DPCA can now be represented in terms of this format, as
given in Table 1. The discrete distribution is the multivariate form of a binomial
where an index j € {0,1,...,J — 1} is selected according to a J-dimensional
probability vector. A multinomial with total count L is the bagged version of L
discretes. In the table, non-spec indicates that this aspect of the model was left
unspecified. Note that NMF used a cost function formulation, and thus avoided
defining likelihood models. PLSI used a weighted likelihood formulation that
treated hidden variables without defining a distribution for them.



Table 1. DPCA Example Models

Name |Bagged PDp PD¢ Constraints
NMF [23]| yes non-spec  non-spec Ik >0
PLSI [17] no discrete  non-spec|ly > 0, Zk Il =1
LDA [5] no discrete  Dirichlet|ly > 0, Zk =1
MPCA [6]| yes multinomial Dirichlet|lx >0, >, lx =1

GaP [9] | ves Poisson  gamma k>0

The formulation of Equation (2) is also called an admizture in the statistical

literature [29]. Let 8y, be the k-th row of ©. The parameters for the distribution
of w are formed by making a weighted sum of the parameters represented by
the K vectors 6. This is in contrast with a mizture model [15] which is formed
by making a weighted sum of the probability distributions PDp (0, 7).

3.3 The Gamma-Poisson Model

The general Gamma-Poisson form of DPCA, introduced as GaP [9] is now con-
sidered in more detail:

Document data is supplied in the form of word counts. The word count for
each word type is w;. Let L be the total count, so L = Z w;

The document also has hidden component vamables Ik that indicate the
amount of the component in the document. In the general case, the [ are
independent and gamma distributed

Iy, ~ Gamma(ag, Bk) fork=1,...,K.

The f, affects scaling of the components?, while o, changes the shape of
the distribution.

Initially the K-dimensional hyper-parameter vectors a and 8 will be treated
as constants, and their estimation will be considered later.

There is a general model matriz © of size J x K with entries 0; ; that controls
the partition of features amongst each component. This is normalised along
rows (3.0, =1).

The data is now Poisson distributed, for each j

w; ~ Poisson((O1);) .

The hidden or latent variables here are the vector I. The model parameters are
the gamma hyper-parameters 3 and «, and the matrix ®. The full likelihood
for each document then becomes:

[T 1 —Brli L \Wi *(Zklkej,k)
H By, l Asl H 2k lkbiik) wje! (3)

J

4 Note conventions for the gamma vary. Sometimes a parameter 1/3; is used. Our
convention is revealed in Equation (3).



To obtain a full posterior for the problem, these terms are multiplied across all
documents, and a Dirichlet prior for ® added in.

3.4 The Dirichlet-Multinomial Model

The Dirichlet-multinomial form of DPCA was introduced as MPCA. In this case,
the normalised hidden variables m are used, and the total word count L is not
modelled.

m ~ Dirichletg () , w ~ Multinomial(®@m, L)

The full likelihood for each document then becomes:
oz —1 Wi
g mE (e

where C% is L choose w. LDA has the multinomial replaced by a discrete, and
thus the choose term drops, as per Section 3.1. PLSI is related to LDA but
lacks a prior distribution on m. It does not model these hidden variables using
probability theory, but instead using a weighted likelihood method [17].

4 Aspects of the Model

Before starting analysis and presenting algorithms, this section discusses some
useful aspects of the DPCA model family.

4.1 Correspondence

While it was argued in Section 3.4 that LDA and MPCA are essentially the same
model, up to ordering effects® it is also the case that these methods have a close
relationship to GaP.

Consider the Gamma-Poisson model. A set of Poisson variables can always
be converted into a total Poisson and a multinomial over the set [30]. The set of
Poisson distributions on w; then is equivalent to:

L ~ Poisson <Xk: zk> , w ~ Multinomial(zklk ol, L) .

Moreover, if the 8 hyper-parameter is a constant vector, then my = I,/ >, i is
distributed as a Dirichlet, Dirichlet i (), and ), Ij is distributed independently
as a gamma I'(Y ", ax, 3). The second distribution above can then be represented
as

w ~ Multinomial (@m, L) .

Note also, that marginalising out ), {; convolves a Poisson and a gamma distri-
bution to produce a Poisson-Gamma distribution for L [3]. Thus, we have proven
the following.

