
The 22nd International Conference on Machine Learning

Proceedings of the Workshop on

Learning in
Web Search
(LWS 2005)

Stephan Bloehdorn

Wray Buntine

Andreas Hotho

7-11 August 2005 in Bonn, Germany

W 4

Learning in Web Search (LWS 2005)

International Workshop located at
the 22nd International Conference on Machine Learning (ICML 2005)

7th August 2005 - Bonn, Germany

Supported by

ALVIS, KnowledgeWeb, Network of Excellence Open Source Search, SEKT,
PASCAL Network of Excellence and SmartWeb

Workshop Chairs:
Stephan Bloehdorn

Wray Buntine
Andreas Hotho

Learning in Web Search (LWS 2005)

The emerging world of search we see is one which makes increasing use of infor-
mation extraction, gradually blends in semantic web technology and peer to peer
systems, and uses grid computing as part of resources for information extraction
and learning. This workshop aims at exploring the theory and application of ma-
chine learning in this context for the internet, intranets, the emerging semantic
web and peer to peer search.

We are happy to see that this workshop succeeded in attracting a large num-
ber of high quality paper submissions, 8 of which were selected by the program
committee. Besides this, three invited speakers have agreed to complement the
paper presentations.

In his invited talk Large Margin Methods in Information Extraction and Con-
tent Categorization, Thomas Hofmann gives insights on using Support Vector
Machines for predicting structured output variables. The papers A Web-based
kernel Function for Matching Short Text Snippets and A Semantic Kernel to
classify Texts with very few Training Examples also contribute to the field of
kernel methods. In using formalized background knowledge, the latter seam-
lessly matches with the contribution Learning Word-to-Concept Mappings for
Automatic Text Classification. The task of automated knowledge markup for
the Semantic Web is addressed by means of machine learning methods in the
paper Unsupervised Ontology-based Semantic Tagging for Knowledge Markup.

The invited talk Generating Accurate Training Data from Implicit Feedback
by Thorsten Joachims moves the focus to the behavior of users in Web Search.
The contribution Topic-Specific Scoring of Documents for Relevant Retrieval
explores ways to differentiate and bias web search results with respect to topical
preferences. In the paper Evaluating the Robustness of Learning from Implicit
Feedback, the authors present a new approach for simulating user behavior in a
web search setting.

In the third invited talk, Type-enabled Keyword Searches with Uncertain
Schema, Soumen Chakrabarti gives insights into future Search paradigms that
integrate more complex entity and relationship annotations with type-enabled
queries. A short infrastructure contribution presents Pipelets: A Framework for
Distributed Computation. Finally, the paper Sailing the Web with Captain Nemo:
a Personalized Metasearch Engine presents the implementation of a metasearch
engine that exploits personal user search spaces.

We thank the members of our program committee for their efforts to ensure
the quality of accepted papers. We kindly acknowledge the research projects
that are supporting this workshop. We are looking forward to having interesting
presentations and fruitful discussions.

August 2005Your LWS2005 Team

Stephan Bloehdorn, Wray Buntine and Andreas Hotho

Workshop Chairs

Stephan Bloehdorn
University of Karlsruhe
Institute AIFB, Knowledge Management Research Group
D–76128 Karlsruhe, Germany
http://www.aifb.uni-karlsruhe.de/WBS/sbl
sbl@aifb.uni-karlsruhe.de

Wray Buntine
Helsinki Institute of Information Technology
Complex Systems Computation Group
FIN–00180 Helsinki, Finland
http://www.hiit.fi/u/buntine/
wray.buntine@hiit.fi

Andreas Hotho
University of Kassel
Knowledge and Data Engineering Group
D–34121 Kassel, Germany
http://www.kde.cs.uni-kassel.de/hotho
hotho@cs.uni-kassel.de

Program Committee

Paul Buitelaar
DFKI Saarbrücken
Soumen Chakrabarti
Indian Institute of Technology Bombay
Fabio Ciravegna
University of Sheffield
David Cohn
Google Inc.
Eric Gaussier
XEROX Research Center Europe
Siegfried Handschuh
FZI Karlsruhe and Ontoprise GmbH
Thomas Hofmann
Brown University
Yaoyong Li
University of Sheffield

Andrew McCallum
University of Massachusetts Amherst
Dunja Mladenic
Jozef Stefan Institute, Ljubljana
Andreas Nürnberger
University of Magdeburg
Mehran Sahami
Google Inc. and Stanford University
Alan Smeaton
Dublin City University
Steffen Staab
University of Koblenz
Lars Schmidt-Thieme
University of Freiburg
Henry Tirri
Nokia Research Center

Further Reviewers

Jose Iria
University of Sheffield

Table of Contents

Large Margin Methods in Information Extraction and Content
Categorization (Invited Talk) . 1
Thomas Hofmann

A Web-based Kernel Function for matching Short Text Snippets 2
Mehran Sahami and Tim Heilman

A Semantic Kernel to classify texts with very few training examples 10
Roberto Basili, Marco Cammisa and Alessandro Moschitti

Learning Word-to-Concept Mappings for Automatic Text Classification . . 18
Georgiana Ifrim, Martin Theobald and Gerhard Weikum

Unsupervised Ontology-based Semantic Tagging for Knowledge Markup . . 26
Paul Buitelaar and Srikanth Ramaka

Generating Accurate Training Data from Implicit Feedback (Invited Talk) 33
Thorsten Joachims

Topic-Specific Scoring of Documents for Relevant Retrieval 34
Wray Buntine, Jaakko Löfström, Sami Perttu and Kimmo Valtonen

Evaluating the Robustness of Learning from Implicit Feedback 42
Filip Radlinski and Thorsten Joachims

Type-enabled Keyword Searches with Uncertain Schema (Invited Talk) . . 50
Soumen Chakrabarti

Pipelets: A Framework for Distributed Computation 51
John Carnahan and Dennis DeCoste

Sailing the Web with Captain Nemo: a Personalized Metasearch Engine . . 53
Stefanos Souldatos, Theodore Dalamagas and Timos Sellis

Large Margin Methods in Information
Extraction and Content Categorization

(Invited Talk)

Thomas Hofmann

Technical University of Darmstadt, Intelligent Systems Group, and
Fraunhofer Institute for Integrated Publication and Information Systems (IPSI),

D–64293 Darmstadt, Germany

Abstract: Support Vector Machines (SVMs) have been one of the major break-
throughs in machine learning, both in terms of their practical success as well as
their learning-theoretic properties. This talk presents a generic extension of SVM
classification to the case of structured classification, i.e. the task of predicting
output variables with some meaningful internal structure. As we will show, this
approach has many interesting applications in information extraction, informa-
tion retrieval, document categorization and natural language processing, includ-
ing supervised training of Markov Random Fields and probabilistic context-free
grammars.

1

A Web-based Kernel Function for Matching Short Text Snippets

Mehran Sahami sahami@google.com
Tim Heilman tdh@google.com

Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043 USA

Abstract

Determining the similarity of short text snip-
pets, such as search queries, works poorly
with traditional document similarity mea-
sures (e.g., cosine), since there are often few,
if any, terms in common between two short
text snippets. We address this problem by
introducing a novel method for measuring
the similarity between short text snippets
(even those without any overlapping terms)
by leveraging web search results to provide
greater context for the short texts. In this
paper, we define such a similarity kernel func-
tion and provide examples of its efficacy. We
also show the use of this kernel function in
a large-scale system for suggesting related
queries to search engine users.

1. Introduction

In analyzing text, there are many situations in which
we wish to determine how similar two short text snip-
pets are. For example, there may be different ways to
describe some concept or individual, such as “United
Nations Secretary-General” and “Kofi Annan”, and we
would like to determine that there is a high degree
of semantic similarity between these two text snip-
pets. Similarly, the snippets “AI” and “Artificial In-
telligence” are very similar with regard to their mean-
ing, even though they may not share any actual terms
in common.

Applying traditional document similarity measures,
such as the widely used cosine coefficient (Salton et al.,
1975; Salton & McGill, 1983), to such short text snip-
pets often produces inadequate results, however. In-
deed, in both the examples given previously, apply-
ing the cosine would yield a similarity of 0 since each

Appearing in W4: Learning in Web Search, at the 22 nd

International Conference on Machine Learning, Bonn, Ger-
many, 2005. Copyright 2005 by the author(s)/owner(s).

given text pair contains no common terms. Even in
cases where two snippets may share terms, they may
be using the term in different contexts. Consider the
snippets “graphical models” and “graphical interface”.
The first uses graphical in reference to graph structures
whereas the second uses the term to refer to graphic
displays. Thus, while the cosine score between these
two snippets would be 0.5 due to the shared lexical
term “graphical”, at a semantic level the use of this
shared term is not truly an indication of similarity be-
tween the snippets.

To address this problem, we would like to have a
method for measuring the similarity between such
short text snippets that captures more of the semantic
context of the snippets rather than simply measuring
their term-wise similarity. To help us achieve this goal,
we can leverage the large volume of documents on the
web to determine greater context for a short text snip-
pet. By examining documents that contain the text
snippet terms we can discover other contextual terms
that help to provide a greater context for the original
snippet and potentially resolve ambiguity in the use of
terms with multiple meanings.

Our approach to this problem is relatively simple, but
surprisingly quite powerful. We simply treat each snip-
pet as a query to a web search engine in order to find
a number of documents that contain the terms in the
original snippets. We then use these returned docu-
ments to create a context vector for the original snip-
pet, where such a context vector contains many words
that tend to occur in context with the original snip-
pet (i.e., query) terms. Such context vectors can now
be much more robustly compared with a measure such
as the cosine to determine the similarity between the
original text snippets. Furthermore, since the cosine
is a valid kernel, using this function in conjunction
with the generated context vectors makes this simi-
larity function applicable in any kernel-based learning
algorithm where (short) text data is being processed.

While there are many cases where getting a robust
measure of similarity between short texts is important,

2

A Web-based Kernel Function for Matching Short Text Snippets

one particularly useful application in the context of
search is to suggest related queries to a user. In such
an application, a user who issues a query to a search
engine may find it helpful to be provided with a list of
semantically related queries that he or she may con-
sider to further explore the related information space.
By employing our short text similarity kernel, we could
match the user’s initial query against a large reposi-
tory of existing user queries to determine other similar
queries to suggest to the user. Thus, the results of
the similarity function can be directly employed in an
end-user application.

The approach we take in constructing our similarity
function has relations to previous work in both the
Information Retrieval and Machine Learning commu-
nities. We explore these relations and put our work in
the context of previous research in Section 2. We then
formally define our similarity function in Section 3 and
present examples of the results in Section 4. In Sec-
tion 5 we present a system for related query suggestion
using our similarity function, and then present its eval-
uation in Section 6. Finally, in Section 7 we provide
some conclusions and directions for future work.

2. Related Work

The similarity function we present here is based on
query expansion techniques (Buckley et al., 1994; Mi-
tra et al., 1998) which have long been used in the In-
formation Retrieval community. Such methods auto-
matically augment a user query with additional terms
based on documents that are retrieved in response to
the initial user query or by using an available the-
saurus. Our motivation for and usage of query expan-
sion greatly differs from this previous work, however.
First, the traditional goal of query expansion has been
to improve recall (potentially at the expense of pre-
cision) in a retrieval task. Our focus, however, is on
using such expansions to provide a richer representa-
tion for a short text in order to potentially compare
it robustly with other short texts. Moreover, tradi-
tional expansion is focused on creating a new query
for retrieval rather than doing pair-wise comparisons
between short texts. Thus, the approach we take is
quite different than the use of query expansion in a
standard Information Retrieval context.

Alternatively, information retrieval researchers have
previously proposed other means of determining query
similarity. One early method proposed by Raghavan
and Sever (Raghavan & Sever, 1995) attempts to mea-
sure the relatedness of two queries by determining dif-
ferences in the ordering of documents retrieved in re-
sponse to the two queries. This method requires a total

ordering (ranking) of documents over the whole col-
lection for each query. Thus, comparing the pairwise
differences in rankings requires O(N 2) time, where N
is the number of documents in the collection. In the
context of the web, where N > 8 billion, this algorithm
quickly becomes intractable.

Later work by Fitzpatrick and Dent (Fitzpatrick &
Dent, 1997) measures query similarity using the nor-
malized set overlap (intersection) of the top 200 docu-
ments retrieved for each query. While this algorithm’s
runtime complexity easily scales to the web, it will
likely not lead to very meaningful similarity results as
the sheer number of documents in the web collection
will often make the set overlap for returned results ex-
tremely small (or empty) for many related queries that
are not nearly identical. We show that this is indeed
the case in our experimental results later in the paper.

In the context of Machine Learning, there has been
a great deal of work in using kernel methods, such
as Support Vector Machines for text classification
(Joachims, 1998; Dumais et al., 1998). Such work has
recently extended to building specialized kernels aimed
at measuring semantic similarity between documents.
We outline some of these approaches below, and show
how they differ from the work presented here.

One of the early approaches in this vein is Latent
Semantic Kernels (Cristianini et al., 2002), which is
a kernel-based extension to Latent Semantic Index-
ing (Deerwester et al., 1990). Here a kernel ma-
trix is computed over text documents, and the eigen-
decomposition of this matrix is used to compute a new
(lower rank approximation) basis for the space. The
dimensions of the new basis can intuitively be thought
of as capturing “semantic concepts” (i.e., roughly cor-
responding to co-varying subsets of the dimensions in
the original space). While there may be some super-
ficial similarities, this approach differs in fundamental
respects from our work. First, our method is aimed
at constructing a new kernel function, not using an
existing kernel matrix to infer “semantic dimensions”.
Also, our method takes a lazy approach in the sense
that we need not compute an expansion for a given
text snippet until we want to evaluate the kernel func-
tion. We never need to explicitly compute a full ker-
nel matrix over some set of existing text snippets nor
its eigen-decomposition. Indeed, the kernel we present
here is entire complimentary to work on Latent Seman-
tic Kernels, as our kernel could be used to construct
the kernel matrix on which the eigen-decomposition is
performed.

An approach more akin to that taken here is the work
of Kandola et al. (Kandola et al., 2002) who define

3

A Web-based Kernel Function for Matching Short Text Snippets

a kernel for determining the similarity of individual
terms based on the collection of documents that these
terms appear in. In their work, they learn a Seman-
tic Proximity Matrix that captures the relatedness of
individual terms by essentially measuring the correla-
tion in the documents that contain these terms. In
our work, the kernel we consider is not attempting
to just determine similarity between single terms, but
entire text snippets. Moreover, our approach does not
require performing an optimization over an entire col-
lection of documents (as is required in the previous
work), but rather the kernel between snippets can be
computed on-line selectively, as needed.

Previous research has also tried to address learning a
semantic representation for a document by using cross-
lingual techniques (Vinokourov et al., 2002). Here, one
starts with a corpus of document pairs, where each
pair is the same document written in two different
languages. A correlation analysis is then performed
between the corpora in each language to determine
combinations of related words in one language that
correlate well with combinations of words in the other
language, and thereby learn word relations within a
given language. Obviously, the approach we take does
not require such a paired corpora. And, again, we seek
to not just learn relationships between single terms but
between entire arbitrary short texts.

Thus, while there has been a good deal of work in de-
termining semantic similarities between texts (which
highlights the general importance of this problem),
many of which use kernel methods, the approach
we present has significant differences with that work.
Moreover, our approach provides the compelling ad-
vantage that semantic similarity can be measured be-
tween multi-term short texts, where the entire text can
be considered as a whole, rather than just determin-
ing similarity between individual terms. Furthermore,
no expensive pre-processing of a corpora is required
(e.g., eigen-decomposition), and the kernel can eas-
ily be computed for a given snippet pair as needed.
We simply require access to a search engine (i.e., text
index) over a corpora, which can be quite efficiently
(linearly) constructed or can be obviated entirely by
accessing a public search engine on the Web, such as
the Google API (http://www.google.com/apis).

3. A New Similarity Function

Presently, we formalize our kernel function for seman-
tic similarity. Let x represent a short text snippet1.

1While the real focus of our work is geared toward short
text snippets, there is no technical reason why x must have
limited length, and in fact x can be arbitrary text.

Now, we compute the query expansion of x, denoted
QE(x), as follows:

1. Issue x as a query to a search engine S.
2. Let R(x) be the set of (at most) n retrieved

documents d1, d2, . . . , dn

3. Compute the TFIDF term vector vi for each
document di ∈ R(x)

4. Truncate each vector vi to include its m highest
weighted terms

5. Let C be the centroid of the L2 normalized
vectors vi:

C = 1
n

∑n
i=1

vi

‖vi‖2

6. Let QE(x) be the L2 normalized centroid of C:
QE(x) = C

‖C‖2

We note that to be precise, the computation of QE(x)
really should be parameterized by both the query x
and the search engine S used. Since we assume that
S remains constant in all computations, we omit this
parameter for brevity.

There are several modifications that can be made to
the above procedure, as appropriate for different doc-
ument collections. Foremost among these is the term
weighting scheme used in Step 3. Here, we consider
a TFIDF vector weighting scheme (Salton & Buckley,
1988), where the weight wi,j associated with with term
ti in document dj is defined to be:

wi,j = tfi,j × log(
N

dfi
),

where tfi,j is the frequency of ti in dj , N is the total
number of documents in the corpus, and dfi is the total
number of documents that contain ti. Clearly, other
weighting schemes are possible, but we choose TFIDF
here since it is commonly used in the IR community
and we have found it to empirically give good results
in building representative query expansions. Also, in
Step 4, we set the maximum number of terms in each
vector m = 50, as we have found this value to give
a good trade-off between representational robustness
and efficiency.

Also, in Step 2, we need not choose to use the entirety
of retrieved documents in order to produce vectors.
We may choose to limit ourselves to create vectors us-
ing just the contextually descriptive text snippet for
each document that is commonly generated by Web
search engines. This would make our algorithm more
efficient in terms of the amount of data processed, and
allows us to make ready use of the results from public
web search engines without having to even retrieve the
full actual underlying documents. Of course, there re-
mains the question of how large such descriptive texts

4

A Web-based Kernel Function for Matching Short Text Snippets

provided by search engines need to be in order to be
particularly useful. Empirically, we have found that
using 1000 characters (in a token delimited window
centered on the original query terms in the original
text) is sufficient to get accurate results, and increasing
this number does not seem to provide much additional
benefit.

Evaluating a variety of term weighting or text window-
ing schemes, however, is not the aim of this work and
we do not explore it further here. Rather we simply
seek to outline some of the issues that may be of in-
terest to practitioners and provide some guidance on
reasonable values to use that we have found work well
empirically.

Finally, given that we have a means for computing the
query expansion for a short text, it is a simple matter
to define the semantic kernel function K as the inner
product of the query expansions for two text snippets.
More formally, given two short text snippets x and y,
we define the semantic similarity kernel between them
as:

K(x, y) = QE(x) · QE(y).

Clearly, since K(x, y) is an inner product with a
bounded norm (given that each query expansion vec-
tor has norm 1.0), it is a valid kernel function.

4. Examples of Results With Kernel

To get a cursory evaluation for how well our se-
mantic similarity kernel performs, we show results
with the kernel on a number of text pairs, using the
Google search engine as the underlying document re-
trieval mechanism. We attempt to highlight both the
strengths and potential weaknesses of this kernel func-
tion.