5 Note that the algorithm for MPCA borrowed the techniques of LDA directly.



Lemma 1. Given a Gamma-Poisson model of Section 3.3 where the 3 hyper-
parameter is a constant vector with all entries the same, 3, the model is equiva-
lent to a Dirichlet-multinomial model of Section 3.4 where my =lg/ >, I, and
i addition

L ~ Poisson-Gamma (Z agk, B, 1)
k

The implication is that if « is treated as known, and not estimated from the
data, then L is aposteriori independent of m and ©. In this context, when the
B hyper-parameter is a constant vector, LDA, MPCA and GaP are equivalent
models ignoring representational issues. If a is estimated from the data in GaP,
then the presence of the data L will influence «, and thus the other estimates
such as of . In this case, LDA and MPCA will no longer be effectively equivalent
to GaP. Note, Canny recommends fixing o and estimating 8 from the data [9].

To complete the set of correspondences, note that in Section 5.1 it is proven
that NMF corresponds to a maximum likelihood version of GaP, and thus it also
corresponds to a maximum likelihood version of LDA, MPCA, and PLSI. To
relationship is made by normalising the matrices that result.

4.2 A Multivariate Version

Another variation of the methods is to allow grouping of the count data. Words
can be grouped into separate variable sets. These groups might be “title words,”
“body words,” and “topics” in web page analysis or “nouns,” “verbs” and “ad-
jectives” in text analysis. The groups can be treated with separate discrete dis-
tributions, as below. The J possible word types in a document are partitioned
into G groups Bi,...,Bg. The total word counts for each group g is denoted
Lg=3,cp, wj- If the vector w is split up into G vectors wy = {w; : j € By},
and the matrix @ is now normalised by group in each row, so ) jeB, Ojk =1,
then a multivariate version of MPCA is created so that for each group g,

wy ~ Multinomial <{ka9j7k 1 j € Bg} , Lg>
k

Fitting and modelling methods for this variation are related to LDA or MPCA,
and will not be considered in more detail here. This has the advantage that
different kinds of words have their own multinomial and the distribution of dif-
ferent kinds is ignored. This version is demonstrated subsequently on US Senate
voting records, where each multinomial is now a single vote.

4.3 Component Assignments for Words

In standard mixture models, each document in a collection is assigned to one
(hidden) component. In the DPCA family of models, each word in each docu-
ment is assigned to one (hidden) component. To see this, we introduce another
hidden vector which represents the component assignments for different words.



As in Section 3.1, this can be done using a bag of components or a sequence of
components representation, and no effective change occurs in the basic models,
or in the algorithms so derived. What this does is expand out the term @I into
parts, treating it as if it is the result of marginalising out some hidden variable.
Here we just treat the two cases of Gamma-Poisson and Dirichlet-multinomial.

We introduce a K-dimensional discrete hidden vector ¢ whose total count
is L, the same as the word count. This records the component for each word
in a bag of components representation. Thus ¢ gives the number of words in
the document appearing in the k-th component. Its posterior mean makes an
excellent diagnostic and interpretable result. A document from the sports news
might have 50 “football” words, 10 “German” words, 20 “sports fan” words and
20 “general vocabulary” words. So an estimate or expected value for v. j is thus
used to give the amount of a component in a document, and forms the basis of
any posterior analysis and hand inspection of the results.

With the new hidden vector, the distributions underlying the Gamma-Poisson
model become:

Iy, ~ Gamma(ag, Ok) (5)
¢k ~ Poisson (Ix)

w; = g Vjk where v;; ~ Multinomial (0, c) .
k

The joint likelihood thus becomes, after some rearrangement

e 03" (6)
& F(Oék) ik ’Uj,k!
Note that I can be marginalised out, yielding
Dlex+ox) B Ok
H k J (7)

cpta |
L0 G e L

and the posterior mean of lj, given ¢ is (¢x + ag)/(1 + Bk). Thus each ¢ ~
Poisson-Gamma(ag, Bk, 1). For the Dirichlet-multinomial model, a similar re-
construction applies:
m ~ Dirichletg () (8)
¢k~ Multinomial (m, L)

w; = Z%k where v;, ~ Multinomial (8, ci) .
k

The joint likelihood thus becomes, after some rearrangement

mck+o¢k—1 ijkk
L'r k L 9
(Z ak) H Tor) L1550 (9)
k k gk D



Again, m can be marginalised out yielding

o L) HF(CIH-%) 0%

"I'(L+ ), ak) I'(ag) i vigl (10)

k

Note, in both the Gamma-Poisson and Dirichlet-multinomial models each count
wj is the sum of counts in the individual components, w; = ", v; . The sparse
matrix v; ;, of size J x K is thus a hidden variable, with row totals w; given in
the data and column totals c¢y.