We examined several text snippet pairs to determine
the similarity score given by our new web-based ker-
nel, the traditional cosine measure, and the set overlap
measure proposed by Fitzpatrick and Dent. We specif-
ically look at three genres of text snippet matching: (i)
acronyms, (ii) individuals and their positions, and (iii)
multi-faceted terms.2 Examples of applying the kernel
are shown in Table 1, which is segmented by the genre
of matching examined.

2We prefer the term multi-faceted over ambiguous, since
multi-faceted terms may have the same definition in two
contexts, but the accepted semantics of that definition may
vary in context. For example, the term “travel” has the
same definition in both the phrases “space travel” and “va-
cation travel”, so it is (strictly speaking) not ambiguous
here, but the semantics of what is meant by traveling in
those two cases is different.

The first section of the table deals with the identifica-
tion of acronyms. In this genre, we find two notable
effects using our kernel. First, from the relatively high
similarity scores found between acronyms and their
full name, it appears that our kernel is generally ef-
fective at capturing the semantic similarity between
an acronym and its full name. Note that the kernel
scores are not 1.0 since acronyms can often have mul-
tiple meanings. Related to this point, our second ob-
servation is that our kernel function (being based on
contextual text usage on the web) tends to prefer more
common usages of an acronym in determining semantic
similarity. For example, the text “AI” is determined
to be much more similar to “artificial intelligence”
than “artificial insemination” (even though it is a valid
acronym for both), since contextual usage of “AI” on
the web tends to favor the former meaning. We see a
similar effect when comparing “term frequency inverse
document frequency” to “tf idf” and “tfidf”. While
the former acronym tends to be more commonly used
(especially since the sub-acronyms “tf” and “idf” are
separated), the still reasonable score over 0.5 for the
acronym “tfidf” shows that the kernel function is still
able to determine a solid level of semantic similarity. It
is not surprising that the use of cosine similarity is en-
tirely inappropriate for such a task (since the full name
of an acronym virtually never contains the acronym
itself). Moreover, we find, as expected, that the set
overlap measure leads to very low (and not very ro-
bust) similarity values.

Next, we examined the use of our kernel in identifying
different characterizations of individuals. Specifically,
we considered determining the similarity of the name
of a notable individual with his prominent role descrip-
tion. The results of these examples are shown in the
second section of Table 1.

In order to assess the strengths and weakness of the
kernel function we intentionally applied the kernel to
both correct pairs of descriptions and individuals as
well looking at pairs involving an individual and a
close, but incorrect, description. For example, while
Kofi Annan and George W. Bush are both prominent
world political figures, the kernel is effective at deter-
mining the correct role matches and assigning them
appropriately high scores.

In the realm of business figures, we find that the kernel
is able to distinguish Steve Ballmer as the current CEO
of Microsoft (and not Bill Gates). Bill Gates still gets a
non-trivial semantic similarity with the role “Microsoft
CEO” since he was indeed the former CEO, but he is
much more strongly (by a over a factor of 2) associ-
ated correctly with the text “Microsoft founder”. Sim-

5

A Web-based Kernel Function for Matching Short Text Snippets

Text 1 Text 2 Kernel Cosine Set Overlap
Acronyms

support vector machine SVM 0.812 0.0 0.110
International Conference on Machine Learning ICML 0.762 0.0 0.085
portable document format PDF 0.732 0.0 0.060
artificial intelligence AI 0.831 0.0 0.255
artificial insemination AI 0.391 0.0 0.000
term frequency inverse document frequency tf idf 0.831 0.0 0.125
term frequency inverse document frequency tfidf 0.507 0.0 0.060

Individuals and their positions
UN Secretary-General Kofi Annan 0.825 0.0 0.065
UN Secretary-General George W. Bush 0.110 0.0 0.000
US President George W. Bush 0.688 0.0 0.045
Microsoft CEO Steve Ballmer 0.838 0.0 0.090
Microsoft CEO Bill Gates 0.317 0.0 0.000
Microsoft Founder Bill Gates 0.677 0.0 0.010
Google CEO Eric Schmidt 0.845 0.0 0.105
Google CEO Larry Page 0.450 0.0 0.040
Google Founder Larry Page 0.770 0.0 0.050
Microsoft Founder Larry Page 0.189 0.0 0.000
Google Founder Bill Gates 0.096 0.0 0.000
web page Larry Page 0.123 0.5 0.000

Multi-faceted terms
space exploration NASA 0.691 0.0 0.070
space exploration space travel 0.592 0.5 0.005
vacation travel space travel 0.321 0.5 0.000
machine learning ICML 0.586 0.0 0.065
machine learning machine tooling 0.197 0.5 0.000
graphical UI graphical models 0.275 0.5 0.000
graphical UI graphical interface 0.643 0.5 0.000
java island Indonesia 0.454 0.0 0.000
java programming Indonesia 0.020 0.0 0.000
java programming applet development 0.563 0.0 0.010
java island java programming 0.280 0.5 0.000

Table 1. Examples of web-based kernel applied to short text snippet pairs.

ilarly, the kernel is successful at correctly identifying
the current Google CEO (Eric Schmidt) from Larry
Page (Google’s founder and former CEO).

We also attempted to test how easily the kernel func-
tion gave back high scores for inappropriate matches
by trying to pair Bill Gates as the founder of Google
and Larry Page as the founder of Microsoft. The low
similarity scores given by the kernel show that it does
indeed find little semantic similarity between these in-
appropriate pairs. Once again, the kernel value is non-
zero since each of the individuals is indeed the founder
of some company, so the texts compared are not en-
tirely devoid of some semantic similarity. Finally, we
show that even though Larry Page has a very common
surname, the kernel does a good job of not confusing

him with a “web page” (although the cosine gives a
inappropriately high similarity due to the match on
the term “page”).

Lastly, we examined the efficacy of the kernel when ap-
plied to texts with multi-faceted terms – a case where
we expect the raw cosine and set overlap to once again
do quite poorly. As expected, the kernel does a reason-
able job of determining the different facets of terms,
such as identifying “space exploration” with “NASA”
(even though they share no tokens), but finding that
the similarity between “vacation travel” and “space
travel” is indeed less than the cosine might otherwise
lead us to believe. Similar effects are seen in looking
at terms used in context, such as “machine”, “graph-
ical”, and “java”. We note that in many cases, the

6

A Web-based Kernel Function for Matching Short Text Snippets

similarity values here are not as extreme as in the pre-
vious instances. This has to do with the fact that we
are trying to measure the rather fuzzy notion of about-
ness between semantic concepts rather than trying to
identify an acronym or individual (which tend to be
much more specific matches). Still, the kernel does
a respectable job (in most cases) of providing a score
above 0.5 when two concepts are very related and less
than 0.3 when the concepts are generally thought of
as distinct.

Once again, the low similarity scores given by the set
overlap method show that in the context of a large
document collection such as the web, this measure is
not very robust. As a side note, we also measured the
set overlap using the top 500 and top 1000 documents
retrieved for each query (in addition to the results re-
ported here which looked at the top 200 documents
as suggested in the original paper), and found qual-
itatively very similar results thus indicating that the
method itself, and not merely the parameter settings,
led to the poor results in the context of the web.

5. Related Query Suggestion

Armed with promising anecdotal results that argue in
favor of using this kernel when comparing short texts,
we turn our attention to the task of developing a simple
application based on this kernel. The application we
choose is query suggestion—that is, to suggest poten-
tially related queries to the users of a search engine to
give them additional options for information finding.
We note that there is a long history of work in query
refinement, including the previously mentioned work
in query expansion (Buckley et al., 1994; Mitra et al.,
1998), harnessing relevance feedback for query modifi-
cation (Harman, 1992), using pre-computed term simi-
larities for suggestions (Vlez et al., 1997), linguistically
mining documents retrieved in response to a search for
related terms and phrases (Xu & Croft, 1996; Anick
& Tipirneni, 1999), and even simply finding related
queries in a thesaurus. While this is certainly an active
area of work in information retrieval, we note that im-
proving query suggestion is not the focus of this work.
Thus, we intentionally do not compare our system with
others. Rather, we use query suggestion as a means
of showing the potential utility of our kernel function
in just one, of potentially many, real-world applica-
tions. We provide a user evaluation of the results in
this application to get a more objective measure of the
efficacy of our kernel.

At a high-level, our query expansion system can be de-
scribed as starting with an initial repository Q of pre-
viously issued user queries (for example, culled from

search engine logs). Now, for any newly issued user
query u, we can compute our kernel function K(u, qi)
for all qi ∈ Q and suggest related queries qi which
have the highest kernel score with u (subject to some
post-filtering to eliminate related queries that are too
linguistically similar to each other).

More specifically, we begin by pre-computing the query
expansions for a repository Q of approximately 116
million popular user queries issued in 2003, determined
by sampling anonymized web search logs from the
Google search engine. After generating these query
expansions, we index the resulting vectors for fast re-
trieval in a retrieval system R. Now, for any newly
observed user query u, we can generate its query ex-
pansion QE(u) and use this entire expansion as a dis-
junctive query to R, finding all existing query expan-
sions QE(qi) in the repository that potentially match
QE(u). Note that if a query expansion QE(q) indexed
in R does not match QE(u) in at least one term (i.e., it
is not retrieved), then we know K(u, q) = 0 since there
are no common terms in QE(u) and QE(q). For each
retrieved query expansion QE(qi), we can then com-
pute the inner product QE(u) · QE(qi) = K(u, qi).

To actually determine which of the matched queries
from the repository to suggest to the user, we use the
following algorithm, where the constant MAX is set
to the maximum number of suggestions that we would
like to obtain:

Given: user query u, and
list of matched queries from repository

Output: list Z of queries to suggest
1. Initialize suggestion list Z = ∅
2. Sort kernel scores K(u, qi) in descending order

to produce an ordered list L = (q1, q2, . . . , qk)
of corresponding queries qi.

3. j = 1
4. While (j ≤ k and size(Z) < MAX) do
4.1 If (|qj | − |qj ∩ z| > 0.5|z| ∀z ∈ (Z ∪ u)) then
4.1.1 Z = Z ∪ qj

4.2 j = j + 1
5. Return suggestion list Z

Here |q| denotes the number of terms in query q. Thus,
the test in Step 4.1 above is our post-filter to only add
another suggested query qj if it differs by more than
half as many terms from any other query already in the
suggestion list Z (as well as the original user query u).
This helps promote linguistic diversity in the set of
suggested queries. The outputted list of suggestions
Z can be presented to the search engine user to guide
them in conducting follow-up searches.

7

A Web-based Kernel Function for Matching Short Text Snippets

6. Evaluation of Query Suggestions

In order to evaluate our kernel within the context of
this query suggestion system, we enlisted nine human
raters who are computer scientists familiar with infor-
mation retrieval technologies. Each rater was asked to
issue queries from the Google Zeitgeist3 in a different
month of 2003 (since our initial repository of queries to
suggest was culled near the start of 2003). The Google
Zeitgeist tracks popular queries on the web monthly.
We chose to use such common queries for evaluation
because if useful suggestions were found, they could
potentially be applicable for a large number of search
engine users who had the same information needs.

Each rater evaluated the suggested queries provided
by the system on a 5-point Likert scale, defined as:

1: suggestion is totally off topic.
2: suggestion is not as good as original query.
3: suggestion is basically same as original query.
4: suggestion is potentially better than original query.
5: suggestion is fantastic – should suggest this query

since it might help a user find what they’re looking
for if they issued it instead of the original query.

In our experiment we set the maximum number of sug-
gestions for each query (MAX) to 5, although some
queries yielded fewer than this number of suggestions
due to having fewer suggestions pass the post-filtering
process. A total of 118 user queries, which yielded 379
suggested queries (an average of 3.2 suggestions per
query) were rated. Note that some raters evaluated a
different number of queries than other raters.

Since each query suggestion has a kernel score associ-
ated with it, we can determine how suggestion quality
is correlated with the kernel score by looking at the
average rating over all suggestions that had a kernel
score above a given threshold. If the kernel is effec-
tive, we would generally expect higher kernel scores to
lead to more useful queries suggested to the user (as
they would tend to be more on-topic even given the
post-filtering mechanism that attempts to promote di-
versity among the query suggestions). Moreover, we
would expect that overall the suggestions would of-
ten be rated close to 3 (or higher) if the kernel were
effective at identifying query suggestions semantically
similar to the original query.

The results of this experiment are shown in Figure 1,
which shows the average user rating for query sugges-
tions, where we use a kernel score threshold to only
consider suggestions that scored at that threshold or
higher with the original query. Indeed, we see that

3www.google.com/intl/en/press/zeitgeist.html

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
at

in
g

Kernel Score Threshold

Figure 1. Average ratings at various kernel thresholds.

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 0 0.5 1 1.5 2 2.5 3 3.5

A
ve

ra
ge

 R
at

in
g

Average Number of Suggestions per Query

Figure 2. Average ratings versus average number of query
suggestions made for each query.

the query suggestions are generally rated close to 3
(same as the original query), but that the rating tends
to increase with the kernel score. This indicates that
queries deemed by the kernel to be very related to the
original query are quite useful to users in honing their
information need, especially when we allow for some
diversity in the results using the post-filtering mech-
anism. In fact, we found that without the use of the
post-filtering mechanism, the results suggested by the
system were often too similar to the original query to
provide much additional utility for query suggestion
(although it was indicative of the kernel being effec-
tive at finding related queries).

Figure 2 shows a graph analogous to a Precision-Recall
curve, where we plot the average user rating for query
suggestions versus the average number of suggestions
that are given per query as we vary the kernel score
threshold from 0.85 down to 0.3. We see a clear trade-
off between the quality of the suggestions presented to
the user and the number of suggestions given. Indeed,
it is possible, on average to give two query suggestions
for each query which have a quality (slightly) higher

8

A Web-based Kernel Function for Matching Short Text Snippets

than the original query.

7. Conclusions and Future Work

We have presented a new kernel function for measur-
ing the semantic similarity between pairs of short text
snippets. We have shown, both anecdotally and in a
human-evaluated query suggestion system, that this
kernel is an effective measure of similarity for short
texts, and works well even when the short texts being
considered have no common terms.

The are several lines of future work that this kernel
lays the foundation for. The first is improvements in
the generation of query expansions with the goal of
improving the match score for the kernel function. The
second is the incorporation of this kernel into other
kernel-based learning schemes to determine its ability
to provide improvement in tasks such as classification
and clustering of text.

Also, there are certainly other applications, besides
query suggestion, that could be considered as well.
One such application is in a question answering sys-
tem, where the question could be matched against a
list of candidate answers to determine which is the
most similar semantically. For example, using our ker-
nel we find that: K(“Who shot Abraham Lincoln”,
“John Wilkes Booth”) = 0.730. Thus, the kernel does
well in giving a high score to the correct answer to
the question, even though it shares no terms in com-
mon with the question. Alternatively, K(“Who shot
Abraham Lincoln”, “Abraham Lincoln”) = 0.597, in-
dicating that while the question is certainly semanti-
cally related to “Abraham Lincoln”, the true answer
to the question is in fact more semantically related to
the question. Finally, we note that this kernel is not
limited to being used on the web, and can also be com-
puted using query expansions generated over domain-
specific corpora in order to better capture contextual
semantics in certain domains. We hope to explore such
research venues in the future.

Acknowledgments

We thank Amit Singhal for many invaluable discus-
sions related to this research. We also thank the
anonymous reviewers for their thoughtful comments
and pointers to related work.

References

Anick, P., & Tipirneni, S. (1999). The paraphrase search
assistant: Terminological feedback for iterative informa-
tion seeking. Proceedings of the 22nd Annual SIGIR
Conference (pp. 153–159).

Buckley, C., Salton, G., Allan, J., & Singhal, A. (1994).
Automatic query expansion using SMART: TREC 3.
The Third Text REtrieval Conference (pp. 69–80).

Cristianini, N., Shawe-Taylor, J., & Lodhi, H. (2002). La-
tent semantic kernels. Journal of Intelligent Information
Systems, 18, 127–152.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., & Harshman, R. (1990). Indexing by latent se-
mantic analysis. Journal of the American Society for
Information Science, 41, 391–407.

Dumais, S. T., Platt, J., Heckerman, D., & Sahami, M.
(1998). Inductive learning algorithms and representa-
tions for text categorization. CIKM-98: Proceedings
of the Seventh International Conference on Information
and Knowledge Management.

Fitzpatrick, L., & Dent, M. (1997). Automatic feedback
using past queries: Social searching? Proceedings of the
20th Annual SIGIR Conference (pp. 306–313).

Harman, D. (1992). Relevance feedback and other query
modification techniques. In W. B. Frakes and R. Baeza-
Yates (Eds.), Information retrieval: Data structures and
algorithms, 241–263. Prentice Hall.

Joachims, T. (1998). Text categorization with support
vector machines: learning with many relevant features.
Proceedings of ECML-98, 10th European Conference on
Machine Learning (pp. 137–142).

Kandola, J. S., Shawe-Taylor, J., & Cristianini, N. (2002).
Learning semantic similarity. Advances in Neural Infor-
mation Processing Systems (NIPS) 15 (pp. 657–664).

Mitra, M., Singhal, A., & Buckley, C. (1998). Improving
automatic query expansion. Proceedings of the 21st An-
nual SIGIR Conference (pp. 206–214).

Raghavan, V. V., & Sever, H. (1995). On the reuse of past
optimal queries. Proceedings of the 18th Annual SIGIR
Conference (pp. 344–350).

Salton, G., & Buckley, C. (1988). Term weighting ap-
proaches in automatic text retrieval. Information Pro-
cessing and Management, 24, 513–523.

Salton, G., & McGill, M. J. (1983). Introduction to modern
information retrieval. McGraw-Hill Book Company.

Salton, G., Wong, A., & Yang, C. S. (1975). A vector space
model for automatic indexing. Communications of the
ACM, 18, 613–620.

Vinokourov, A., Shawe-Taylor, J., & Cristianini, N. (2002).
Inferring a semantic representation of text via cross-
language correlation analysis. Advances in Neural Infor-
mation Processing Systems (NIPS) 15 (pp. 1473–1480).

Vlez, B., Wiess, R., Sheldon, M. A., & Gifford, D. K.
(1997). Fast and effective query refinement. Proceed-
ings of the 20th Annual SIGIR Conference (pp. 6–15).

Xu, J., & Croft, W. B. (1996). Query expansion using local
and global document analysis. Proceedings of the 19th
Annual SIGIR Conference (pp. 4–11).

9

A Semantic Kernel to classify texts with very few training examples

Roberto Basili basili@info.uniroma2.it
Marco Cammisa cammisa@info.uniroma2.it
Alessandro Moschitti moschitti@info.uniroma2.it

Department of Computer Science, Systems and Production,
University of Rome ”Tor Vergata”,
Via del Politecnico 1, 00133 Rome, Italy

Abstract

Web-mediated access to distributed informa-
tion is a complex problem. Before any learn-
ing can start, Web objects (e.g. texts) have
to be detected and filtered accurately. In this
perspective, text categorization is a useful de-
vice to filter out irrelevant evidence before
other learning processes take place on huge
sources of candidate information. The draw-
back is the need of a large number of training
documents. One way to reduce such number
relates to the use of more effective document
similarities based on prior knowledge. Unfor-
tunately, previous work has shown that such
information (e.g. WordNet) causes the de-
crease of retrieval accuracy.

In this paper we propose kernel functions to
add prior knowledge to learning algorithms
for document classification. Such kernels use
a term similarity measure based on the Word-
Net hierarchy. The kernel trick is used to
implement such space in a balanced and sta-
tistically coherent way. Cross-validation re-
sults show the benefit of the approach for the
Support Vector Machines when few training
examples are available.

1. Introduction

Web-mediated access to distributed information is a
complex problem. Before any learning can start, Web
objects (e.g. texts) have to be detected and filtered ac-
curately. In this perspective, text categorization (TC)
is a useful device to filter out irrelevant evidence before

Appearing in W4: Learning in Web Search, at the 22nd

International Conference on Machine Learning, Bonn, Ger-
many, 2005. Copyright 2005 by the author(s)/owner(s).

other learning processes take place on huge sources of
candidate information. To apply TC in Web search,
methods based on small number of examples should be
preferred. As such number decreases the classification
accuracy decreases as well, thus, to mitigate this prob-
lem, most of the research efforts have been directed in
enriching the document representation by using term
clustering (term generalization) or adding compound
terms (term specification). These studies are based on
the assumption that the similarity between two docu-
ments can be expressed as the similarity between pairs
of matching terms. Following this idea, term cluster-
ing methods based on corpus term distributions or on
external (to the target corpus) prior knowledge (e.g.
provided by WordNet) were used to improve the basic
term matching.

An example of statistical clustering is given in (Bekker-
man et al., 2001). A feature selection technique, which
clusters similar features/words, called the Information
Bottleneck (IB), was applied to Text Categorization
(TC). Such cluster based representation outperformed
the simple bag-of-words on only one out of the three
experimented collections. The effective use of external
prior knowledge is even more difficult since no attempt
has ever been successful to improve document retrieval
or text classification accuracy, (e.g. see (Smeaton,
1999; Sussna, 1993; Voorhees, 1993; Voorhees, 1994;
Moschitti & Basili, 2004)).

The main problem of term cluster based representa-
tions seems the unclear nature of the relationship be-
tween the word and the cluster information levels. Al-
though (semantic) clusters tend to improve the system
Recall, simple terms are, on a large scale, more accu-
rate (e.g. (Moschitti & Basili, 2004)). To overcome
this problem the hybrid spaces containing terms and
clusters were experimented (e.g. (Scott & Matwin,
1999)) but the results, again, showed that the mixed
statistical distributions of clusters and terms impact

10

A Semantic Kernel to classify texts with very few training examples

either marginally or even negatively on the overall ac-
curacy.

In (Voorhees, 1993; Smeaton, 1999), clusters of syn-
onymous terms as defined in WordNet (WN) (Fell-
baum, 1998) were used for document retrieval. The
results showed that the misleading information due
to the wrong choice of the local term senses causes
the overall accuracy to decrease. Word sense dis-
ambiguation (WSD) was thus applied beforehand by
indexing the documents by means of disambiguated
senses, i.e. synset codes (Smeaton, 1999; Sussna, 1993;
Voorhees, 1993; Voorhees, 1994; Moschitti & Basili,
2004). However, even the state-of-the-art methods for
WSD did not improve the accuracy because of the in-
herent noise introduced by the disambiguation mis-
takes. The above studies suggest that term clusters de-
crease the precision of the system as they force weakly
related terms or unrelated terms (in case of disam-
biguation errors) to give a contribution in the simi-
larity function. The successful introduction of prior
external knowledge relies on the solution of the above
problem.

In this paper, a model to introduce the semantic lex-
ical knowledge contained in the WN hierarchy in a
supervised text classification task has been proposed.
Intuitively, the main idea is that the documents d are
represented through the set of all pairs < t, t′ > orig-
inating by the terms t ∈ d and all the words t′ ∈ V ,
e.g. the WN’s nouns. When the similarity between
two documents is evaluated, their matching pairs are
used to account for the final score. The weight given
to each term pair is proportional to the similarity that
the two terms have in WN. Thus, the term t of the first
document contributes to the document similarity ac-
cording to its relatedness with any of the terms of the
second document and the prior external knowledge,
provided by WN, quantifies the single term to term re-
latedness. Such approach has two advantages: (a) we
obtain a well defined space which supports the similar-
ity between terms of different surface forms based on
external knowledge and (b) we avoid to explicitly de-
fine term or sense clusters which inevitably introduce
noise.

The class of spaces which embeds the above pair infor-
mation may be composed by O(|V |2) dimensions. If
we consider only the WN nouns (about 105), our space
contains about 1010 dimensions which is not manage-
able by most part of the learning algorithms. Kernel
methods, can solve this problem as they allow us to
use an implicit space representation in the learning
algorithms. Among other Support Vector Machines
(SVMs) (Vapnik, 1995) are kernel based learners which

achieve high accuracy in presence of many irrelevant
features. This is another important property for our
approach as we leave the selection of the informative
pairs to the SVM learning.

Moreover, as we believe that the prior knowledge in
TC is not so useful when there is a sufficient amount
of training documents, we experimented our model in
poor training conditions (e.g. less equal than 20 docu-
ments for each category). The improvement in the ac-
curacy, observed on the classification of the well known
Reuters and 20 NewsGroups corpora, shows that our
document similarity model is very promising for gen-
eral IR tasks: unlike previous attempts, it makes sense
of the adoption of semantic external resources (i.e.
WN) in IR.

Section 2 introduces the WordNet-based term simi-
larity. Section 3 defines the new document similarity
measure, the kernel function and its use within SVMs.
Section 4 presents the comparative results between the
traditional linear and the WN-based kernels within
SVMs. In Section 5 comparative discussion against
the related IR literature is carried out. Finally Sec-
tion 6 derives the conclusions.

2. Term similarity based on general
knowledge

In IR, any similarity metric in the vector space mod-
els is driven by lexical matching. When small training
material is available, few words can be effectively used
and the resulting document similarity metrics are very
weak. Semantic generalizations overcome data sparse-
ness problems in IR as contributions from different but
semantically similar words are made available.

Methods for the induction of semantically inspired
word clusters have been widely used in language mod-
eling and lexical acquisition tasks (e.g. (Clark & Weir,
2002)). The main resource employed in most works is
WordNet (Fellbaum, 1998) which contains three sub-
hierarchies: for nouns, verbs and adjectives. Each hier-
archy represents lexicalized concepts (or senses) orga-
nized according to an ”is-a-kind-of ” relation. A con-
cept s is described by a set of words syn(s) called
synset. The words w ∈ syn(s) are synonyms accord-
ing to the sense s.

For example, the words line, argumentation, logical ar-
gument and line of reasoning describe a synset which
expresses the methodical process of logical reasoning
(e.g. ”I can’t follow your line of reasoning”). Each
word/term may be lexically related to more than one
synset depending on the senses that it assumes. The
word line is also present in the synset line, dividing

11

A Semantic Kernel to classify texts with very few training examples

line, demarcation and contrast, to emphasize that a
line denotes a conceptual separation or demarcation
(e.g. ”there is a narrow line between sanity and insan-
ity”).

In the next section we define a term similarity measure
based on the WN noun hierarchy. Such hierarchy is a
direct acyclic graph1 in which the edges establish the
direct isa relations between two synsets.

2.1. The Conceptual Density

The automatic use of WordNet for NLP and IR tasks
has proved to be very complex. First, how the topo-
logical distance among senses is related to their corre-
sponding conceptual distance is unclear. The perva-
sive lexical ambiguity is also problematic as it impacts
on the measure of conceptual distances between word
pairs. Second, the approximation of a set of concepts
by means of their generalization in the hierarchy im-
plies a conceptual loss that affects the target IR (or
NLP) tasks. For example, black and white are col-
ors but are also chess pieces and this impacts on the
similarity score that should be used in IR applications.
Attempts to solve the above problems relates to cuts in
the hierarchy (e.g. (Li & Abe, 1998; Resnik, 1997)) by
using corpus statistics. For several tasks (e.g. in TC)
this is unsatisfactory: different contexts of the same
corpus (e.g. documents) may require different gen-
eralizations of the same word as they independently
impact on the document similarity.

On the contrary, the Conceptual Density (CD) (Agirre
& Rigau, 1996) is a flexible semantic similarity which
depends on the generalizations of word senses not re-
ferring to any fixed level of the hierarchy. Its formal
definition is given in what follows.

We denote by s̄ the set of nodes of the hierarchy rooted
in the synset s, i.e. {c ∈ S|c isa s}, where S is the set
of WN synsets. By definition ∀s ∈ S, s ∈ s̄. CD
makes a guess about the proximity of the senses, s1

and s2, of two words u1 and u2, according to the in-
formation expressed by the minimal subhierarchy, s̄,
that includes them. Let Si be the set of general-
izations for at least one sense si of the word ui, i.e.
Si = {s ∈ S|si ∈ s̄, ui ∈ syn(si)}. The CD of u1 and
u2 is:

CD(u1, u2) =

⎧
⎪⎨

⎪⎩

0 iff S1 ∩ S2 = ∅
maxs∈S1∩S2

∑h
i=0(μ(s̄))i

|s̄|
otherwise

(1)

1As only the 1% of its nodes own more than one parent
in the graph, most of the techniques assume the hierarchy
to be a tree, and treat the few exception heuristically.

where:

• S1 ∩ S2 is the set of WN shared generalizations
(i.e. the common hypernyms) for u1 and u2

• μ(s̄) is the average number of children per node
(i.e. the branching factor) in the sub-hierarchy s̄.
μ(s̄) depends on WordNet and in some cases its
value can approach 1.

• h is the depth of the ideal tree whose leaves are
only the two senses s1 and s2 and the average
branching factor is μ(s̄). This value is actually
estimated by:

h =
{ �logμ(s̄)2� iff μ(s̄) �= 1

2 otherwise (2)

In cases μ(s) is exactly 1 the above equation as-
signs 2 to h.

• |s̄| is the number of nodes in the sub-hierarchy s̄.
This value is statically measured on WN and it is a
negative bias for the higher level of generalizations
(i.e. larger s̄).

CD models the semantic distance as the density of the
generalizations s ∈ S1 ∩ S2. Such density is the ratio
between the number of nodes of the ideal tree and |s̄|.
The ideal tree should (a) link the two senses/nodes
s1 and s2 with the minimal number of edges (isa-
relations) and (b) maintain the same branching factor
(bf) observed in s̄. In other words, this tree provides
the minimal number of nodes (and isa-relations) suffi-
cient to connect s1 and s2 according to the topological
structure of s̄. For example, if s̄ has a bf of 2 the ideal
tree connects the two senses with a single node (their
father). If the bf is 1.5, to replicate it, the ideal tree
must contain 4 nodes, i.e. the grandfather which has a
bf of 1 and the father which has bf of 2 for an average
of 1.5. When bf is 1 the Eq. 1 degenerates to the
inverse of the number of nodes in the path between
s1 and s2, i.e. the simple proximity measure used in
(Siolas & d’Alch Buc, 2000).

It is worth noting that for each pair CD(u1, u2) de-
termines the similarity according to the closest lexical
senses, s1, s2 ∈ s̄: the remaining senses of u1 and u2

are irrelevant, with a resulting semantic disambigua-
tion side effect. The CD properties seem appealing to
define similarity measures between any term pairs in
IR models. As the high number of such pairs increases
the computational complexity of the target learning
algorithm, efficient approaches are needed. The next
section describes how kernel methods can make prac-
tical the use of the Conceptual Density in Text Cate-
gorization.

12

A Semantic Kernel to classify texts with very few training examples

3. A WordNet Kernel for document
similarity

Term similarities are used to design document simi-
larities which are the core functions of most TC al-
gorithms. The term similarity proposed in Eq. 1 is
valid for all term pairs of a target vocabulary and
has two main advantages: (1) the relatedness of each
term occurring in the first document can be computed
against all terms in the second document, i.e. all dif-
ferent pairs of similar (not just identical) tokens can
contribute and (2) if we use all term pair contribu-
tions in the document similarity we obtain a measure
consistent with the term probability distributions, i.e.
the sum of all term contributions does not penalize or
emphasize arbitrarily any subset of terms. The next
section presents more formally the above idea.

3.1. A semantic vector space

Given two documents d1 and d2 ∈ D (the document-
set) we define their similarity as:

K(d1, d2) =
∑

w1∈d1,w2∈d2

(λ1λ2) × σ(w1, w2) (3)

where λ1 and λ2 are the weights of the words (features)
w1 and w2 in the documents d1 and d2, respectively
and σ is a term similarity function, e.g. the conceptual
density defined in Section 2. To prove that Eq. 3 is
a valid kernel is enough to show that it is a special-
ization of the general definition of convolution kernels
formalized in (Haussler, 1999). Hereafter, we report
such definition: let X, X1, .., Xm be separable metric
spaces, x ∈ X a structure and �x = x1, ..., xm its parts,
where xi ∈ Xi∀i = 1, ..,m. Let R be a relation on
the set X × X1 × .. × Xm such that R(�x, x) holds if �x
are the parts of x. We indicate with R−1(x) the set
{�x : R(�x, x)}. Given two objects x and y ∈ X their
similarity K(x, y) is defined as:

K(x, y) =
∑

�x∈R−1(x)

∑

�y∈R−1(y)

m∏

i=1

Ki(xi, yi) (4)

If we consider X as the document set (i.e. D = X),
m = 1 and X1 = V (i.e. the vocabulary of our target
document corpus) we derive that: x = d (i.e. a docu-
ment), �x = x1 = w ∈ V (i.e. a word which is a part of
the document d) and R−1(d) is the set of words in the
document d. As

∏m
i=1 Ki(xi, yi) = K1(x1, y1), we can

define K1(x1, y1) = K(w1, w2) = (λ1λ2) × σ(w1, w2)
to obtain exactly the Eq. 3.

The above equation can be used in support vector ma-
chines as illustrated by the next section.

3.2. Support Vector Machines and Kernel
methods

Given the vector space in R
η and a set of positive and

negative points, SVMs classify vectors according to a
separating hyperplane, H(�x) = �ω · �x + b = 0, where
�x and �ω ∈ R

η and b ∈ R are learned by applying
the Structural Risk Minimization principle (Vapnik,
1995). From the kernel theory we have that:

H(�x) =
(∑

h=1..l

αh �xh

)
· �x + b =

∑

h=1..l

αh�xh · �x + b =

∑

h=1..l

αhφ(dh) · φ(d) + b =
∑

h=1..l

αhK(dh, d) + b (5)

where, d is a classifying document and dh are all the l
training instances, projected in �x and �xh respectively.
The product K(d, dh) =<φ(d)·φ(dh)> is the Semantic
WN-based Kernel (SK) function associated with the
mapping φ.

Eq. 5 shows that to evaluate the separating hyper-
plane in R

η we do not need to evaluate the entire vector
�xh or �x. Actually, we do not know even the mapping
φ and the number of dimensions, η. As it is sufficient
to compute K(d, dh), we can carry out the learning
with Eq. 3 in the R

n, avoiding to use the explicit
representation in the R

η space. The real advantage is
that we can consider only the word pairs associated
with non-zero weights, i.e. we can use a sparse vector
computation. Additionally, to have a uniform score
across different document size, the kernel function can
be normalized as follows: SK(d1,d2)√

SK(d1,d1)·SK(d2,d2)

4. Experiments

The use of WordNet (WN) in the term similarity func-
tion introduces a prior knowledge whose impact on the
Semantic Kernel (SK) should be experimentally as-
sessed. The main goal is to compare the traditional
Vector Space Model kernel against SK, both within
the Support Vector learning algorithm.

The high complexity of the SK limits the size of the
experiments that we can carry out in a feasible time.
Moreover, we are not interested to large collections
of training documents as in these training conditions
the simple bag-of-words models are in general very ef-
fective, i.e. they seem to model well the document
similarity needed by the learning algorithms. Thus,
we carried out the experiments on small subsets of the

13

A Semantic Kernel to classify texts with very few training examples

20NewsGroups2 (20NG) and the Reuters-21578 3 cor-
pora to simulate critical learning conditions.

4.1. Experimental set-up

For the experiments, we used the SVM-light software
(Joachims, 1999) (available at svmlight.joachims.org)
with the default linear kernel on the token space
(adopted as the baseline evaluations). For the SK
evaluation we implemented the Eq. 3 with σ(·, ·) =
CD(·, ·) (Eq. 1) inside SVM-light. As CD is sensi-
tive only to nouns we detected them by means of a
part of speech (POS) tagger. Nevertheless, given the
importance of verbs, adjectives and numerical features
for TC, we included them in the pair space by assign-
ing a null value to the pairs made by different tokens.
As the POS-tagger could introduce errors, we alterna-
tively detected nouns by simply looking-up in WN, i.e.
any word is considered as a noun if it is included in the
noun WN hierarchy. This may be considered a rough
approximation but it has the benefit to recover other
useful information by including the similarity between
the verb nominalizations and the other nouns, e.g. to
drive like drive has a synset in common with parkway.

For the evaluations, we applied a careful SVM param-
eterization: a preliminary investigation suggested that
the trade-off (between the training-set error and mar-
gin, i.e. c option in SVM-light) parameter optimizes
the F1 measure for values in the range [0.02,0.32]4. We
noted also that the cost-factor parameter (i.e. j op-
tion) is not critical, i.e. a value of 10 always optimizes
the accuracy. The feature selection techniques and the
weighting schemes were not applied in our experiments
as they cannot be accurately estimated from the small
available training data.

The classification performance was evaluated by means
of the F1 measure5 for the single category and the
MicroAverage for the final classifier pool (Yang, 1999).
Given the high computational complexity of SK we
selected 8 categories from the 20NG6 and 8 from the
Reuters corpus7

2Available at www.ai.mit.edu/people/jrennie/
20Newsgroups/.

3The Apté split available at kdd.ics.uci.edu/
databases/reuters21578/reuters21578.html.

4We used all the values from 0.02 to 0.32 with step 0.02.
5F1 assigns equal importance to Precision P and Recall

R, i.e. F1 = 2P ·R
P+R

.
6We selected the 8 most different categories (in terms

of their content) i.e. Atheism, Computer Graphics, Misc
Forsale, Autos, Sport Baseball, Medicine, Talk Religions
and Talk Politics.

7We selected the 8 largest categories, i.e. Acquisition,
Crude, Earn, Grain, Interest, Money-fx, Trade and Wheat.

To derive statistically significant results with few train-
ing documents, for each corpus, we randomly selected
10 different samples from the 8 categories. We trained
the classifiers on one sample, parameterized on a sec-
ond sample and derived the measures on the other 8.
By rotating the training sample, we obtained 80 differ-
ent measures for each model. The size of the samples
ranges from 24 to 160 documents depending on the
target experiment.

4.2. Cross validation results

The SK (Eq. 3) was compared with the linear ker-
nel which obtained the best F1 measure in (Joachims,
1999). Table 1 reports the first comparative results for
8 categories of 20NG on 40 training documents. The
results are expressed as the Mean and the Std. Dev.
over 80 runs. The F1 are reported in Column 2 for
the linear kernel, i.e. bow, in Column 3 for SK with-
out applying POS information and in Column 4 for
SK with the use of POS information (SK-POS). The
last row shows the MicroAverage performance for the
above three models on all 8 categories. We note that
SK improves bow of 3%, i.e. 34.3% vs. 31.5% and
that the POS information reduces the improvement of
SK, i.e. 33.5% vs. 34.3%.