4.4 Historical Notes

The first clear enunciation of the large-scale model in its Poisson form comes from
[23], and in its multinomial form from [17] and [29]. The first clear expression
of the problem as a hidden variable problem is given by [29], although no doubt
earlier versions appear in statistical journals under other names, and perhaps
in reduced dimensions (e.g., K = 3). The application of Gibbs is due to [29],
and of the mean field method is due to [5], the newer fast Gibbs version to [16].
The mean field method was a significant introduction because of its speed. The
relationship between LDA and PLSI and that NMF was a Poisson version of
LDA was first pointed out by [6]. The connections to ICA come from [7] and
[9]. The general Gamma-Poisson formulation, perhaps the final generalisation to
this line of work, is in [9].

5 Algorithms

Neither of the likelihoods yield to standard EM analysis. For instance, in the
likelihood Equation (6) and (9), the hidden variables I/m and v/c are coupled,
which is not compatible with the standard EM theory. Most authors point out
that EM-like analysis applies and use EM terminology, and indeed this is the
basis of the mean field approach for this problem. For the exponential family,
mean field algorithms correspond to an extension of the EM algorithm [6]. EM
and maximum likelihood algorithms can be used if one is willing to include the
hidden variables in the optimization criterion, as done for instance with the
K-means algorithm.

Algorithms for this problem follow some general approaches in the statistical
computing community:

— Straight maximum likelihood such as by [23], sometimes expressed as a
Kullback-Leibler divergence,

— annealed maximum likelihood by [17], best viewed in terms of its clustering
precursor such as by [18],

— Gibbs sampling on v, I/m and @ in turn using a full probability distribution
by [29], or Gibbs sampling on v alone (or equivalently, component assign-

ments for words in the sequence of words representation) after marginalising
out I/m and © by [16],



— mean field methods by [5], and
— expectation propagation (like so-called cavity methods) by [26].

The maximum likelihood algorithms are not considered here. Their use is al-
ways discouraged when a large number of hidden variables exist, and they are
mostly simplifications of the algorithms here,. Expectation propagation does not
scale, thus it is not considered subsequently either. While other algorithms typ-
ically require O(L) or O(K) hidden variables stored per document, expectation
propagation requires O(K L).

To complete the specification of the problem, a prior is needed for ®. A
Dirichlet prior can be used for each k-th component of ® with J prior parameters
;s 80 O ~ Dirichlet ; ().

5.1 Mean Field

The mean field method was first applied to the sequential variant of the Dirichlet-
multinomial version of the problem by [5]. In the mean field approach, generally
a factored posterior approximation ¢() is developed for the hidden variables I
(or m) and v, and it works well if it takes the same functional form as the
prior probabilities for the hidden variables. The functional form of the approx-
imation can be derived by inspection of the recursive functional forms (see [6]
Equation (4)):

1

q(l) — Z €xXp (Eq(v) {logp (la vV, w ‘ @7 «, /87 K)}) (11)
1

Q(V) — Z_ exp (Eq(l) {1ng(lava w | ®a aa/gvK)}) ’

where the Z; and Z, are normalising constants.

An important computation used during convergence in this approach is a
lower bound on the individual document log probabilities, logp (w | ©, e, 3, K).
This comes naturally out of the mean field algorithm (see [6] Equation (6)).
Using the approximation ¢() defined by the above distributions, the bound is
given by

Exp,) (log p(I,v,w[©,a, 8, K)) + I(q()) - (12)

The mean field algorithm applies to the Gamma-Poisson version and the Dirichlet-
multinomial version.

Gamma-Poisson model: So for the Gamma-Poisson case introduce approxima-
tion parameters ay, by and n;j (normalised as ), nj, = 1), and then use pos-
terior approximations matching the corresponding model in Equations (5):

lk ~ Gamma(ak,bk)
{vjr:k=1,...,K} ~Multinomial({n;r : k =1,..., K}, w,)



for each document. Matching the likelihood these two form with Equation (6),
according to the rules of Equations (11), yields the re-write rules for these new
parameters:

1 —
Nk = 793‘,1@ exp (loglk) , (13)
J
ap = o + ijnj,k ,
J

by =1+ Bk ,
where logly = Exp;, |4, 5, (log lx) = WYolax) —logby ,

Z; = Zej’k exp (l@k) .
k

Here, Wy() is the digamma function. These equations form the first step of each
major cycle, and are performed on each document.