Category bow SK SK-POS

Atheism 29.5±19.8 32.0±16.3 25.2±17.2
Comp.Graph 39.2±20.7 39.3±20.8 29.3±21.8
Misc.Forsale 61.3±17.7 51.3±18.7 49.5±20.4
Autos 26.2±22.7 26.0±20.6 33.5±26.8
Sport.Baseb. 32.7±20.1 36.9±22.5 41.8±19.2
Sci.Med 26.1±17.2 18.5±17.4 16.6±17.2
Talk.Relig. 23.5±11.6 28.4±19.0 27.6±17.0
Talk.Polit. 28.3±17.5 30.7±15.5 30.3±14.3
MicroAvg. F1 31.5±4.8 34.3±5.8 33.5±6.4

Table 1. Performance of the linear and Semantic Kernel
with 40 training documents over 8 categories of 20News-
Groups collection.

Category 24 docs 160 docs
bow SK bow SK

Acq. 55.3±18.1 50.8±18.1 86.7±4.6 84.2±4.3
Crude 3.4±5.6 3.5±5.7 64.0±20.6 62.0±16.
Earn 64.0±10.0 64.7±10.3 91.3±5.5 90.4±5.1
Grain 45.0±33.4 44.4±29.6 69.9±16.3 73.7±14.
Interest 23.9±29.9 24.9±28.6 67.2±12.9 59.8±12.
Money-fx 36.1±34.3 39.2±29.5 69.1±11.9 67.4±13.
Trade 9.8±21.2 10.3±17.9 57.1±23.8 60.1±15.
Wheat 8.6±19.7 13.3±26.3 23.9±24.8 31.2±23.
Mic.Avg. 37.2±5.9 41.7±6.0 75.9±11.0 77.9±5.7

Table 2. Performance of the linear and Semantic Kernel
with 24 and 160 training documents over 8 categories of
the Reuters corpus.

To verify the hypothesis that WN information is useful

14

A Semantic Kernel to classify texts with very few training examples

30.0

33.0

36.0

39.0

42.0

45.0

48.0

51.0

54.0

40 60 80 100 120 140 160

Training Documents

M
ic

ro
-A

ve
ra

g
e

F
1

bow

SK

SK-POS

Figure 1. MicroAverage F1 of SVMs using bow, SK and
SK-POS kernels over the 8 categories of 20NewsGroups.

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

20 40 60 80 100 120 140 160

Training Documents

M
ic

ro
-A

ve
ra

g
e

F
1

bow
SK

Figure 2. MicroAverage F1 of SVMs using bow and SK
over the 8 categories of the Reuters corpus.

in low training data conditions we repeated the evalua-
tion over the 8 categories of Reuters with samples of 24
and 160 documents, respectively. The results reported
in Table 2 shows that (1) again SK improves bow
(41.7% - 37.2% = 4.5%) and (2) as the number of doc-
uments increases the improvement decreases (77.9% -
75.9% = 2%). It is worth noting that the standard
deviations tend to assume high values. However, such
variability does not affect the confidence test on the
SK superiority. To verify that SK improves bow, we
evaluated the Std. Dev. of the difference, d, between
the MicroAverage F1 of SK and the MicroAverage F1

of bow over the samples. In relation to the Table 2
experiment, we obtained that the mean and the Std.
Dev. of d on the 80 test samples of 24 documents are
4.53 and 6.57, respectively. We tested the hypothesis
that bow has a higher or equal MicroAverage F1 than
SK, i.e. d ≤ 0. Accordigly, the maximum value of the
population average μ cannot be higher than 0, thus we
tried the hypothesis μ = 0. By using a Normal Distri-
bution, d is in the range [-∞,μ+2.13] at a confidence

level of 99.5%. Since the mean of the MicroAverage
trough the samples (4.53) is not in such interval, we
should reject such hypothesis.

The above findings confirm that SK outperforms the
bag-of-words kernel in critical learning conditions as
the semantic contribution of the SK recovers useful
information. To complete this study we carried out
experiments with samples of different size, i.e. 3, 5,
10, 15 and 20 documents for each category. Figures 1
and 2 show the learning curves for 20NG and Reuters
corpora. Each point refers to the average on 80 sam-
ples.

As expected the improvement provided by SK de-
creases when more training data is available. How-
ever, the improvement is not negligible yet. The SK
model (without POS information) preserves about 2-
3% of improvement with 160 training documents. The
matching allowed between noun-verb pairs still cap-
tures semantic information which is useful for topic
detection. In particular, during the similarity estima-
tion, each word activates 60.05 pairs on average. This
is particularly useful to increase the amount of infor-
mation available to the SVMs.

Finally, we carried out some experiments with 160
Reuters documents by discarding the string matching
from SK. Only words having different surface forms
were allowed to give contributions to the Eq. 3.

The interesting outcome is that SK converges to a Mi-
croAverage F1 measure of 56.4% (compare with Table
2). This shows that the word similarity provided by
WN is consistent and effective for TC.

5. Related Work

The IR studies in this area focus on the term similarity
models to embed statistical and external knowledge in
document similarity.

In (Kontostathis & Pottenger, 2002) a Latent Se-
mantic Indexing analysis was used for term cluster-
ing. Such approach assumes that values xij in the
transformed term-term matrix represents the similar-
ity (> 0) and anti-similarity between terms i and
j. By extension, a negative value represents an anti-
similarity between i and j enabling both positive and
negative clusters of terms. Evaluation of query ex-
pansion techniques showed that positive clusters can
improve Recall of about 18% for the CISI collection,
2.9% for MED and 3.4% for CRAN. Furthermore, the
negative clusters, when used to prune the result set,
improve the precision.

The use of external semantic knowledge seems to be

15

A Semantic Kernel to classify texts with very few training examples

more problematic in IR. In (Smeaton, 1999), the im-
pact of semantic ambiguity on IR is studied. A
WN-based semantic similarity function between noun
pairs is used to improve indexing and document-query
matching. However, the WSD algorithm had a per-
formance ranging between 60-70%, and this made the
overall semantic similarity not effective.

Other studies using semantic information for im-
proving IR were carried out in (Sussna, 1993) and
(Voorhees, 1993; Voorhees, 1994). Word semantic in-
formation was here used for text indexing and query
expansion, respectively. In (Voorhees, 1994) it is
shown that semantic information derived directly from
WN without a priori WSD produces poor results.

The latter methods are even more problematic in TC
(Moschitti & Basili, 2004). Word senses tend to sys-
tematically correlate with the positive examples of a
category. Different categories are better character-
ized by different words rather than different senses.
Patterns of lexical co-occurrences in the training data
seem to suffice for automatic disambiguation. (Scott &
Matwin, 1999) use WN senses to replace simple words
without word sense disambiguation and small improve-
ments are derived only for a small corpus. The scale
and assessment provided in (Moschitti & Basili, 2004)
(3 corpora using cross-validation techniques) showed
that even the accurate disambiguation of WN senses
(about 80% accuracy on nouns) did not improve TC.

In (Siolas & d’Alch Buc, 2000) was proposed an ap-
proach similar to the one presented in this article.
A term proximity function is used to design a kernel
able to semantically smooth the similarity between two
document terms. Such semantic kernel was designed
as a combination of the Radial Basis Function (RBF)
kernel with the term proximity matrix. Entries in this
matrix are inversely proportional to the length of the
WN hierarchy path linking the two terms. The per-
formance, measured over the 20NewsGroups corpus,
showed an improvement of 2% over the bag-of-words.
The main differences with our approach are: first, the
term proximity is not fully sensitive to the informa-
tion of the WN hierarchy. For example, if we consider
pairs of equidistant terms, the nearer to the WN top
level a pair is the lower similarity it should receive, e.g.
Sky and Location (hyponyms of Entity) should not
accumulate similarity like knife and gun (hyponyms
of weapon). Measures, like CD, that deal with this
problem have been widely proposed in literature (e.g.
(Resnik, 1997)) and should be always applied. Second,
as our main goal was the study of the CD information
in document retrieval/categorization scenario, our ker-
nel function was based on the simple CD similarity. In

(Siolas & d’Alch Buc, 2000) weighting schemes and the
RBF kernel were used along with the proximitry ma-
trix. Probably, this combination has downgraded the
role of WN semantics. Finally, the experiments were
carried out by using only 200 features (selected via
Mutual Information statistics). In this way the con-
tribution of rare or non statistically significant terms
is neglected. In our view, the latter features may give,
instead, a relevant contribution once we move in the
SK space generated by the WN similarities.

Other important work on semantic kernel for retrieval
has been developed in (Cristianini et al., 2002; Kan-
dola et al., 2002). Two methods for inferring seman-
tic similarity from a corpus were proposed. In the
first a system of equations were derived from the dual
relation between word-similarity based on document-
similarity and viceversa. The equilibrium point was
used to derive the semantic similarity measure. The
second method models semantic relations by means
of a diffusion process on a graph defined by lexicon
and co-occurrence information. The major difference
with our approach is the use of a different source of
prior knowledge, i.e. WN. Similar techniques were
also applied in (Hofmann, 2000) to derive a Fisher
kernel based on a latent class decomposition of the
term-document matrix.

6. Conclusions

The introduction of semantic prior knowledge in IR
and TC is important as a way to lower the training set
size and thus increase the applicability of Web learn-
ing from suitably selected examples. In this paper, we
used the conceptual density function on the WordNet
(WN) hierarchy to define a document similarity metric
and derive a semantic kernel to train Support Vector
Machine classifiers. Cross-validation experiments over
8 categories of 20NewsGroups and Reuters over mul-
tiple samples have shown that in poor training data
conditions, the WN prior knowledge can be effectively
used to improve (up to 4.5 absolute percent points, i.e.
10%) the TC accuracy.

These promising results enable a number of future
researches: (1) larger scale experiments with differ-
ent measures and semantic similarity models (e.g.
(Resnik, 1997)); (2) domain-driven specialization of
the term similarity by selectively tuning WordNet to
the target categories, (3) the impact of feature selec-
tion on SK, and (4) the extension of the semantic
similarity by a general (i.e. non binary) application of
the conceptual density model, e.g. the most important
category terms as a prior bias for the similarity score.

16

A Semantic Kernel to classify texts with very few training examples

Acknowledgments

This research is partially supported by the European
project, PrestoSpace (FP6-IST-507336).

References

Agirre, E., & Rigau, G. (1996). Word sense disam-
biguation using conceptual density. Proceedings of
COLING’96, pages 16–22, Copenhagen, Danmark..

Bekkerman, R., El-Yaniv, R., Tishby, N., & Winter,
Y. (2001). On feature distributional clustering for
text categorization. Proceedings of the 24th annual
international ACM SIGIR conference on Research
and development in information retrieval (pp. 146–
153). New Orleans, Louisiana, United States: ACM
Press.

Clark, S., & Weir, D. (2002). Class-based probabil-
ity estimation using a semantic hierarchy. Comput.
Linguist., 28, 187–206.

Cristianini, N., Shawe-Taylor, J., & Lodhi, H. (2002).
Latent semantic kernels. J. Intell. Inf. Syst., 18,
127–152.

Fellbaum, C. (1998). Wordnet: An electronic lexical
database. MIT Press.

Haussler, D. (1999). Convolution kernels on discrete
structuresTechnical Report UCS-CRL-99-10). Uni-
versity of California Santa Cruz.

Hofmann, T. (2000). Learning probabilistic models of
the web. Research and Development in Information
Retrieval (pp. 369–371).

Joachims, T. (1999). Making large-scale SVM learning
practical. Advances in Kernel Methods - Support
Vector Learning.

Kandola, J., Shawe-Taylor, J., & Cristianini, N.
(2002). Learning semantic similarity. in Neural
Information Processing Systems (NIPS 15) - MIT
Press..

Kontostathis, A., & Pottenger, W. (2002). Improv-
ing retrieval performance with positive and negative
equivalence classes of terms.

Li, H., & Abe, N. (1998). Generalizing case frames
using a thesaurus and the mdl principle. Computa-
tional Linguistics, 23.

Moschitti, A., & Basili, R. (2004). Complex linguis-
tic features for text classification: a comprehensive
study. Proceedings of ECIR-04, 26th European Con-
ference on Information Retrieval. Sunderland, UK:
Springer Verlag.

Resnik, P. (1997). Selectional preference and sense dis-
ambiguation. Proceedings of ACL Siglex Workshop
on Tagging Text with Lexical Semantics, Why, What
and How?, Washington, April 4-5, 1997..

Scott, S., & Matwin, S. (1999). Feature engineering
for text classification. Proceedings of ICML-99, 16th
International Conference on Machine Learning (pp.
379–388). Bled, SL: Morgan Kaufmann Publishers,
San Francisco, US.

Siolas, G., & d’Alch Buc, F. (2000). Support vector
machines based on a semantic kernel for text cat-
egorization. Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks
(IJCNN’00)-Volume 5 (p. 5205). IEEE Computer
Society.

Smeaton, A. F. (1999). Using NLP or NLP resources
for information retrieval tasks. In T. Strzalkowski
(Ed.), Natural language information retrieval, 99–
111. Dordrecht, NL: Kluwer Academic Publishers.

Sussua, M. (1993). Word sense disambiguation for
free-text indexing using a massive semantic network.
The Second International Conference on Informa-
tion and Knowledge Management (CKIM 93) (pp.
67–74).

Vapnik, V. (1995). The nature of statistical learning
theory. Springer.

Voorhees, E. M. (1993). Using wordnet to disam-
biguate word senses for text retrieval. Proceedings of
the 16th Annual International ACM-SIGIR Confer-
ence on Research and Development in Information
Retrieval. Pittsburgh, PA, USA, June 27 - July 1,
1993 (pp. 171–180). ACM.

Voorhees, E. M. (1994). Query expansion using lexical-
semantic relations. Proceedings of the 17th Annual
International ACM-SIGIR Conference on Research
and Development in Information Retrieval. Dublin,
Ireland, 3-6 July 1994 (Special Issue of the SIGIR
Forum) (pp. 61–69). ACM/Springer.

Yang, Y. (1999). An evaluation of statistical ap-
proaches to text categorization. Information Re-
trieval Journal.

17

Learning Word-to-Concept Mappings

for Automatic Text Classification

Georgiana Ifrim ifrim@mpi-inf.mpg.de
Martin Theobald martin.theobald@mpi-inf.mpg.de
Gerhard Weikum weikum@mpi-inf.mpg.de

Max-Planck Institute for Informatics, D-66041 Saarbruecken, Germany

Abstract

For both classification and retrieval of nat-
ural language text documents, the standard
document representation is a term vector
where a term is simply a morphological nor-
mal form of the corresponding word. A po-
tentially better approach would be to map
every word onto a concept, the proper word
sense and use this additional information in
the learning process. In this paper we address
the problem of automatically classifying nat-
ural language text documents. We investi-
gate the effect of word to concept mappings
and word sense disambiguation techniques on
improving classification accuracy. We use the
WordNet thesaurus as a background knowl-
edge base and propose a generative language
model approach to document classification.
We show experimental results comparing the
performance of our model with Naive Bayes
and SVM classifiers.

1. Introduction

1.1. Motivation

Text classification, e.g., for categorizing Web docu-
ments into topics like sports, science, math, etc., is
usually based on supervised learning techniques such
as support vector machines (SVM) with feature vec-
tors as representatives of both the training and test
documents. The features are usually derived from the
bag-of-words model, where individual words or word
stems constitute features and various frequency mea-
sures are used to compute weights, e.g., using the tf ·idf
approach or statistical language models (Manning &

Appearing in W4: Learning in Web Search, at the 22nd

International Conference on Machine Learning, Bonn, Ger-
many, 2005. Copyright 2005 by the author(s)/owner(s).

Schütze, 2000; Croft & Lafferty, 2003). Classification
accuracy is limited by three potential bottlenecks: 1)
the quality of the training data, 2) the discriminative
power of the classifier and 3) the richness of the fea-
tures to represent documents. The first point is usually
an application issue and beyond control of the classi-
fier, and with the great advances in statistical learning,
the second point is widely perceived as the least lim-
iting factor. In this paper, we address the third point.

Despite the sophisticated statistical models for com-
puting feature weights, using words or word stems as
features is a semantically poor representation of the
text content. Richer features could be derived from
syntactic analysis of the text (using part-of-speech
tagging, chunk parsing, etc. (Manning & Schütze,
2000)), and most importantly, using concepts rather
than words, thus capturing the intended word sense
instead of the literal expressions in the document. As
an example, consider the word “Java”, a classical pol-
ysem (i.e., a word with multiple word senses). For
classifying a document into topic “travel” or “com-
puter science”, the word itself is not helpful. But if we
could map it to its proper meaning, within the context
of the document, then we would be able to boost the
classifier: if “Java” is used as the concept “island (part
of Indonesia)” it should raise the probability of cate-
gory “travel”, whereas the use as the concept “object-
oriented programming language” would give higher ev-
idence to the category “computer science”.

For mapping words onto concepts, we build on the
availability of rich knowledge sources like lexicons,
thesauri, and ontologies. For the scope of this pa-
per, we specifically use the WordNet thesaurus (Fell-
baum, 1999), which contains around 150,000 concepts
(word senses in WordNet’s terminology), each with
a short textual description, and semantic relation-
ships between concepts - hypernym/hyponym (IS A),
holonym/meronym (PART OF). We use a machine
learning approach, based on latent variables and EM

18

Learning Word-to-Concept Mappings

iteration for parameter estimation, to compute the ac-
tual word-to-concept mappings. It is important to
note that WordNet, albeit probably the most promi-
nent source of this kind, is just an example of the ex-
plicit concept collections that could be leveraged for
better text representation and classification accuracy.
Ontologies are being built up (Staab & Studer, 2004),
and it is conceivable that concepts can be mined from
encyclopedia like Wikipedia.

1.2. Contribution

Our approach is based on a generative model for text
documents, where words are generated by concepts
which in turn are generated by topics. We postulate
conditional independence between words and topics
given the concepts. Once the corresponding proba-
bilities for word-concept and concept-topic pairs are
estimated, we can use Bayesian inference to compute
the probability that a previously unseen test document
with known words but unobservable concepts belongs
to a certain topic. The concepts are used as latent vari-
ables here, but note that unlike earlier work on spectral
decomposition (Deerwester & Dumais & Harshman,
1990; Hofmann, 2001) for text retrieval our concepts
are named and can be explicitly identified in the un-
derlying thesaurus or ontology.

The learning procedure for estimating the probabilities
that involve latent variables is a maximum-likelihood
estimator based on the observed word-topic pairs in
the training data. We use an EM (expectation-
maximization) procedure for iteratively solving the an-
alytically intractable estimation problem. The num-
ber of concepts that we consider in this approach is
naturally limited and determined by an initialization
step that uses a text-context similarity comparison for
an initial, heuristic mapping of words onto concepts.
Note, however, that the final result of the word-to-
concept mapping is usually much better than the out-
come of the initial heuristics. Our overall approach
can also be seen as a learning-based method for word
sense disambiguation coupled with a classifier for topic
labeling.

Different flavors of latent variable models for text data
exist in the literature (Cai & Hofmann, 2003; Bhat-
tacharya & Getoor & Bengio, 2004). Previous work
employed Wordnet for feature engineering (Scott &
Matwin, 1999; Bloehdorn & Hotho, 2004), but our
model has the following major advantages, which we
claim as our main contributions:

1. By using explicit concepts from a thesaurus or on-
tology and by initially using a heuristic technique

for bootstrapping the word-to-concept mapping,
we avoid the model selection problem faced in-
evitably by all techniques based on latent dimen-
sions and spectral analysis (i.e., choosing an ap-
propriate number of latent dimensions).

2. By the same token, we avoid the potential com-
binatorial explosion in the space of parameters to
be estimated, and we can do away with the need
for parameter smoothing (often a very tricky and
treacherous issue).

3. The initial mapping provides us with a good ini-
tialization of the EM iteration, positively affect-
ing its convergence and reducing the (empirical)
risk that it gets stuck in a local maximum of the
likelihood function.

In our experiments, with real-life datasets from the
Reuters newswire corpus and editorial reviews of books
from the Amazon web site, we compare our approach
with a Naive Bayes classifier and an SVM classifier
(Hastie & Tibshirani & Friedman, 2003; McCallum &
Nigam, 1998; Joachims, 1998). The results show that
our method can provide substantial gains in classifi-
cation accuracy for rich text data where the expres-
siveness and potential ambiguity of natural language
becomes a bottleneck for traditional bag-of-words clas-
sifiers.

The rest of the paper is organized as follows. Section 2
describes our probabilistic generative model. Section
3 presents our techniques for efficiently estimating the
model parameters. Section 4 discusses experimental
results.

2. Probabilistic Model

2.1. Generative Model

In this section we introduce our framework and the
theoretical model proposed. The general setup is the
following:

• A document collection, D = {d1, . . . , dr}, with
known topic labels, T = {t1, . . . , tm}, which is
split into training and test data. In this work we
assume a one-to-one mapping between documents
and topic labels.

• A set of lexical features, F = {f1, . . . , fn}, that
can be observed in documents (individual or com-

posite words).

• An ontology DAG of concepts, C = {c1, . . . , ck},
where each concept has a set of synonyms and a

19

Learning Word-to-Concept Mappings

short textual description, and is related to other
concepts by semantic edges.

The goal is solving a document classification prob-
lem: for a given document d with observed features,
we would like to predict P [t|d] for every topic t or
find argmaxtP [t|d]. To get an intuition behind our
model, consider analyzing documents labeled with a
certain topic label, e.g. physics. Conceptually, this
broad concept (the topic label) can be described at
semantic level by a subset of more fine grained con-
cepts that describe for example phenomena or struc-
tures related to physics, e.g atom, molecule, particle,

corpuscle, physical science, etc. In turn, these con-
cepts are expressed at the lexical level, by means of
simple terms or compounds: physical science, mater-

ial. Thus, we want to explain feature-topic associa-
tions by means of latent concepts. Figure 1 shows a
graphical representation of our generative model. The
model proposed by us is similar to the aspect model

developed in (Hofmann, 2001). It is a latent variable
model for co-occurrence data which associates an un-
observed variable c ∈ {c1 . . . ck} with each observation.

Our model differs from the aspect model in the fol-
lowing respects. In the aspect model, the number of
concepts is fixed beforehand, but the concepts them-
selves are derived in an unsupervised way from the
data collection, without recourse to a lexicon or the-

saurus; an observation is the occurrence of a word in a
particular document; parameters are randomly initial-
ized. Our model uses the existing knowledge resources
to identify and select the latent concepts at runtime;
an observation is a pair (f, t), where f ∈ F is a fea-
ture observed in some document and t ∈ T stands
for a topic label; parameters are pre-initialized to help
model robustness. Our generative model for feature-
topic co-occurrence can be described as:

1. Select a topic t with probability P [t];

2. Pick a latent variable c with probability P [c|t],
the probability that concept c describes topic t;

3. Generate a feature f with probability P [f |c], the
probability that feature f means concept c.

The pairs (f, t) can be directly observed, while the ex-
istence of concepts implies some process of word sense

Figure 1. Graphical model representation of the generative
model

disambiguation and they are treated as latent vari-
ables. The model is based on two independence as-
sumptions: observation pairs (f, t) are assumed to be
generated independently and it is assumed that fea-
tures f are conditionally independent of the topics t,
given the latent variable c: P [(f, t)|c] = P [f |c] ·P [t|c].
To describe the generative process of an observation
(f, t) we sum up over all the possible values that the
latent variables might take

P [f, t] =
∑

c

P [c] · P [(f, t)|c]. (1)

The likelihood of the observed pairs (f, t) can be ex-
pressed as:

L = Πf,tP [f, t]n(f,t) (2)

where n(f, t) is the number of occurrences of feature
f in the training set of topic t.
The learning problem can be expressed now as a max-
imization of the observed data log-likelihood:

l =
∑

(f,t)

n(f, t) · log(P [f, t]) (3)

=
∑

(f,t)

n(f, t) · log(
∑

c

P [c] · P [(f, t)|c])

Due to the existence of the sum inside the logarithm
direct maximization of the log-likelihood by partial
derivatives is difficult. A solution in setups in which
maximization of the likelihood is difficult, but made
easier by enlarging the sample with latent data, is to
apply an Expectation-Maximization (EM) algorithm.
The EM algorithm works by 2 iterative steps:

• E-Step: Expectation step, in which posterior
probabilities are estimated for the latent vari-
ables, taking as evidence the observed data (cur-
rent estimates of the model parameters). For cal-
culating the probabilities of the E-step, we use
Bayes’ formula:

P [c|(f, t)] =
P [f |c] · P [c|t]

∑
c P [f |c] · P [c|t]

(4)

• M-Step: Maximization step, in which the cur-
rent parameters are updated based on the ex-
pected complete data log-likelihood which de-
pends on the posterior probabilities estimated in
the E-Step.

P [f |c] =

∑
t n(f, t)P [c|(f, t)]

∑
f

∑
t n(f, t)P [c|(f, t)]

(5)

P [c|t] =

∑
f n(f, t)P [c|(f, t)]

∑
c

∑
f n(f, t)P [c|(f, t)]

(6)

20

Learning Word-to-Concept Mappings

P [t] =

∑
f,c n(f, t)P [c|(f, t)]

∑
t

∑
f,c n(f, t)P [c|(f, t)]

(7)

In our implementation the E-step and the M-step are
iterated until convergence of the likelihood. Alterna-
tively, one can also use the technique of early stopping

- stop the algorithm when the performance on some
held-out data starts decreasing, in order to avoid over-
fitting the model.

Now, we estimate the distribution of a document d,
given a topic label t, by making use of the learned
features’ marginal distributions during the training
process:

P [d|t] = Πf∈dP [f |t] = Πf∈d

P [f, t]

P [t]
(8)

= Πf∈d

∑

c∈C

P [f |c] · P [c|t]

where P [f |c] and P [c|t] are estimated by the EM pro-
cedure so as to maximize P [f, t] and implicitly P [d|t].

2.2. Naive Bayes Classifier

Once we have estimates for the marginal distribution
describing the generative model, we can use Bayes rule
to reverse the model and predict which topic generated
a certain document:

P [t|d] =
P [d|t] · P [t]

P [d]
=

P [d|t] · P [t]
∑

t P [d|t] · P [t]
(9)

We can then substitute (8) into (9) and have a decision
procedure for the classifier. The hope is that by the
means of the latent variable model the distribution
that generated the given document will be estimated
in a more accurate way.

3. Model Parameter Estimation

EM can face two major problems:

• The combinatorial explosion of the variable space
in the model, since the number of parameters is
directly proportional to the cross-product of the
number of features, concepts and topics. These
parameters are sparsely represented in the ob-
served training data.

• The possibility of converging to a local maximum
of the likelihood function (i.e. not finding the
global maximum).

For the first problem, it is desirable to prune the para-
meter space to reflect only the meaningful latent vari-

ables. For the second problem, it is desirable to pre-
initialize the model parameters to values that are close
to the global maximum of the likelihood function.

3.1. Pruning the Parameter Space

3.1.1. Feature Selection

The feature selection process is done by retaining the
features that have the highest average Mutual Infor-
mation with the topic variable (McCallum & Nigam,
1998). For multinomial models the quantity is com-
puted by calculating the mutual information between
the topic of the document from which a word occur-
rence is drawn, and a random variable over all word
occurrences.

fk =

{
1 if wk is present,
0 otherwise

(10)

MI(T ; Wk) = H(T) − H(T |Wk) (11

=
∑

t∈T

∑

fk∈{0,1}
P (t, fk) · log

(
P (t, fk)

P (t) · P (fk)

)

As a preprocessing step before applying feature selec-
tion, we extract semantically significant compounds
using a background dictionary (WordNet) e.g. ex-

change market, linear algebra, etc. This is a further
step in capturing the semantics of interesting and com-
mon language constructions; it also reduces some of
the computational overhead, while also achieving an
increase in accuracy: many compound terms have only
one meaning, e.g. exchange market, as a compound
has fewer meanings than if analyzed separately ex-

change and market. After this stage, we can apply
the MI selection criterion. Sorting the features in de-
scending order of this measure gives us a ranking in
terms of discriminative power of the features.

3.1.2. Concept Set Selection

WordNet contains around 150,000 concepts linked by
hierarchical relations. Using the full set of concepts
provided by the ontology results in a high compu-
tational overhead combined with a high amount of
noise. A better approach is to select from the on-
tology only a subset of concepts that reflects well the
semantics of the training collection. In our work, we
call this the candidate set of concepts. The set is se-
lected in a preprocessing step, before running the EM
algorithm. One way of capturing the candidate set
well is to gather for each feature all the corresponding
concepts (senses) from the ontology. The size order
of this subset is only of a few thousands concepts, as
opposed to some hundred-thousands available in the

21

Learning Word-to-Concept Mappings

ontology. Another way of even further improving the
performance of this approach, is using PoS annotated
data. We considered both approaches in our imple-
mentation.

3.2. Pre-initializing the Model Parameters

The standard way of using the EM algorithm is to ran-
domly initialize the model parameters and iterate the
algorithm until convergence. Since EM tends to stop
in a local maximum of the likelihood function, the al-
gorithm is restarted several times, and the values of
the parameters that give the highest value of the like-
lihood are retained. However, this solution still does
not guarantee that EM will stop at a global maximum.
Our pre-initialization proposal combines the learning
approach with a simpler approach of mapping features
to concepts and concepts to topics, based on similarity

measures.

For the initial mapping of words onto concepts in a the-
saurus (ontology) we follow the approach in (Theobald
& Schenkel & Weikum, 2003). The WordNet thesaurus
can be seen as a DAG where the nodes are the differ-
ent meanings and the edges are semantic relationships
(Fellbaum, 1999). The vertices can be nouns, adverbs,
verbs or adjectives.

Let w be a word that we want to map to the ontolog-
ical senses. First, we query WordNet for the possible
meanings of word w; for improving precision we can
use PoS annotations (i.e., noun vs. verb vs. adjec-
tive). Let {c1, . . . , cm} be the set of meanings associ-
ated with w. For example, if we query WordNet for
the word mouse we get:

• The noun mouse has 2 senses in WordNet.

1. mouse – (any of numerous small rodents...)

2. mouse, computer mouse – (a hand-operated elec-
tronic device...)

• The verb mouse has 2 senses in WordNet.

1. sneak, mouse, creep, steal, pussyfoot – (to go
stealthily or furtively)

2. mouse – (manipulate the mouse of a computer)

By taking also the synonyms of these word senses, we
can form synsets for each of the word meanings. Next,
we apply a word sense disambiguation step.

The disambiguation technique proposed uses word sta-
tistics for a local context around both the word ob-
served in a document and each of the possible mean-
ings it may take. The context for the word is a window
around its offset in the text document; the context
for the concept is taken from the ontology: for each

sense ci we take its synonyms, hypernyms, hyponyms,
holonyms, and siblings and their short textual descrip-
tions. The context of a concept in the ontology graph
can be taken until a certain depth, depending on the
amount of noise one is willing to introduce in the dis-
ambiguation process. In this work we use depth 2.
For each of the candidate senses ci, we compare the
context around the word context(w) with context(ci)
in terms of bag-of-words similarity measures. We use
the cosine similarity measure between the tf · idf vec-
tors of context(w) and context(ci), i ∈ {1, . . . , m}.
This process can either be seen as a proper word sense
disambiguation step, if we take as corresponding word
sense the one with the highest context similarity to the
word’s context, or as a step of establishing how words
and concepts are related together and in what degree.

In a similar fashion, we relate concepts to topics based
on similarity of bags-of-words. The context for a topic
t is defined to be the bag-of-features selected from the
training collection by decreasing Mutual Information
value. For our implementation, we used the top 50
(compound) terms with regards to MI rank. Once we
have computed all the similarities for (feature, con-
cept) and (concept,topic) pairs, we normalize them,
and interpret them as estimates of the probabilities
P [f |c] and P [c|t]. In the sim(f, c) and sim(c, t) com-
putations, we only consider the (f, c) and (c, t) pairs
in the pruned parameter space. The computed values
are then used for initializing EM, as a preprocessing
stage, in the model fitting process.

4. Preliminary Experiments

4.1. Setup

We present some preliminary experiments on two data
collections. We analyze and compare four classification
methods: LatentM - a first version of the latent gener-
ative model proposed by us that does not exploit PoS
tags; LatentMPoS - our generative model, enhanced
with methods for exploiting PoS information; NBayes

- a terms-only Naive Bayes classifier; SVM - a multi-
class SVM classifier. For the SVM classifier, we have
used the SVM Light and SVM Struct tools, developed
for multiclass classification (Tsochantaridis & Hoffman
& Joachims & Altun, 2004). To measure classification
quality, we use microaveraged F1-measure (Manning
& Schütze, 2000). Training and test were performed
on disjoint document sets.

4.2. Reuters-21578

The Reuters-21578 dataset is a news collection com-
piled from the Reuters newswire in 1987. We used the

22

Learning Word-to-Concept Mappings

“ModApte” split, that led to a corpus of 9,603 train-
ing documents and 3,299 test documents. We parsed
the document collection and retained only documents
belonging to one topic. Out of these, we selected the
top five categories in terms of number of training doc-
uments available: earn, acq, crude, trade, money-fx.
This split the collection into approximately 5,000 files
for training and 2,000 files for testing. The classifi-
cation task is to assign articles to their corresponding
topics. For many categories, there is a direct corre-
spondence between words and category labels e.g., the
appearance of the term acquisition is a very good pre-
dictor of the acq category. The vocabulary is fairly
small and uniform, each topic is described with stan-
dard terms, e.g. crude oil, opec, barrel are very fre-
quent terms in the topic crude, so by using frequency
of terms only we can get a high classification accuracy.
We tested the sensitivity to the training set size for all
the four methods. We averaged the performance over
3 randomly selected training sets of sizes: 10 to 200
documents per topic. The number of features is set to
300 based on studies concerning the appropriate vo-
cabulary size for Reuters (McCallum & Nigam, 1998),
which indicate this number of features is enough for
obtaining a high classification accuracy. Particularly
for topic trade, a high amount of noise is introduced by
enlarging the feature space. Table 1 shows statistics
regarding the number of concepts in our model, for
different training set sizes. For the method using part
of speech annotations, we use nouns and verbs. Ta-
ble 2 shows microaveraged F1 results for the 5 chosen
topics. We can observe that on the Reuters collec-

Table 1. Number of concepts extracted for various training
set sizes on Reuters-21578.

Training Concepts Concepts
per topic LatentM LatentMPoS

10 2669 1560
20 2426 1395
30 2412 1321
40 2364 1447
50 2411 1317
100 2475 1372
150 2477 1385
200 2480 1387

Table 2. Microaveraged F1 results on Reuters-21578.

Training NBayes LatentM LatentM SVM
per topic PoS

10 88.9% 88.7% 87.8% 90.0%
20 89.6% 92.2% 90.7% 92.1%
30 92.7% 94.0% 92.2% 93.6%
40 92.1% 93.0% 91.2% 94.5%
50 93.8% 95.0% 93.8% 93.8%
100 95.3% 95.0% 93.8% 95.5%
150 96.0% 95.0% 94.4% 95.4%
200 95.9% 95.8% 94.5% 95.9%

tion, exploiting the semantics of natural language does
not outperform the methods that use simple term fre-
quencies. We explain this effect by the nature of the
vocabulary used in this collection in which term fre-
quencies capture the nature of the training data in each
topic well enough. Further studies are necessary in or-
der to fully understand the behavior of the techniques
proposed on this data collection.

4.3. Amazon

In order to further test our methods, we extracted
a real-world collection of natural language text from
http://www.amazon.com. This site promotes books,
which are grouped according to a representative cat-
egory. From the available taxonomy, we selected all
the editorial reviews for books in: Biological Sciences,

Mathematics, Physics. Total number of documents
extracted was 6,000 (48MB). We split this set into
training (largest 500 documents per topic) and test
(remaining documents after training selection). After
this process we obtained 1,500 training documents
and 4,500 test documents. The dataset is available at
http://www.mpi-sb.mpg.de/∼ifrim/data/Amazon.zip.
Table 3 shows the distribution of documents over
topics. For the method using PoS annotations, we use
nouns, adjectives and verbs. For each of the methods

Table 3. Training/test documents on Amazon.

Category Name Train size Test size

Mathematics 500 2,237
Biological Sciences 500 1,476
Physics 500 787

analyzed, we tested the sensitivity to vocabulary size.
Table 4 presents statistics regarding the concepts
involved in the latent models for different dimensions
of the feature space. Figure 2 shows microaveraged
F1 results. We can observe a significant improve-
ment in terms of performance achieved at different
dimensionalities of the feature space. The PoS

label attached to each method’s name stands for the

Table 4. Number of concepts extracted for various feature
set sizes on Amazon.

Number of Concepts Concepts
features LatentM LatentMPoS

100 1099 509
200 1957 936
300 2886 1390
400 3677 1922
500 4623 2232
600 5354 2547
700 5973 2867
800 6551 3231
900 7230 3677
1,000 7877 3959

23

Learning Word-to-Concept Mappings

usage of PoS annotated features for the respective
method. The only difference between LatentMPos

and NBayesPoS or SV MPoS is the mapping of
features onto the concept space.

100 200 500 1000 2000 5000 10000

55
60

65
70

75
80

Number of features

M
ic

ro
av

er
ag

ed
 F

1

100 200 300 500 1000 2000 5000 10000

LMPoS
LM
NBayesPoS
NBayes
SVMPoS
SVM

Figure 2. Microaveraged F1 at different number of features.

Since this collection has a richer vocabulary, syn-
onymy and polysemy effects can have more impact.
We observe that exploiting semantics can have the
potential of boosting classification performance. In
Table 5 and 6, we show the exact values for microav-
eraged F1 at higher dimensionalities of the feature
space. We observe that SV M performance using all
the distinct terms in the collection (16,000) is inferior
to our model with 1,000 features. Feature selection
by MI does not eliminate correlations among features.
This can have an effect on SVM performance for small
dimensionalities of the feature space. We trained
SVM using the default settings of SVM Struct:
linear kernel and C = 0.01. In the future we plan a
systematic study regarding SVM parameters tuning.

In Figure 3 and Table 7 we show the sensitivity of
microaveraged F1 to the training set size for all the
methods under discussion. The number of features
was set to 500 for Naive Bayes methods. For SVM
we used all the available terms. Also, we compared
our initialization heuristic to the random one. Ta-

Table 5. Microavg F1 for different number of features.

Number of Microavg F1 Microavg F1 Microavg F1

features NBayes LatentM SVM

100 75.9% 78.3% 79.0%
200 77.0% 79.5% 80.0%
300 78.3% 81.0% 78.1%
400 78.6% 81.3% 76.8%
500 78.7% 81.8% 76.3%
1,000 78.4% 83.2% 73.6%
2,000 71.6% 83.5% 75.8%
3,000 66.8% 83.5% 78.3%
5,000 61.2% 83.1% 79.8%
10,000 57.2% 82.7% 81.3%
16,000 55.0% 82.4% 81.6%

Table 6. Microavg F1 for different number of PoS features.