The second step is to re-estimate the original model parameters ® using the
posterior approximation by maximising the expectation according to ¢(l,v) of
the log of the full posterior probability Exp,, (log p(l,v,w,0, |, 3, K)). This
incorporates Equation (6) for each document, and a Dirichlet prior term for
©. Denote the intermediate variables n for the i-th document by adding a (i)
subscript, as n;, (;), and likewise for wj ;). All these log probability formulas
yield linear terms in 6, , thus one gets

O o ij7(i)nj’k)(i) + 5 - (14)

The lower bound on the log probability of Equation (12), after some simplifica-
tion and use of the rewrites of Equation (13), becomes

lo ! +Z (o —a)lo/\l —lo Tawbi” +Zw-10 Z; (15)
gijj! k k k)10 Uk gf(ak)ﬁg’“ : jlog Zj .

The mean field algorithm for Gamma-Poisson version is given in Figure 2.

Dirichlet-multinomial model: For the Dirichlet-multinomial case, the mean field
algorithm takes a related form. The approximate posterior is given by:

m ~ Dirichlet(a)
{vjr:k=1,..., K} ~ multinomial({n;x : k=1,..., K}, w,)

This yields the same style update equations as Equations (13) except that 0 = 1

1 _
ik = Zej7k exp (logmk) , (16)

ap = o + E wn; k
J



1. Initialise a for each document. The uniform initialisation would be ap =
(Zk ok + L) /K. Note n is not stored.

2. Do for each document:

(a) Using Equations (13), recompute n and update a in place.

(b) Concurrently, compute the log-probability bound of Equation (15), and add
to a running total.

(¢c) Concurrently, maintain the sufficient statistics for ©, the total
> s Wik, (i) for each j, k over documents.

(d) Store a for the next cycle and discard n.

Update © using Equation (14), normalising appropriately.

4. Report the total log-probability bound, and repeat, starting at Step 2.

®

Fig. 2. Mean Field Algorithm for Gamma-Poisson

where 10@1@ = Exp,,, |allog mi) = o(ar) — ¥ <Z ak> ,
k
Z; = Z 0; 1 exp (logr\nk) .
k

Equation (14) is also the same. The lower bound on the individual document log
probabilities, logp (w | ©, e, K) now takes the form

(O g ar) — I"(o)
log <C’5,T’;ak)) + Xk: ((ak — ag)log my — log F(ak)> + Xj:wj logZ; .

(17)
The mean field algorithm for Dirichlet-multinomial version is related to that in
Figure 2. Equations (16) replace Equations (13), Equation (17) replaces Equa-
tion (15), and the initialisation for as should be 0.5, a Jeffreys prior.

Complezity: Because Step 2(a) only uses words appearing in a document, the
full Step 2 is O(SK) in time complexity where S is the number of words in the
full collection. Step 3 is O(JK) in time complexity. Space complexity is O(IK)
to store the intermediate parameters a for each document, and the O(2JK) to
store ©® and its statistics. In implementation, Step 2 for each document is often
quite slow, and thus both a and the document word data can be stored on disk
and streamed, thus the main memory complexity is O(2JK).

Correspondence with NMF A precursor to the GaP model is non-negative matrix
factorisation (NMF') [24], which is based on the matrix approximation paradigm
using Kullback-Leibler divergence. The algorithm itself, converted to the nota-
tion used here, is as follows

0).k W, (i) X0 wj (i)
L (s L (s J 7 0, 0, 7 L
k() < k(3 zj: Zj O S5 05 klk. (i) ik — Ok XZ: S o) Sor Okl o)



Notice that the solution is indeterminate up to a factor 4. Multiple I3, (; by g
and divide 6; 1 by 1, and the solution still holds. Thus, without loss of generality,
let 0; 1 be normalised on j, so that >, 0, = 1.

Lemma 2. Take a solution to the NMF equations, and divide 0; by a factor
= Zj 5.k, and multiply Iy ;) by the same factor. This is equivalent to a
solution for the following rewrite rules

e w
PRI o PR (U TS AL
k,(4) k,(); J’kzkaj,klk7(z‘) Jk jkz k()z 9 el )

where 01, is kept normalised on j.

Proof. First prove the forward direction. Take the scaled solution to NMF. The
NMEF equation for [, (;) is equivalent to the equation for [}, ;) in the lemma. Take
the NMF equation for 6 ;, and separately normalise both sides. The I, ;) term
drops out and one is left with the equation for ;; in the lemma. Now prove the
backward direction. It is sufficient to show that the NMF equations hold for the
solution to the rewrite rules in the lemma, since 6; ; is already normalised. The

NMF equation for I, (;y clearly holds. Assuming the rewrite rules in the lemma
hold, then

Uik il 2 U:J (kl)k )
2k 2 e (i) 5 u;] (kl)k -
Ok il )N 9JJ (kl)k )
Sl by

Ok =

(reorder sum)

0,k Zi I @) L RO
; ) 0; vlr .
_ Ek SRR @) (apply first rewrite rule)

> bk (i)

Thus the second equation for NMF holds.

The importance of this lemma is in realising that the introduced set of equations
are the maximum likelihood version of the mean-field algorithm for the Gamma-
Poisson model. That is, NMF where ©® is returned normalised is a maximum
w.r.t. ©® and I for the Gamma-Poisson likelihood p(w |®,l,a = 0,8 = 0, K).
This can be seen by inspection of the equations at the beginning of this sec-
tion. Note, including a hidden variable such as I in the likelihood is not correct
maximum likelihood, and for clustering yields the K-means algorithm.

5.2 Gibbs Sampling

There are two styles of Gibbs sampling that apply.



Direct Gibbs sampling: The basic Prichard’s style Gibbs sampling works off
Equation (6) or Equation (9) together with a Dirichlet prior for rows of ©.
The hidden variables can easily seen to be conditionally distributed in these
equations according to standard probability distributions, in a manner allowing
direct application of Gibbs sampling methods. The direct Gibbs algorithm for
both versions is given in Figure 3. This Gibbs scheme then re-estimates each

1. For each document, retrieve the last ¢ from store, then
(a) Sample the hidden component variables:
i. In the Gamma-Poisson case, [, ~ Gamma(ck + ax, 1+ 3%) independently.
ii. In the Dirichlet-multinomial case, ! ~ Dirichlet({cx + ax : k}).
(b) For each word j in the document with positive count w;, the component
counts vector, from Equation (5) and Equation (8),

. . 1605,
ikt k=1,...,K} ~ Mult 1 =2k il
{UJJC ) ) } ultinomia ({Zk lkoj,k }7wj)

Alternatively, if the sequence-of-components version is to be used, the compo-
nent for each word can be sampled in turn using the corresponding Bernoulli
distribution.
(¢) Concurrently, record the log-probability
i. In the Gamma-Poisson case, p (w |l,0, a, 3, K).
ii. In the Dirichlet-multinomial case, p (w|m, L, ®, «a, 3, K).
These represent a reasonable estimate of the likelihood p (w | ©, «, 3, K).
(d) Concurrently, maintain the sufficient statistics for ©, the total
> s Wiy k,(s) for each j, k over documents.
(e) Store c for the next cycle and discard v.

2. Using a Dirichlet prior for rows of ®, and having accumulated all the counts v
for each document in sufficient statistics for @, then its posterior has rows that
are Dirichlet. Sample.

3. Report the total log-probability, and report.

Fig. 3. One Major Cycle of Gibbs Algorithm for DPCA

of the variables in turn. In implementation, this turns out to correspond to the
mean field algorithms, excepting that sampling is done instead of maximisation
or expectation.

Rao-Blackwellised Gibbs sampling: The Griffiths-Steyvers’ style Gibbs sampling
is a Rao-Blackwellisation (see [11]) of direct Gibbs sampling. It takes the likeli-
hood versions of Equations (7) and (10) multiplied up for each document together
with a prior on ®, and marginalises out @. As before, denote the hidden vari-
ables v for the i-th document by adding an (i) subscript, as vj ;. Then the
Gamma-Poisson posterior for documents i € 1,..., I, with ® and I marginalised,



and constants dropped becomes:

I'(cr, iy + ax) 1 I, r (”/j +2 ”j,k,(i))
H 11 (1 + B)r e H Vjik, (i) 1 , (18)
i \k R ONY B (Zj Y+ Ck,(i))

A similar formula applies in the Dirichlet-multinomial version:

3

1 IL T (v + 3 vkm)
F(C L@@ + « ) ; (19)
H 1;[ K, (4) k lj_k[ V) k(i) 1;[ r (ZJ R C’“’(i))

If sequence of components formulation is used, instead of bag of components,
as discussed in Section 3.1, then the vj; (;)! terms are dropped. Now bag of
components sampling would require a sampling scheme for each set {v; ;)

k € 1,...,K}. No such scheme appears to exist, other than doing sequence of
components sampling, thus we do that. In one step, change the counts {v; s (i) :
k€ 1,...,K} by one (one is increased and one is decreased) keeping the total

w; constant. For instance, if a word has index j and is originally in component
k1 but re-sampled to ks, then decrease vj, ;) by one and increase vj, ;) by
one. Do this for every word in the document, thus it is done L times for the
document per major sampling cycle.