Number of Microavg F1 Microavg F1 Microavg F1

features NBayesPoS LatentMPoS SVMPoS

100 77.5% 79.0% 79.8%
200 78.8% 81.3% 80.2%
300 79.4% 81.9% 78.4%
400 79.9% 82.0% 77.8 %
500 80.3% 82.5% 76.2%
1,000 79.9% 83.5% 73.8%
2,000 74.0% 83.8% 76.2%
3,000 69.7% 83.8% 77.6%
5,000 62.7% 83.4% 79.4%
10,000 56.8% 83.1% 81.2%
16,000 54.7% 82.5% 81.7%

10 20 50 100 200 500

55
60

65
70

75
80

Number of training documents per topic

M
ic

ro
av

er
ag

ed
 F

1

10 20 30 40 50 100 200 300 400

LMPoS
LM
NBayesPoS
NBayes
SVMPoS
SVM

Figure 3. Microaveraged F1 for different training set size.

ble 8 shows the EM behavior, using the LatentMPOS
model with 500 features on the entire training collec-
tion. As compared to the random initialization, our
similarity based heuristic does not gain much in terms
of accuracy. However, it converges faster. Table 9
shows experimental results targeted at assessing the
strength of the heuristic itself, without any EM itera-
tion. The column Heuristic shows classification results
using only the similarity-based initialization heuristic,
compared to the performance achieved after one EM
iteration (column Heuristic-EM1). Column Random-

EM1 shows the performance after one EM iteration
with random initialization of parameters.

Table 7. Microaveraged F1 for different training set size.

Training Microavg F1 Microavg F1 Microavg F1

NBayesPoS LatentMPoS SVMPoS

10 54.4% 57.7% 56.0%
20 61.2% 66.4% 69.9%
30 66.2% 71.9% 73.6%
40 67.2% 72.9% 71.1%
50 69.8% 74.7% 73.8%
100 73.1% 76.7% 78.3%
200 77.0% 80.3% 80.2%
300 78.4% 82.0% 81.5%
400 79.1% 81.7% 81.0%
500 80.3% 82.5% 81.7%

24

Learning Word-to-Concept Mappings

Table 8. Sim-based vs random initialization.

EM Sim-based Random
Iteration Init Init

1 80.5% 59.0%
2 81.5% 70.6%
3 81.9% 76.5%
4 82.2% 79.8%
5 82.3% 80.9%
10 82.5% 82.3%
15 82.5% 82.4%

Table 9. Heuristic, Heuristic & EM1, Random & EM1.

Training Heuristic Heuristic-EM1 Random-EM1

10 38.1% 56.8% 49.8%
20 66.6% 60.9% 49.6%
30 68.2% 67.7% 49.6%
40 40.3% 70.5% 49.8%
50 43.4% 71.7% 49.8%
100 27.3% 74.8% 49.8 %
200 29.9% 79.3% 49.8%
300 27.6% 80.8% 51.0%
400 30.4% 80.3% 51.0%
500 32.3% 80.5% 52.0%

4.4. Discussion

The results above clearly demonstrate the benefits of
combining the initialization heuristic with EM; neither
technique alone can achieve good performance. Fur-
ther experiments are needed for a better understand-
ing of the behavior of the proposed techniques.

5. Conclusions

In this paper, we proposed a generative language
model approach to automatic document classification.
Many similar models exist in the literature, but our
approach is a step towards increasing the model ro-
bustness by introducing explicit information on the
model and pruning the parameter space to only neces-
sary data, encoded in the training collection. The ap-
proach proposed seems to be beneficial for collections
with a rich natural language vocabulary, setups in
which classical terms-only methods risk to be trapped
in the semantic variations. Our future work includes
more comprehensive experimental studies on various
data collections and also studying the usage of differ-
ent knowledge resources, such as customized ontologies
extracted from large corpora.

References

Baker, L. D., & McCallum, A. (1998). Distributional Clus-
tering of Words for Text Classification. Proceedings of
the 21st ACM-SIGIR International Conference on Re-
search and Development in Information Retrieval (pp.
96–103).

Bhattacharya, I., & Getoor, L. & Bengio, Y. (2004). Un-

supervised Sense Disambiguation Using Bilingual Prob-
abilistic Models. Meeting of the Association for Compu-
tational Linguistics.

Bloehdorn, S., & Hotho, A. (2004). Text Classification by
Boosting Weak Learners based on Terms and Concepts.
International Conference on Data Mining (pp. 331–334).

Cai, L., & Hofmann, T. (2003). Text Categorization by
Boosting Automatically Extracted Concepts. 26th Annual
International ACM-SIGIR Conference.

Chakrabarti, S. (2003). Mining the Web: Discovering
Knowledge from Hypertext Data. San Francisco: Morgan
Kaufman.

Croft, W. B., & Lafferty, J. (2003). Language Modeling for
Information Retrieval. Kluwer Academic Publishers.

Deerwester, S., & Dumais, S. T., & Harshman, R. (1990)
Indexing by Latent Semantic Analysis. Journal of the
American Society of Information Science 41(6) (pp.
391–407).

Fellbaum, C. (1999). WordNet: An Electronic Lexical
Database. Cambridge: MIT Press.

Hastie, T., & Tibshirani, R., & Friedman, J. H. (2003).
The Elements of Statistical Learning: Data Mining, In-
ference and Prediction. New York: Springer Verlag.

Hofmann, T. (2001). Unsupervised Learning by Probabilis-
tic Latent Semantic Analysis. Kluwer Academic Pub-
lishers.

Joachims, T. (1998). Text categorization with support vec-
tor machines: learning with many relevant features (pp.
137–142). Proceedings 10th European Conference on Ma-
chine Learning.

Manning, C. D., & Schütze, H. (2000). Foundations of Sta-
tistical Natural Language Processing. Cambridge: MIT
Press.

McCallum, A., & Nigam, K. (1998). A Comparison
of Event Models for Naive Bayes Text Classification.
AAAI-98 Workshop on “Learning for Text Categoriza-
tion”.

Scott, S., & Matwin, S. (1999). Feature Engineering for
Text Classification Proceedings of the Sixteenth Interna-
tional Conference on Machine Learning (pp. 379–388)

Staab, S., & Studer, R. (2004). Handbook on Ontologies
Berlin: Springer.

Theobald, M., & Schenkel, R., & Weikum, G. (2003). Ex-
ploiting Structure, Annotation, and Ontological Knowl-
edge for Automatic Classification of XML Data. Sixth
International Workshop on the Web and Databases.

Tsochantaridis, I., & Hoffman, T., & Joachims, T., & Al-

tun Y. (2004). Support Vector machine Learning for

Interdependent and Structured Output Spaces. Proceed-

ings of the 21st International Conference on Machine

Learning.

25

Unsupervised Ontology-based Semantic Tagging for Knowledge Markup

Paul Buitelaar PAULB@DFKI.DE

Srikanth Ramaka SRIKANTH.RAMAKA@DFKI.DE

DFKI GmbH, Language Technology, Stuhlsatzenhausweg 3, 66123 Saarbruecken, Germany

Abstract

A promising approach to automating knowledge
markup for the Semantic Web is the application
of information extraction technology, which may
be used to instantiate classes and their attributes
directly from textual data. An important
prerequisite for information extraction is the
identification and classification of linguistic
entities (single words, complex terms, names,
etc.) according to concepts in a given ontology.
Classification can be handled by standard
machine learning approaches, in which concept
classifiers are generated by the collection of
context models from a training set. Here we
describe an unsupervised approach to concept
tagging for ontology-based knowledge markup.
We discuss the architecture of this system, and
our strategy for and results of performance
evaluation.

1. Introduction

A central aspect of Semantic Web development is
knowledge markup: annotation of data with formalized
semantic metadata in order to allow for automatic
processing of such data by autonomous systems such as
intelligent agents or semantic web services (see e.g.
McIlraith et al., 2001). As much of today’s information is
available as text only, knowledge markup often involves
the annotation of textual data to explicitly structure the
knowledge that is available in text only implicitly.
Automating this process involves the use of information
extraction technology that allows for the mapping of
linguistic entities (single words, complex terms, names,
etc.) to shallow semantic representations, mostly referred
to as ‘templates’ (see e.g. Ciravegna, 2003). Consider for
instance the following example from the football domain,
which expresses a typical event with a number of roles to
be filled by information extraction from relevant textual

—————
 Appearing in W4: Learning in Web Search at 22nd International

Conference on Machine Learning, Bonn, Germany, 2005. Copyright
2005 by the author(s)/owner(s).

data, e.g.: In the last minute Johnson saved with his legs
from Huckerby

RESCUE-EVENT [

goalkeeper : GOALKEEPER > Johnson

player : PLAYER > Huckerby

manner : BODYPART > legs

atMinute : INT] > 90

Obviously, if such templates are expressed in a formally
defined knowledge markup language such as RDFS or
OWL, they roughly correspond to an ontologically
defined class with its attributes (properties). In the context
of this paper we therefore assume an interpretation of
information extraction for knowledge markup as concept
instantiation1 that includes:

• concept tagging – mapping of linguistic entities to
concepts/classes as defined by an ontology

• attribute filling – mapping of linguistic structure over
linguistic entities that are tagged with a class to
attributes of that class as defined by an ontology

Here we focus primarily on concept tagging, which is a
prerequisite for attribute filling. We treat concept tagging
as a classification task that can be handled by standard
machine learning approaches, in which concept classifiers
are generated by the collection of context models from a
training set. Context models may be generated from
manually annotated, i.e. supervised training sets, but this
is very costly and non-robust as for each new ontology a
supervised training set needs to be constructed. Instead,
we present development of an unsupervised approach that
can be trained on any relevant training data, without
previous manual annotation.

—————
1 Concept instantiation has also been referred to as

‘ontology population’ (e.g. in the context of the AKT project -
http://www.aktors.org/akt/), which emphasizes the database
aspect of an ontology and its corresponding knowledge base.

26

This is similar to the SemTag approach to large-scale
semantic tagging for the Semantic Web (Dill et al., 2003),
but the emphasis of our approach is somewhat different.
We focus here on an unsupervised approach to concept
tagging as a necessary prerequisite for further information
extraction and more complex knowledge markup,
whereas the SemTag approach emphasizes the large-scale
aspects of concept tagging without a clear vision on the
eventual use of the added semantic tags.

The remainder of the paper gives an overview of the
system architecture of our approach in section 2, followed
in section 3 by a discussion of our evaluation strategy and
results of this. In section 4 we give an outline of the
application of the system in two Semantic Web projects.
Related work is presented in section 5.

2. System Architecture

The unsupervised concept tagging system we are
developing consists of the following components:

• a set of hierarchically organized classes from a
domain ontology

• a domain-relevant document collection for training
and classification

• a shallow linguistic module for preprocessing class
labels and documents

• a machine learning environment for generating
context models and classifiers

• a knowledge base to store marked up concept
instantiations

In the training phase, a context model and classifier is
generated from a domain-specific document collection for
a set of classes from a corresponding domain ontology,
over which various parameters are evaluated to select the
best classifier. In the application phase, the classifier is
used in tagging linguistic entities with the appropriate
class and to store corresponding class instances in the
knowledge base. In information extraction, these
instances (with linguistic contexts) are submitted to a
further process that maps them to relevant class attributes.
We will not address this any further here, but applications
of the information extraction process are discussed in
section 4.

2.1 Ontology and Document Collection

The system assumes as primary input an ontology in
RDFS or OWL with a hierarchy of classes as specified for
a particular domain. The following two example classes
from the “Soccer V2.0” ontology2 on football express two

—————
2 Available from

http://www.lgi2p.ema.fr/~ranwezs/ontologies/soccerV2.0.daml,
which we adapted to OWL and added German labels.

events (‘to clear’ and ‘counter attack’) that are defined as
sub-classes of a class that expresses the more general
event ‘other player action’3:

<rdfs:Class rdf:ID="Clear">
<rdfs:subClassOf
rdf:resource="#Other_player_action"/>
<rdfs:label
xml:lang="en">Clear

</rdfs:label>
<rdfs:label
xml:lang="de">Klären

</rdfs:label>
</rdfs:Class>

<rdfs:Class rdf:ID="Counter_attack">
<rdfs:subClassOf
rdf:resource="#Other_player_action"/>
<rdfs:label
xml:lang="en">Counter_attack

</rdfs:label>
<rdfs:label
xml:lang="de">Konterangriff

</rdfs:label>
</rdfs:Class>

Next to a domain ontology, the system assumes a
document collection on the same domain. For instance,
for the SmartWeb project4 that will be discussed in
Section 4 below, we are working with a football ontology
and a document collection on UK football matches5.

2.2 Linguistic Preprocessing

In order to map linguistic entities in the document
collection on classes in the ontology, we normalize them
into a common linguistic representation. For this purpose
we linguistically preprocess the class names in the
ontology as well as all text segments in the document
collection.

Linguistic preprocessing6 includes part-of-speech (PoS)
tagging with the TnT tagger (Brants, 2000) and
lemmatization based on Mmorph (Petitpierre and Russell,
1995). Part-of-speech tagging assigns the correct syntactic
class (e.g. noun, verb) to a particular word given its
context. For instance, the word works will be either a verb
(working the whole day) or a noun (all his works have
been sold).

—————
3 We use the OWL API (Bechhofer et al., 2003) in parsing

the ontology.
4 More information on the SmartWeb project can be

obtained from http://www.smartweb-projekt.de
5 The football document collection used here is obtained by

crawling a web portal on premiere league football in the UK:
http://4thegame.com

6 Linguistic preprocessing is accessed via an XML-based
format based on proposals in (Buitelaar and Declerck, 2003).

27

Lemmatization involves normalization over inflectional,
derivational and compound information of a word.
Inflectional information reduces the plural noun works to
the lemma work, whereas derivational information
reduces the verb forms working and works to the lemma
work. Compound information determines the internal
structure of a word. In many languages other than English
the morphological system is very rich and enables the
construction of semantically complex compound words.
For instance the German word “Schiedsrichterfahne”
corresponds in English with two words “referee flag”.

sentence

Word: striker

IDi

Lemma IDiPoS

striker 23N

Word: shot

Lemma IDiPoS

shoot 24V

Figure 1: Linguistic Annotation Example

2.3 Generating Context Models and Classifiers

The concept tagging system is based on an instance-based
learning approach to classification as implemented for
instance in the WEKA machine learning environment.
Instance-based learning involves a nearest neighbor
classification method, in which the instance to be
classified i is compared with all training instances, using a
distance metric, and the closest training instance is then
used to assign its class to i. The generalization of this
method that we use here is the k-nearest neighbor method,
where the class of the instance i is computed using the
closest k training instances.

An instance-based learning algorithm consists of a
training step and an application step. We first discuss the
training step, in which context models and corresponding
classifiers are generated. In the next sub-section we
discuss the application of such classifiers in concept
tagging.

Training involves the construction of classified instances
from a training set. As the methods discussed here are
unsupervised, this training set has not been previously
annotated. An instance is a set of attribute-value pairs,
one of which identifies the class that needs to be
determined.

Constructing an instance involves the following. Let w be
a word in the training set, for which we can build

instances with the attribute-value pairs of each instance
filled by its left and right neighbor words in a context of
size N. The attribute-value pair that represents the class of
this instance is filled by matching the word w with the
preprocessed class name and the class names of all of its
sub-classes. To illustrate the construction of particular
instances, consider the following sentences from the
document collection on football:

Even during those early minutes Palace's former Carlisle
attacker Matt Jansen looked up for a big game, and no
wonder as he was facing his boyhood idols!

Arsenal's new French midfielder Patrick Vieira started
the rot for Leeds this time after only 44 seconds.

That they went home empty-handed was largely down to
another of Gullit's instant imported hits, former
Strasbourg sweeper Frank Leboeuf.

The words attacker, midfielder, sweeper match with the
classes attacker, midfielder, sweeper in the
football ontology, which are sub-classes of the class
player. From the sentences we may now derive the
following instances for this class with context size 5 (2
words on the left, 2 words on the right):

N-2 N-1 N+1 N+2

former Carlisle Matt Jansen

new French Patrick Vieira

former Strassbourg Frank Leboeuf

In this way, we can build up a context model and
corresponding classifier for each class. In the application
phase these classifiers will be used to classify unseen
terms. Consider for instance the word striker in the
following sentence:

The big French striker stepped up to drill home the
penalty himself.

The word striker (in this context) expresses the sub-class
striker of the class player, which has not been
modeled as such in the football ontology. We therefore
can use classification to extend the coverage of the
concept tagging system and at the same time to acquire
additional sub-classes for each of the classes modeled in
the training step. In this way, knowledge markup can be
connected to ontology learning, which aims at automatic
or semi-automatic extension and/or adaptation of
ontologies7.

—————
7 See the collection of papers from the ECAI04 workshop

on Ontology Learning and Population for an overview of recent
work http://olp.dfki.de/ecai04/cfp.htm.

28

2.4 Classification: Concept Tagging

In the application step, we use the generated classifiers to
classify an occurrence of word w by finding the k most
similar training instances. For instance, for the sentence
with striker above, we extract the corresponding instance
to be classified (with the class missing):

[big, French, stepped, up, -]

Now we classify the instance using the generated
classifiers to obtain:

[big, French, stepped, up, player]

The output of this process is a classified instance that will
be represented in two ways:

• Concept Tagging – mark up of corresponding tokens
in the document with the assigned class in XML8

• Knowledge Base Instantiation – generation of an
RDF instance for the assigned class in the ontology
(with a pointer to corresponding tokens in the
document)

To illustrate this, consider the example in Figure 2 below.
Here, the word striker is marked as player with an
indication of the origin of this class through the
information stored in the ontology attribute. An
instance in RDF can be created accordingly and stored in
the knowledge base.

sentence

Word : striker

IDi

Lemma IDiPoS

striker 23N

Concept

Player

Figure 2: Concept Tagging Example

3. Evaluation

An important step in system development is performance
evaluation, in order to determine the appropriate research
direction for the task at hand. In the context of this paper

—————
8 Concept tagging extends the XML output of linguistic

preprocessing as discussed in section 2.2 (see also Buitelaar and
Declerck, 2003)

we were interested to determine an answer to the
following research questions:

1. How well does the system perform on correctly
classifying new terms (i.e. terms that are not yet
modeled in the ontology)?

2. What is the influence of linguistic preprocessing (PoS
tagging, lemmatization) on classification results?

In this section we discuss our strategy in evaluating these
questions, the evaluation set we constructed and the
results obtained with this evaluation set.

3.1 Evaluation Strategy

To evaluate our approach we developed a performance
evaluation strategy that assumes a gold standard with
which different data sets can be automatically compared
and on the basis of which recall and precision numbers
can be computed in a straightforward way. A major
criticism of performance evaluation is that it evaluates
only the clearly measurable aspects of the technology
used, without taking the wider user-oriented context into
account. Although this is surely correct from a wider user-
oriented perspective, for comparing results on many
different parameters there seems to be no alternative to
the use of a gold standard. We therefore developed a gold
standard classification set for the football domain, derived
from the document collection and football ontology
mentioned earlier.