This Rao-Blackwellised Gibbs algorithm for the Gamma-Poisson and Dirichlet-
multinomial versions, both using sequence of components sampling, is given in
Figure 3.

Implementation notes: Because Griffiths-Steyvers’ scheme is a Rao-Blackwellisation
of the direct Gibbs sampling, it implies that both I and © are effectively re-
estimated with each sampling step, instead of once after the full pass over doc-
uments. This is most effective during early stages, and explains the superiority
of the method observed in practice. Moreover, it means only one storage slot for
© is needed (to store the sufficient statistics), whereas in direct Gibbs two slots
are needed (current value plus the sufficient statistics). This represents a major
savings in memory. Finally, I and ® can be sampled at any stage of this process
(because their sufficient statistics make up the totals appearing in the formula),
thus Gibbs estimates for them can be made as well during the MCMC process.

5.3 Other Aspects for Estimation and Use

A number of other algorithms are needed to put these models into regular use.

Component hyper-parameters: The treatment so far has assumed the parameters
a and 3 are given. It is more usual to estimate these parameters with the rest
of the estimation tasks as done by [5, 9]. This is feasible because the parameters
are shared across all the data, unlike the component vectors themselves.



1. Maintain the sufficient statistics for @, given by ZZ v k() for each j and k, and
the individual component assignment for each word in each document.
2. For each document i, retrieve the component assignments for each word then
(a) Recompute statistics for I(;y given by ¢ ;) = Zj Vjk,(s) for each k from the
individual component assignment for each word.
(b) For each word in the document:

i. Re-sample the component assignment for the word according to Equa-
tion (18) or (19) with the v x ;! terms dropped. If v}, ;) is the word
counts without this word, and ¢}, ;) the corresponding component totals,
then this simplifies dramatically (e.g., I'(z 4+ 1)/I'(z) = z).

A. For the Gamma-Poisson, sample the component proportionally to

iy T Y+ DYk )
1+ B Z]- Y5+ Zl C;g,(i)

B. For the Dirichlet-multinomial, sample the component proportionally

to ,
5+ D0 Vi)
205+ 2
ii. Concurrently, record the log-probability p (w|ec, ®,a, 8, K). It repre-

sents a reasonable estimate of the likelihood p (w | ©, «, 3, K).
iii. Concurrently, update the statistics for [/m and ©.

(C;c,(i) + ag)

Fig. 4. One Major Cycle of Rao-Blackwellised Gibbs Algorithm for DPCA

Estimating the number of components K: A simple scheme exists within im-
portance sampling in Gibbs to estimate the evidence term for a DPCA model,
proposed by [7], first proposed in the general sampling context by [10]. One
would like to find the value of K with the highest posterior probability (or, for
instance, cross validation score). In popular terms, this could be used to find
the “right” number of components, though in practice and theory such a thing
might not exist.

Use on new data: A typical use of the model requires performing inference related
to a particular document. Suppose, for instance, one wished to estimate how well
a snippet of text, a query, matches a document. Our document’s components are
summarised by the hidden variables m (or I). If the new query is represented
by g, then p(glm, ®, K) is the matching quantity one would like ideally. Since
m is unknown, we must average over it. Various methods have been proposed
[26, 7].

Alternative components: Hierarchical components have been suggested [7] as
a way of organising an otherwise large flat component space. For instance,
the Wikipedia with over half a million documents can easily support the dis-
covery of several hundred components. Dirichlet processes have been devel-
oped as an alternative to the K-dimensional component priors in the Dirichlet-



multinomial /discrete model [32], although in implementation the effect is to use
K-dimensional Dirichlets for a large K and delete low performing components.

6 Applications

This section briefly discusses a two applications of the methods.

6.1 Voting Data

One type of political science data are the roll calls. There were 459 roll calls in
the US Senate in the year 2003. For each of those, the vote of every senator was
recorded in three ways: ‘Yea’, ‘Nay’ and ‘Not Voting’. The outcome of the roll call
can be positive (e.g., Bill Passed, Nomination Confirmed) corresponding to ‘Yea’,
or negative (e.g., Resolution Rejected, Veto Sustained). Hence, the outcome of
the vote can be interpreted as the 101st senator, by associating positive outcomes
with ‘Yea’ and negative outcomes with ‘Nay’.

Application of the Method We can now map the roll call data to the DPCA
framework. For each senator X we form two ‘words’, where wx , implies that
X voted “Yea’, and wx,, implies that X voted ‘Nay’. Each roll call can be in-
terpreted as a document containing a single occurrence of some of the available
words. The pair of words wx 4, wx,n s then treated as a binomial, so the mul-
tivariate formulation of Section 4.2 is used. Priors for ® were Jeffreys priors, o
was (0.1,0.1,...,0.1), and regular Gibbs sampling was used.

Special-purpose models are normally used for interpreting roll call data in
political science, and they often postulate a model of rational decision making.
Each senator is modelled as a position or an ideal point in a continuous spatial
model of preferences [12]. For example, the first dimension often delineates the
liberal-conservative preference, and the second region or social issues preference.
The proximities between ideal points ‘explain’ the positive correlations between
the senators’ votes. The ideal points for each senator can be obtained either
by optimization, for instance, with the optimal classification algorithm [28], or
through Bayesian modelling [12].

Unlike the spatial models, the DPCA interprets the correlations between
votes through membership of the senators in similar blocs. Blocs correspond to
hidden component variables. Of course, we can speak only of the probability
that a particular senator is a member of a particular bloc. The corresponding
probability vector is normalized and thus assures that a senator is always a
member of one bloc on the average. The outcome of the vote is also a member
of several blocs, and we can interpret the membership as a measure of how
influential a particular bloc is.

Visualization We can analyze two aspects of the DPCA model as applied to the
roll call data: we can examine the membership of senators in blocs, and we can



examine the actions of blocs for individual issues. The approach to visualization
is very similar, as we are visualizing a set of probability vectors. We can use the
gray scale to mirror the probabilities ranging from 0 (white) to 1 (black).

As yet, we have not mentioned the choice of K - the number of blocs. Al-
though the number of blocs can be a nuisance variable, such a model is distinctly
more difficult to show than one for a fixed K. We obtain the following negative
logarithms to the base 2 of the model’s likelihood for K = 4,5,6,7,10: 9448.6406,
9245.8770, 9283.1475, 9277.0723, 9346.6973. We see that K = 5 is overwhelm-
ingly selected over all others, with K = 4 being far worse. This means that with
our model, we best describe the roll call votes with the existence of five blocs.
Fewer blocs do not capture the nuances as well, while more blocs would not yield
reliable probability estimates given such an amount of data. Still, those models
are too valid to some extent. It is just that for a single visualization we pick the
best individual one of them.

We will now illustrate the membership of senators in blocs. Each senator is
represented with a vertical bar of 5 squares that indicate his or her membership
in blocs. We have arranged the senators from left to right using the binary
PCA approach of [14]. This ordering attempts to sort senators from the most
extreme to the most moderate and to the most extreme again. Figure 5 shows
the Democrat senators and Figure 6 the Republicans.
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Fig. 5. Component membership for Democrats

We can observe that component 5 is the Democrat majority. It is the strongest
overall component, yet quite uninfluential about the outcome. Component 4 is
are the moderate Democrats, and they seem distinctly more influential than
the Democrats of the majority. Component 3 is a small group of Republican
moderates. Component 2 is the Republican majority, the most influential bloc.
Component 5 is the Republican minority, not very influential. Component 5
tends to be slightly more extreme than component 4 on the average, but the two
components clearly cannot be unambiguously sorted.



Voinovich (R-OH)

Hutchison (R-TX)

Coleman (R-MN)

Fitzgerald (R-IL)

McConnell (R-KY)
B Sessions (R-AL)

B Ensign (R-NV)
Brownback (R-KS)

Snowe (R-ME)
Collins (R-ME)
Outcome
Campbell (R-CO)
B Gregg (R-NH)
Shelby (R—-AL)
Domenici (R-NM)
Bond (R-MO)
Chambliss (R-GA)
Burns (R-MT)
Frist (R—-TN)
Alexander (R-TN)

B McCain (R-AZ)
DeWine (R-OH)

B Murkowski (R-AK)
Cochran (R-MS)
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Cornyn (R-TX)
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Hagel (R-NE)
Roberts (R-KS)
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Dole (R-NC)
B Santorum (R-PA)
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Fig. 6. Component membership for Republicans

7 Classification Experiments

We tested the use of MPCA in its role as a feature construction tool, a common
use for PCA and ICA, and as a classification tool. For this, we used the 20 news-
groups collection described previously as well as the Reuters-21578 collection®.
We employed the SVM'9"* V5.0 [22] classifier with default settings. For classi-
fication, we added the class as a distinct multinomial (cf. Section 4.2) for the
training data and left it empty for the test data, and then predicted the class
value. Note that for performance and accuracy, SVM is the clear winner: as the
state of the art optimized discrimination-based system this is to be expected. It
is interesting to see how MPCA compares.