3.2 Evaluation Sets

The gold standard was constructed by pooling: running
the system with the same data set over a number of
different parameters (context size, value of k). We then
merged the resulting classified data sets by taking the
intersection of all classified instances. This resulted in an
evaluation set of 869 classified instances that we gave to
three evaluators to judge on correctness9. The task of the
evaluators was to judge if a word w was correctly
classified with class c, given its context (sentence) s. The
classified instances were presented to the evaluator as
follows:

c: other_player_action

w: volleying

s: Wiltord fed the ball through to Dennis Bergkamp
and his chip into Henry's path led to the French
striker volleying over from six yards when it
appeared easier to score.

The evaluators were then asked to judge this classification
by assigning it a 3 (very good), 2 (good), or 1 (incorrect).
We were able to assemble a gold standard from these

—————
9 The evaluators qualified as `domain experts` as they were

all football aficionados.

29

judgments by taking a voting account of the three
assignments for each classified instance. For 863
instances a majority could be established in this way, for
the remaining 6 instances each evaluator assigned a
different score. These instances were therefore left out of
the resulting gold standard.

The 863 instances in the gold standard are distributed
over 4 classes in the football ontology that we selected for
evaluation:

other_player_action with sub-classes: beat,
charge, clear, ...

person with sub-classes: official, player, ...

place with sub-classes: area, field, line, ...

stoppage with sub-classes: corner, fault, goal,
...

The distribution of judgments over these classes is as
follows:

Table 1: Distribution of judgments over the 4 selected classes

very
good good incorrect

other_player_action
47 32 104

person
50 4 57

place
24 14 118

stoppage
4 2 407

Total 125 52 686

From the set of evaluated instances we then created two
gold standard evaluation sets, a “strict” one (including
only the instances judged to be classified “very good”)
and a “relaxed” one (including the “very good” as well as
the “good” instances). The “strict” set has 125 and the
“relaxed” set 177 instances.

3.3 Evaluation Results

We used the two gold standard sets to evaluate different
settings for N (context size) and the number of closest k
training instances. To evaluate the influence of context
size we varied N between 1, 2 and 5, each time with k
between 1, 2 and 10. The results are presented in the
following tables.

The results in table 2 show that a larger context size
degrades recall significantly as we consider only contexts
within sentence boundaries. Obviously, there are more n-

grams of length 3 (N=1) than of length 11 (N=5) within a
sentence. The influence of k seems not significant,
although k=1 gives the best results at N=1.

Table 2: Evaluation results

Strict Set Relaxed Set
N k

Rec. Prec. Rec. Prec.

1 89%
(111)

89%
(99)

92%
(162)

89%
(144)

2 89%
(111)

87%
(97)

92%
(162)

87%
(141)

1

10 87%
(109)

83%
(90)

89%
(158)

84%
(132)

1 69%
(86)

83%
(71)

66%
(117)

82%
(96)

2 66%
(82)

85%
(70)

64%
(114)

82%
(94)

2

10 66%
(83)

84%
(70)

65%
(115)

82%
(94)

1 17%
(21)

81%
(17)

18%
(31)

81%
(25)

2 15%
(19)

84%
(16)

16%
(29)

76%
(22)

5

10 14%
(18)

83%
(15)

15%
(27)

81%
(22)

The results in table 2 provide an answer to our first
research question (how well do we classify?). The answer
to the second question (does linguistic preprocessing
matter?) is given by the results in the following table. In
this case we did not use any linguistic preprocessing in
training and application. As the table shows, the results
are worse than with linguistic preprocessing (only results
for N=1 are shown).

Table 3: Evaluation results – no linguistic preprocessing

Strict Set Relaxed Set
N k

Rec. Prec. Rec. Prec.

1 1 74%
(92)

85%
(78)

76%
(135)

84%
(113)

2 74%
(92)

83%
(76)

76%
(135)

81%
(110)

10 74%
(92)

79%
(73)

75%
(132)

79%
(104)

30

4. Application

The concept tagging system described in this paper is
being developed in the context of two projects
(SmartWeb, VieWs) that we are currently working on.
The projects have different scenarios and application
domains, but share a need for tagging of text documents
with classes from a given ontology for information
extraction purposes.

4.1 SmartWeb

SmartWeb is a large German funded project that aims at
intelligent, broadband mobile access to the Semantic
Web. For this purpose it combines such diverse
technologies as speech recognition, dialogue processing,
question answering, information extraction, knowledge
management and semantic web services into an ambitious
common framework to realize an intelligent mobile
information system.

A first demonstrator is targeted to the football world cup
2006, which will be held in Germany. The SmartWeb
system will be able to assist the football fan over speech
input in booking his tickets for the games he wants to see,
as well as hotels, restaurants, etc. Additionally, the system
will be able to answer questions on any football related
issue (e.g. game history, end scores, names and
achievements of players) or otherwise (e.g. the weather,
local events, news).

In order to be able to answer such questions, the system
will need to have knowledge of many topics which will be
handled by a combination of several technologies: open-
domain question answering on the web (based on an
information retrieval approach), semantic web service
access to web-based databases and ontology-based
information extraction from football related web
documents for knowledge base generation. Concept
tagging with the SmartWeb football ontology is a
prerequisite for the ontology-based information extraction
task.

4.2 VieWs

The VIeWs10 project has as its central aim to demonstrate
how web portals can be dynamically tailored to special
interest groups. The VIeWs system combines ontologies,
information extraction, and automatic hyperlinking to
enrich web documents with additional relevant
background information, relative to particular ontologies
that are selected by individual users. A tourist for instance
will be shown additional information on hotels,
restaurants or cultural events by selecting the tourist
ontology.

On entering a VIeWs enhanced web portal the system
analyses the web document provided by the server and

—————
10 http://views.dfki.de

identifies anchors for the hyperlinks, e.g. city names. A
Google-based web search is then started for the
recognized city names in combination with keywords
(“hotel”, “restaurant”, etc.) derived from the ontology.

The results of the web search and information already
existing in the knowledge base will be shown in the form
of generated hyperlink menus on each of the identified
city names. Additionally, an information extraction
process is started in the background over the retrieved
documents and relevant extracted information is stored in
the knowledge base for future access. Obviously also here
ontology-based concept tagging is a prerequisite for the
information extraction process.

5. Related Work

As mentioned before, the work discussed here is related to
the SemTag work on large-scale semantic tagging for the
Semantic Web (Dill et al., 2003). Also much of the work
on semantic annotation (for a recent overview see:
Handschuh and Staab, 2003) and ontology learning (for a
recent overview see: Buitelaar et al., 2005) for the
Semantic Web is directly related. However, next to this
also various other tasks in natural language processing
and information retrieval are concerned with similar
issues.

First of all, the large body of work on semantic tagging
and word sense disambiguation is of direct interest as this
is also concerned with the assignment of semantic classes
to words (for an overview see Ide and Veronis, 1998;
Kilgarriff and Palmer, 1999; Edmonds and Kilgarriff,
2003). However, there is also an important difference as
this work has been almost exclusively concerned with the
use of lexical resources such as dictionaries or wordnets
for the assignment of semantics to words in text. The use
of ontologies brings in a rather different perspective, e.g.
on lexical ambiguity, on lexical inference and on the
mapping of linguistic structure to semantic structure.

A second important area of related work is named-entity
recognition (for a recent overview see e.g. Tjong Kim
Sang and De Meulder, 2003). Named-entity recognition
(NER) is also concerned with the assignment of semantic
classes to words or rather names in text. However, the
typical number of semantic classes used in NER is mostly
small, not extending beyond distinctions such as person,
location, organization, and time. Nevertheless, there is an
important overlap in the methods and goals of NER and
the work discussed here, that is if we imagine NER with a
larger and hierarchically ordered set of semantic classes
as specified by an ontology. Such a direction in NER has
been given much consideration lately, as witnessed for
instance by the SEER11 (Stanford Edinburgh Entity
Recognition) project.

—————
11 http://www.ltg.ed.ac.uk/seer/

31

6. Conclusions

We presented ongoing work on developing an ontology-
based concept tagging system as an important prerequisite
in information extraction for knowledge markup. The
system we discussed implements an unsupervised
approach, in which no prior manual tagging is needed.
Such an approach allows for a robust application of the
system in different domains. Evaluation indicates that
good results can be obtained with such an approach and
that linguistic preprocessing helps to increase recall and
precision.

Acknowledgements

This research has been supported by grants for the
projects VIeWs (by the Saarland Ministry of Economic
Affairs) and SmartWeb (by the German Ministry of
Education and Research: 01 IMD01 A).

References

Bechhofer Sean, Phillip Lord, Raphael Volz. Cooking the
Semantic Web with the OWL API. 2nd International
Semantic Web Conference, ISWC, Sanibel Island,
Florida, October 2003.

Brants, Thorsten. TnT - A Statistical Part-of-Speech
Tagger. In: Proceedings of 6th ANLP Conference,
Seattle, 2000.

Buitelaar, Paul and Thierry Declerck. Linguistic
Annotation for the Semantic Web. In: Handschuh S.,
Staab S. (eds.) Annotation for the Semantic Web, IOS
Press, 2003.

Buitelaar, Paul, Philipp Cimiano and Bernardo Magnini
(eds.) Ontology Learning from Text: Methods,
Evaluation and Applications. IOS Press, 2005.

Ciravegna, Fabio. Designing adaptive information
extraction for the semantic web in amilcare. In
Siegfried Handschuh and Steffen Staab, editors,
Annotation for the Semantic Web, Frontiers in Artificial
Intelligence and Applications. IOS Press, Amsterdam,
2003.

Dill S., N. Eiron, D. Gibson, D. Gruhl, R. Guha, A.
Jhingran, T. Kanungo, S. Rajagopalan, A. Tomkins, J.
A. Tomlin, and J. Y. Zien, SemTag and Seeker:
Bootstrapping the semantic Web via automated
semantic annotation, 12th International World Wide
Web Conference Budapest, Hungary, 2003.

Edmonds, Phil and Adam Kilgarriff (eds.). Journal of
Natural Language Engineering (special issue based on
Senseval-2), vol.9 no. 1, Jan. 2003.

Handschuh, Siegfried and Steffen Staab (eds.) Annotation
for the Semantic Web. IOS Press, 2003.

Ide, N. and Veronis J. Introduction to the special issue on
word sense disambiguation: The state of the art.
Computational Linguistics, 24(1):1--40. 1998.

Kilgarriff, Adam and Martha Palmer (eds.). Computers
and the Humanities (special issue based on Senseval-1),
vol.34 no. 1-2, 1999.

McIlraith, Sheila A., Tran Cao Son, and Honglei Zeng
Semantic Web Services IEEE Intelligent Systems,
March/April 2001, Vol 16, No 2, pp. 46-53.

Petitpierre, D. and Russell, G. MMORPH - The Multext
Morphology Program. Multext deliverable report for
the task 2.3.1, ISSCO, University of Geneva. 1995.

Tjong Kim Sang, Erik F. and Fien De Meulder. 2003.
Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In:
Walter Daelemans and Miles Osborne (eds.),
Proceedings of CoNLL-2003, Edmonton, Canada.

32

Generating Accurate Training Data from
Implicit Feedback

(Invited Talk)

Thorsten Joachims

Cornell University, Department of Computer Science, USA

Abstract: Machine learning methods have shown much promise in designing
adaptive and personalized information system, ranging from email readers to
search engines. But how can we generate the data to train these systems? The
availability of training data is the crucial bottleneck in many of these appli-
cations, since generating training data manually is time consuming and often
goes beyond the user’s willingness to participate. To overcome this bottleneck,
researchers have tried to infer training data from observable user behavior. Such
implicit feedback can be collected at low cost and in huge quantities, but does
it provide valid training data?

In this talk, we propose and analyze strategies for generating training data
from observable user behavior. Focusing on clickthrough data in web search, we
conducted an eye-tracking study to analyze the relationship between user behav-
ior and the relevance of a page. The study shows that a particular interpretation
of clickthrough data provides reliable training data. While clicks do not indicate
the relevance of a page on an absolute scale, clicks accurately indicate relative
training data of the kind ”for query Q, document A should be ranked higher
than document B”.

33

Topic-Specific Scoring of Documents for Relevant Retrieval

Wray Buntine, Jaakko Löfström, Sami Perttu and Kimmo Valtonen first.last@hiit.fi

Helsinki Inst. of Information Technology
P.O. Box 9800, FIN-02015 HUT, Finland

Abstract

There has been mixed success in applying
semantic component analysis (LSA, PLSA,
discrete PCA, etc.) to information retrieval.
Here we combine topic-specific link analy-
sis with discrete PCA (a semantic compo-
nent method) to develop a topic relevancy
score for information retrieval that is used
in post-filtering documents retrieved via reg-
ular Tf.Idf methods. When combined with
a novel and intuitive “topic by example” in-
terface, this allows a user-friendly manner to
include topic relevance into search. To eval-
uate the resultant topic and link based scor-
ing, a demonstration has been built using the
Wikipedia, the public domain encyclopedia
on the web.

1. Introduction

More sophisticated language models are starting to be
used in information retrieval (Ponte & Croft, 1998;
Nallapati, 2004) and some real successes are being
achieved with their use (Craswell & Hawking, 2003). A
document modelling approach based on discrete ver-
sions of principal components analysis (PCA) (Hof-
mann, 1999; Blei et al., 2003; Buntine & Jakulin, 2004)
has been applied to the language modelling task in in-
formation retrieval (Buntine & Jakulin, 2004; Canny,
2004). However, it has been shown experimentally
that this is not necessarily the right approach to use
(Azzopardi et al., 2003). The problem can be ex-
plained as follows: when answering a query about
“computing entropy,” a general statistical model built
on the full Wikipedia, for instance, often lacks the fi-
delty on these two key words combined. In the lan-
guage of minimum description length, it is wasting its
bits across the full spectrum of words, instead of con-

Appearing in W4: Learning in Web Search, at the 22nd

International Conference on Machine Learning, Bonn, Ger-
many, 2005. Copyright 2005 by the author(s)/owner(s).

serving bits for the only two words of real interest. Ide-
ally, one would like a statistical model more specifically
about “computing entropy,” if it were feasible. Thus
the statistically based language modelling approach to
information retrieval is stll needing of development.

Thus, arguably, supervised models are needed for in-
formation retrieval. Here we take an alternative path
for using statistical models in information retrieval.
Our approach is motived by the widespread observa-
tion that people would like to be able to bias their
searches towards specific areas, but they find it diffi-
cult to do so in general. Web critics have reported that
Google, for instance, suffers perceived bias in some
searches because of the overriding statistics of word
usage in its corpus (“the web”) in contrast with their
dictionary word senses (Johnson, 2003): on the inter-
net an “apple” is a computer, not something you eat,
“Madonna” is an often-times risque pop icon, not a re-
ligious icon, and moreover “latex” is not a typesetting
system, but apparantly something the certain people
where in certain situations. Thus one might want to
use a keyword “Madonna” but bias the topic somehow
towards Christianity in order to get the religious word
sense.

A major user interface problem here is that people
have trouble navigating concept hierarchies or ontolo-
gies (Suomela & Kekäläinen, 2005), especially when
they are unfamiliar with them. Even when they are
familiar with them, a point and click menu on a 200-
topic hierarchy is unwieldy. This is further confounded
because good topic hierarchies and ontologies are usu-
ally multifaceted, and search might require specifying
multiple nodes in the hierarchy.

To address this problem, we apply machine learning
and statistical inference technology in a novel combi-
nation.

Topic by example: Users do not have to know the
hierarchy, or browse it, or navigate multiple paths
to get multiple facets for their search. They just
enter a few words describing their general topic

34

Topic-Specific Scoring of Documents for Relevant Retrieval

Figure 1. The search options on the results page

area in a “context words” box and let the system
work out the topics “by example”. An example of
the input screen is shown in Figure 1. Topics can
then be used on masse or selected individually.

Topic specific page-rank: Many pages can be top-
ically relevant, but when dealing with a specific
topic area or combination of topic areas, which
pages are considered the most important in terms
of topically relevant citations? Topic specific ver-
sions of page rank (Haveliwala, 2002; Richardson
& Domingos, 2002) address this.

Result filtering: The top results from a regular
Tf.Idf query are reranked using a weighted com-
bination of topic-specific page rank. In this way,
the choice of topic “by example” affects the re-
sults but in a computationally feasible and scal-
able manner.

Here we first apply the discrete PCA method to de-
velop topics automatically. This gives topics suitable
for the corpus, and a multi-faceted classification of all
pages in it. We then apply these using a topic-specific
version of page rank (Richardson & Domingos, 2002)
that is based on the notion of a random surfer will-
ing to hit the back button when a non-topical page
is encountered. This gives topic specific rankings for
pages that can be used in the topic-augmented search
interface.

Our intent is that these techniques yield a secondary
topical score for retrieval in conjunction with a pri-
mary key-word based score such as Tf.Idf. Thus rele-
vance of a document is a combination of both keyword
relevance and topical relevance. Because search users
are usually daunted by anything more than just a key-
word box, and because keyword search currently works
quite well, our default is to make the keyword entry
and the topical entry equivalent initially in a search,
and only give the option to change the topic, as shown
in Figure 1, after a first batch of results have been
returned. Thus the initial search screen contains no
“context words” box.

Our platform for experiments with these methods is

the English language part of the Wikipedia1, an open
source Encyclopedia. This has a good internal link
structure and about 500,000 pages, so it is a reasonable
sized test. The system is demonstrated at our test
website http://kearsage.hiit.fi/wikisearch.html2 .

The combination of topic-specific and link-based scor-
ing is fundamental, we believe, to the success of this
method. Topic-based scoring alone can return docu-
ments with high topical scores, but they are not “char-
acteristic” documents for the topic and keyword com-
bination, rather they are “typical”. A document with
high topical content is not necessarily characteristic.
For instance, entering the query “madonna” gives the
following pages titles as top results under a standard
OKAPI BM25 version of Tf.Idf, under Google, and un-
der our system (“Topical filtering”). These are listed
in rank order:

Tf.Idf: Madonna (entertainer), Unreleased Madonna
songs, List of music videos by year work in
progress, Bedtime Stories (Madonna), American
Life

Google: Madonna (entertainer), Madonna (singer),
Madonna, Unreleased Madonna Songs, Black
Madonna

Topical filtering: Madonna, Madonna (enter-
tainer), Unreleased Madonna songs, The
Madonna, American Life

Tf.Idf essentially returns documents with many in-
stances of the word Madonna. Google essentially re-
turns documents voted by web-links as being most im-
portant, mostly Madonna the entertainer. Our ap-
proach sees Madonna is a word with both entertain-
ment and religious connotations, and returns impor-
tant documents with a better topical mix. “Madonna”
in this case is the main disambiguating page that
points to the different versions of Madonna. It be-
comes the highest ranked using our topical filtering

1http://en.wikipedia.org
2The website is being used to test interface concepts as

well as perform user studies, thus its performance is not
robust.

35

Topic-Specific Scoring of Documents for Relevant Retrieval

due to it being a better topical match to the query.
Another example is the query “stars”.

Tf.Idf: List of The Simpsons episodes, List of stars
on the Hollywood Walk of Fame, Star Wars, Star
Trek, List of stars by constellation, Star, Star Trek
Other Storylines

Google: Star, Neutron star, Flag of the United
States, Movie star, List of nearest stars, Stars and
Stripes, List of brightest stars

Topical filtering: Star system, Star (glyph), Star
Trek Further Reading, Star (disambiguation),
Star Wreck, Star, List of LucasArts Star Wars
games

In this case, “Star (glyph)” is the mathematical con-
cept of a star. In this case, the disambiguation page is
only seen in the results from topical filtering, as well
as a broader range of topical versions of star.