Each component can be seen as generating a number of words in each doc-
ument. This number of component-generated words plays the same role in clas-
sification as does the number of lexemes in the document in ordinary classifica-
tion. In both cases, we employed the TF-IDF transformed word and component-
generated word counts as feature values. Since SVM works with sparse data
matrices, we assumed that a component is not present in a document if the
number of words that would a component have generated is less than 0.01. The
components alone do not yield a classification performance that would be com-
petitive with SVM, as the label has no distinguished role in the fitting. However,
we may add these component-words in the default bag of words, hoping that the
conjunctions of words inherent to each component will help improve the classi-
fication performance.

For the Reuters collection, we used the ModApte split. For each of the 6 most
frequent categories, we performed binary classification. Further results are dis-
closed in Table 27. No major change was observed by adding 50 components to
the original set of words. By performing classification on components alone, the
results were inferior, even with a large number of components. In fact, with 300

5 The Reuters-21578, Distribution 1.0 test collection is available from David D. Lewis’
professional home page, currently: http://www.research.att.com/~lewis
" The numbers are percentages, and ‘P/R’ indicates precision/recall.



components, the results were worse than with 200 components, probably because
of over-fitting. Therefore, regardless of the number of components, the SVM per-
formance with words cannot be reproduced by component-generated words in
this collection. Classifying newsgroup articles into 20 categories proved more suc-

Table 2. SVM Classification Results

SVM SVM+MPCA
CAT ACC. P/RACC. P/R
carn  98.58 98.5/97.1 98.45 98.2/97.1
acq 95.54 97.2/81.9 95.60 97.2/82.2
moneyfx 96.79 79.2/55.3 96.73 77.5/55.9
grain  98.94 94.5/81.2 98.70 95.7/74.5
crude  97.91 89.0/72.5 97.82 88.7/70.9
trade  98.24 79.2/68.1 98.36 81.0/69.8

MPCA (50 comp.) MPCA (200 comp.)

CAT  ACC. P/R ACC. P/R
carn  96.94  96.1/94.6 97.06  96.3/94.8
acq 92.63  93.6/71.1 92.33  95.3/68.2

moneyfx 95.48  67.0/33.0 96.61 76.0/54.7
grain 96.21  67.1/31.5 97.18 77.5/53.0
crude 96.57  81.1/52.4 96.79 86.1/52.4
trade 97.82  81.4/49.1 97.91 78.3/56.0

cessful. We employed two replications of 5-fold cross validation, and we achieved
the classification accuracy of 90.7% with 50 additional MPCA components, and
87.1% with SVM alone. Comparing the two confusion matrices, the most frequent
mistakes caused by SVM+MPCA beyond those of SVM alone were predict-
ing talk.politics.misc as sci.crypt (26 errors) and talk.religion.misc predicted as
sci.electron (25 errors). On the other hand, the components helped better identify
alt.atheism and talk.politics.misc, which were misclassified as talk.religion.misc
(259 fewer errors) earlier. Also, talk.politics.misc and talk.religion.misc were not
misclassified as talk.politics.gun (98 fewer errors). These 50 components were
not very successful alone, resulting in 18.5% classification accuracy. By increas-
ing the number of components to 100 and 300, the classification accuracy grad-
ually increases to 25.0% and 34.3%. Therefore, many components are needed for
general-purpose classification.

From these experiments, we can conclude that components may help with
tightly coupled categories that require conjunctions of words (20 newsgroups),
but not with the keyword-identifiable categories (Reuters). Judging from the
ideas in [21], the components help in two cases: a) when the co-appearance of two
words is more informative than sum of informativeness of individual appearance



of either word, and b) when the appearance of one word implies the appearance
of another word, which does not always appear in the document.

8 Conclusion

In this article, we have presented a unifying framework for various approaches
to discrete component analysis, presenting them as a model closely related to
ICA. We have shown the relationships between existing approaches here such
as NMF, PLSI, LDA, MPCA and GaP, and presented the different algorithms
available for two general cases, Gamma-Poisson and Dirichlet-multinomial. For
instance NMF corresponds to a maximum likelihood solution for LDA. These
methods share many similarities with both PCA and ICA, and are thus useful in
a range of feature engineering tasks in machine learning and pattern recognition.
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