This paper first presents the background on discrete
PCA (DPCA), and topic specific ranking using a topi-
cally motivated random surfer. Then the combination
of these methods is described. The paper described
the results of the topic specific ranking, a very appeal-
ing and rational set of document rankings for different
topics. Finally the application of these techniques to
information retrieval are discussed and presented.

2. Background

2.1. Topic Specific Ranking

We use the term “random surfer model” in a broad
sense: to encompass general Monte Carlo Markov
chain methods, modelling eye-balls on pages, used
to determine scores for documents. Examples are
(Haveliwala, 2002; Richardson & Domingos, 2002). A
general method for topic-specific ranking roughly fol-
lowing ((Richardson & Domingos, 2002) goes as fol-
lows:

Our surfer restarts with probability α at a page i with
probability ri. From that page, they uniformly select
a link to document i′, and jump to this next page.
They then consider the topic of the new page, whose
strength of relevance is determined by another proba-
bility ti′ . With this probability ti′ they accept the new
page, and with probability 1 − ti′ they go back to the
page i to try a new link. The stationary distribution
of the Markov Chain for the probability of being on
page pi is then given by the update equations:

pi ←− αri + (1 − α)
∑

i′ : i′→i

pi′
ti∑

j : i′→j tj

where we perform the calculation only for those pages
i with ri > 0, and i′ → i denotes page i′ links to page i.
The vectors �r and �t allow specialization to a topic,so a
set of such rankings �p can be developed for every topic:
�r represents the starting documents for a topic and �t
represents the probability that someone interested in
the topic will stay at a page.

Note that previous applications of this technique have
been hampered because full multifaceted topical as-
signments for documents have not been available.
Hence we apply discrete PCA to obtain a rich set of
multifaceted topics.

2.2. Discrete PCA

Principal component analysis (PCA), latent semantic
indexing (LSI), and independent component analysis
(ICA) are key methods in the statistical engineering
toolbox. They have a long history and are used in
many different ways. A fairly recent innovation here
is discrete versions: genotype inference using admix-
tures (Pritchard et al., 2000), probabilistic latent se-
mantic indexing (Hofmann, 1999) latent Dirichlet al-
location (Blei et al., 2003), discrete PCA (Buntine
& Jakulin, 2004) and Gamma-Poisson (GaP) models
(Canny, 2004) are just a few of the known versions.
These methods are variations of one another, ignor-
ing statistical methodology and notation, and form
a discrete version of ICA (Buntine, 2005; Buntine &
Jakulin, 2004; Canny, 2004).

Each document is represented as an integer vector, �w,
usually sparse. The vector may be as simple as bag of
words, or it may be more complex, separate bags for ti-
tle, abstract and content, separate bags for nouns and
verbs, etc. The model also assigns a set of indepen-
dent components to a document somehow representing
the topical content. In the general Gamma-Poisson
(GaP) model (Canny, 2004) the k-th component is a
Gamma(αk, βk) variable. In multinomial PCA or LDA
it is a Gamma(αk, 1) variable, but then the set of vari-
ables is also normalized to yield a Dirichlet (Buntine &
Jakulin, 2004). Finally, component distributions com-
plete the model: each component k has proportion
vector �Ωk giving the proportion of each word/lexeme
in the vector �w, where

∑
j Ωj,k = 1. The distribution

for document �w, is then given using hidden compo-
nents �m and model parameters �Ω:

mk ∼ Gamma(αk, βk) for k = 1, ..., K

wj ∼ Poisson

(
∑

k

Ωj,kmk

)

for j = 1, ..., J

Alternatively, the distribution on �w can be represented

36

Topic-Specific Scoring of Documents for Relevant Retrieval

using the total count of �w, w0 =
∑

k wk, as:

w0 ∼ Poisson

(
∑

k

mk

)

�w ∼ multinomial

(
∑

k

�Ωkmk∑
k mk

, w0

)

If βk = β is constant as in LDA then this normalized
�m is a Dirichlet and the totals safely ignored.

The family of models can be fit using mean field, max-
imum likelihood, Gibbs estimation, or Gibbs estima-
tion using Rao-Blackwellization (Buntine, 2005). Ex-
periments reported here use the MPCA suite of soft-
ware which integrates topic specific ranking and topic
estimation into a server3.

2.3. Setting up Topic Specific Ranking

Topic specific page rank can work off the normal-
ized component values m∗

k = mk/
∑

k mk for each
document. For documents i = 1, ..., I, let these be
m∗

i,k. The restart vector �r for topic k can be given
by ri = m∗

i,k/
∑

i m∗
i,k. The topic relevance is more

complicated. In general in discrete PCA, most pages
may have a mix of topics with perhaps 5-10 differ-
ent topics or components occurring for one document.
Thus a document with m∗

k = 0.2 in these cases can
be said to have the relevant topical content, since we
rarely expect much more than 0.2. Thus, to derive
the page relevance vector �t from discrete PCA, we put
the m∗

i,k through a scaled tanh function so that when
m∗

i,k = 0.2, ti will already be near 1.

3. Experiments: Sample Rankings

We downloaded the Wikipedia in April 2005. It has
approximately 513,000 documents with over 2.5Gb of
text, and a rich link structure. The lexicon of the
top 310,000 nouns, 13,000 verbs, 31,000 adjectives and
3,500 adverbs are used in training. Words with less
than 4 occurrences in the corpus are ignored. Words
are stemmed and sorted this way because it greatly
improves interpretability of the model.

We ran discrete PCA using Pritchard et al.’s Gibbs
algorithm (Buntine, 2005). with K = 100 components
with Gamma(1/50, 1) priors, and using Jeffreys’ prior
for the component proportions Ωk (Dirichlet with a
constant vector of 1/2 for the parameters). This uses
the MPCA software using a 800 cycle burn-in and 200
recording cycles, about 34 hours on a dual 3GHz CPU

3Available at the code website
http://cosco.hiit.fi/search/MPCA.

under Linux. Note that this sized corpus could easily
support upto K = 1000 component model, but in this
experiment we have chosen to limit the complexity of
the search engine. Computing the set of 100 topic
specific ranks for the documents takes 20 minutes using
a naive algorithm with no handling of sparsity.

We compared some typical URLs (those with a high
topic proportion) with those having a high rank for
the topic in Table 1. A complete set of results for all
components on this experiment can be viewed at our
website4. Each topic has its own web page, accessed by
clicking on the numbers, and document topic-specific
rankings are given at the bottom of these pages. The
difference between the typical titles (those for docu-
ments with a high topic proportion) and high-ranked
titles is stark. High-ranked titles clearly describe the
topic. Typical titles just give examples. For this
reason, we believed that these topic-specific rankings
could be used effectively in a search engine.

4. Using Discrete PCA in Information
Retrieval

PLSI introduced by (Hofmann, 1999) was first sug-
gested as an approach for information retrieval, and
the GaP model has also been applied here by (Canny,
2004). The general method for applying it is the so-
called language modelling approach to information re-
trieval of (Ponte & Croft, 1998). This goes as follows:
one develops a statistical model for each document,
denote the model for the i-th document by Di. Under
this model, one can pose questions such as, what is the
probability that query words �q would also be added to
the document? This is p(�q | Di,M). where the model
construct M specifies the form used. This approach
then looks to retrieve the document i maximising this
probability.

The effort then is placed in the development of the so-
called language models which are depend on individual
documents Di. This needs to be a very flexible model
because it needs to work for any smaller query set �q.
(Azzopardi et al., 2003) have shown that high perplex-
ity general models, ones with high values for p(Di |M),
are not always useful for information retrieval. We
conjecture that a significant part of this may be that
high perplexity models are not necessarily good at pre-
dicting individual words. That is, while the quality of
p(Di |M) can be good, and experiments show this is
the case for discrete PCA (Hofmann, 1999), it does
not imply that the quality of p(�q | Di,M) will follow.

4See the topic browser at the demonstration Wikipedia
search engine.

37

Topic-Specific Scoring of Documents for Relevant Retrieval

Common nouns Typical titles High-ranked titles

Star, Earth, Moon,
Sun, planet, objects,
astronomer, Galaxy,
asteroids

204 Kallisto, 217 Eudora, 228 Agathe, 266
Aline, 245 Vera, 258 Tyche, 219 Thusnelda

Astronomy, Earth, Sun, Moon, Star,
Asteroid, Astronomer

language, word, English,
IPA, name, Unicode, di-
alect, letter, span

List of consonants, List of phonetics topics,
Digraph (orthography), Table of consonants,
Ubykh phonology, Code page 855,

IPA chart for English English lan-
guage, Language, Latin, Linguistics,
Greek language, French language,
International Phonetic Alphabet

theory, term, example,
people, philosophy, time,
idea, work, World

Incommensurability, Qualitative psychologi-
cal research, Social constructionism, Culture
theory, Internalism and Externalism, Ethical
egoism, Positive (social sciences)

Philosophy, Psychology, Mathemat-
ics, Economics, Science, Biology,
Physics

music, composer, in-
struments, opera, song,
piano, Orchestra, work,
Symphony

Piano quintet, String quintet, List of atonal
pieces, List of pieces which use the whole tone
scale, String trio, Piano sextet, Trio sonata

Music, Composer, Opera, Musical
instrument, Classical music, Jazz,
Piano

mythology, God, goddess,
son, deities, Greek mythol-
ogy, Norse, name, myth

Tethys (mythology), Uranus (mythology),
Oceanid, Psamathe, Phorcys, List of Greek
mythological characters, Galatea (mythol-
ogy)

Greek mythology, Mythology, Norse
mythology, Polynesian mythology,
Roman mythology, Zeus, Homer

Table 1. A sample of components

Information retrieval applied to a large news corpus
should really build a model relevant to the two words
“computing entropy”, or another two words “molecu-
lar biology”, not to the whole corpus in one go. The
minimum description length intuition is that bits used
to describe the general model are wasted for the spe-
cific task.

Traditionally, language modeling has achieved reason-
able performance by a compromise. The probability of
a word qj in a query is usually obtained by smoothing
the model probability p(qj | Di,M) with the observed
frequency of the word in the document itself. Suppose
the frequency of the word qj in the i-th document is
p̂(qj | �wi), then use the probability

α p(qj | Di,M) + (1 − α) p̂(qj | �wi) .

This trick has allowed the method to achieve impres-
sive results in some applications such as web search
where separate models for title words, link text, etc.
were combined by (Craswell & Hawking, 2003). It is
not clear at this stage, however, whether this trick rep-
resents some some fundamental theoretical property or
correction term of language modelling for information
retrieval.

When a high perplexity discrete PCA model is ap-
plied without this smoothing, performance is not al-
ways good, but if the query is rather general, it can
be surprisingly good. Some examples are presented by
(Buntine et al., 2004; Buntine & Jakulin, 2004). Intu-
itively, for general queries where p(�q | Di,M) has sig-
nificant statistical support from the model p(Di |M),

better performance in information retrieval might be
expected. Thus one approach to using discrete PCA in
information retrieval is to use query probabilities as a
way of scoring broad topical relevance of a document,
and thus combining it with other retrieval scores. That
is, apply discrete PCA in situations where we expect
the high perplexity model to translate to a high fi-
delity query probability p(�q | Di,M), where the query
is instead words for a general topical area.

5. Information Retrieval with Topic
Specific Ranking

Taking the previously discussed experience and views
into consideration, we developed a search engine that
uses standard Tf.Idf as its retrieval engine, and then
does post-filtering (i.e., re-ordering) or retrieved docu-
ments using topic specific page rank. We use the Okapi
BM25 version of Tf.Idf described in (Zhai, 2001), re-
coded within our indexing system. The top 500 docu-
ments with no less that 25% of the Tf.Idf score of the
best document are retained from a query q and put
through the reranking phase.

For the query q, we also have topic words t that
may be the same as q (if obtained from our initial
search screen) or may be different (if obtained from
subsequent search screens). For the query words t,
the normalized component proportions (see section on
discrete PCA) are estimated using Gibbs importance
sampling with 2000 cycles (Buntine & Jakulin, 2004),
to yield the 100-dimensional normalised vector �m∗

t . A
topic-specific ranking probability is then obtained for

38

Topic-Specific Scoring of Documents for Relevant Retrieval

each page i by making then linear product of �m∗
t with

the K = 100 topic specific page ranks for the page
represented as a 100-dimensional vector �ri. This is
then combined with the Tf.Idf score to produce a final
ranking for the i-th document:

C ∗ Tf.Idf(q, i) + log

(
∑

k

ri,km∗
t,k

)

(1)

This heuristic formula is justified as follows:

• while Tf.Idf is not properly calibrated to any
probability, we guess it is best viewed as a log
probability, but of unknown scale5,

• the constant C with we currently set to 0.05 is
then intended to convert it to units of log proba-
bility,

• the sum inside the log is our approximation to
what the topic specific page rank for topic words
t would be for each page.

This formula is only evaluated on at most 500 docu-
ments, so is relatively cheap to do. Our system oper-
ates in real-time.

This formula has two significant advantages when the
topic words t and the query words q are identical.

• If the top results are topically coherent, then it is
no different to standard tf.Idf,

• If the top results vary dramatically in topic, then a
difference in response is seen. Normally a broader
topical range is returned, with a focus on the most
central topic.

The performance of this technique can be evaluated
by using the search engine demonstrated at our test
website. The commentary pages at the site also give
details of the results of the topic-specific link analysis
performed here. To view results with Tf.Idf alone,
after the first query is done, blank the content of the
“context words” box and resubmit a query.

6. Examples of Queries

We briefly present here a number of examples. For the
query “jazz musician playing clarinet,” topical filtering
yields (taking context words from the query)

5Clearly questionable since it can also be viewed as a
utility.

Ted Lewis (musician), Pee Wee Russell,
Benny Goodman, Dixieland, Han Bennink,
Louis Armstrong and his Hot Five, Leon
Roppolo

and Tf.Idf yields

Dixieland, Music of the United States before
1900, Benny Goodman, Music of Brittany,
Pee Wee Russell, Klezmer, List of jazz mu-
sicians.

The latter has more irrelevant entries. This next exam-
ple illustrates biasing the search with different context
words. For the query “madonna” with context words
“paintings and statues”, topical filtering yields

The Madonna of Port Lligat, Black
Madonna, Madonna and Child (Duc-
cio), Pier Antonio Mezzastris, Madonna
(art), The Madonna, Madonna Inn

and Tf.Idf with the query ‘madonna paintings and
statues” yields

Leonardo da Vinci, List of artwork,
Michelangelo Buonarroti, Quito, Vizzini,
Icon, List of statues on Charles Bridge

One sees a better emphasis in topical filtering on
Madonna, whereas in Tf.Idf the topic words swamp the
query. This ability to topically bias the queries works
well. The suggested topics are also applicable over
85% of the time, and thus usually very useful. For in-
stance, for the query “stars”, the suggested topics are
“Space Opera”, “Astronomy”. “Movies” and “Music
Albums”. The suggested topics for “Madonna” are
shownon Figure 1.

We evaluated the system using the following set of
queries (queries are semi-colon delimited):

system; power; reputation; tiger; nomencla-
ture; caravan; spring; rendition; political his-
tory; drug addiction; forensic science; rail-
way; evolution; probability computing; mini-
mum description length.

Each query was run through Tf.Idf, topical filtering,
and Tf.Idf with standard pagerank (computed on the
same link structure as topical filtering). The third
method we denote here as ranked Tf.Idf. the top 10
results of each query where then blindly evaluated on
the three methods and these evaluations collated. The

39

Topic-Specific Scoring of Documents for Relevant Retrieval

relative scores, averaged between 1-5 are Tf.Idf: 3.5,
topical filtering: 4.2, ranked Tf.Idf: 3.0.

The new method was consistently good, but not al-
ways better. These queries have some ambiguity, and
Tf.Idf alone does poorly in some of these cases, as does
ranked Tf.Idf. Topic-specific page rank tends to make
the ranking score more relevant to the query, whereas
in general page rank, the ranking score is oblivious to
the query.

7. Conclusion

The novel combination of topic specific ranking and se-
mantic component analysis presented here has a num-
ber of advantages.

Topic specific scoring provided by the adapted random
surfer model, as shown by the Wikipedia examples,
provides a far more characteristic score for documents
than the proportion of component. The titles of high-
ranking documents are indicative of the component,
and in many cases can serve as reasonable component
titles or descriptions. In contrast, documents contain-
ing a large proportion of the component are best de-
scribed as “typical”. They are neither indicative or
characteristic. Topic-specific link analysis is therefore
a valuable tool for the interpretation of topics devel-
oped by discrete PCA.

The ranking works well as a topically biased post-
ranking filter for standard information retrieval. Ex-
perience on the Wikipedia search engine so-developed
shows the resultant retrieval to be effective in many
cases, though it has a small negative effect in a few
cases. In more than half the cases, where there is no
topical ambiguity, it appears no different to regular
Tf.Idf. In some typically ambiguous queries, it shows
a dramatic improvement.

Perhaps the best potential for the topically biased
post-ranking filter, however, is that it provides an ef-
fective means for users to bias their search in topical
directions using our novel “topic by example” inter-
face. This ability is suggested by web commentary on
search engines, and serves as a simple and immediately
available counterpart to full semantic web capability,
which itself is not currently available. While “topic
by example” has no counterpart in existing informa-
tion retrieval, it is also something that needs to gain
acceptance from the fickle users of search engines.

Acknowledgments.

The work was supported by the ALVIS project, funded
by the IST Priority of the EU’s 6th framework pro-

gramme, and the Search-Ina-Box project, funded by
the Finnish TEKES programme. It benefits greatly
from discussions with Natalie Jhaveri and Tomi Hei-
monen and of the Tampere Unit for Computer-Human
Interaction at University of Tampere.

References

Azzopardi, L., Girolami, M., & van Risjbergen, K.
(2003). Investigating the relationship between lan-
guage model perplexity and IR precision-recall mea-
sures. SIGIR ’03 (pp. 369–370). Toronto, Canada.

Blei, D., Ng, A., & Jordan, M. (2003). Latent Dirichlet
allocation. Journal of Machine Learning Research,
3, 993–1022.

Buntine, W. (2005). Discrete principal component
analysis. submitted.

Buntine, W., & Jakulin, A. (2004). Applying discrete
PCA in data analysis. UAI-2004. Banff, Canada.

Buntine, W., Perttu, S., & Tuulos, V. (2004). Using
discrete PCA on web pages. Workshop on Statistical
Approaches to Web Mining, SAWM’04. At ECML
2004.

Canny, J. (2004). GaP: a factor model for discrete
data. SIGIR 2004 (pp. 122–129).

Craswell, N., & Hawking, D. (2003). Overview of the
TREC 2003 web track. Proc. TREC 2003.

Haveliwala, T. (2002). Topic-specific pagerank. 11th
World Wide Web.

Hofmann, T. (1999). Probabilistic latent semantic in-
dexing. Research and Development in Information
Retrieval (pp. 50–57).

Johnson, S. (2003). Digging for googleholes. Slate.
http://slate.msn.com/id/2085668/index.html.

Nallapati, R. (2004). Disciminative models for infor-
mation retrieval. ACM SIGIR Conference.

Ponte, J., & Croft, W. (1998). A language modeling
approach to information retrieval. Research and De-
velopment in Information Retrieval (pp. 275–281).

Pritchard, J., Stephens, M., & Donnelly, P. (2000).
Inference of population structure using multilocus
genotype data. Genetics, 155, 945–959.

Richardson, M., & Domingos, P. (2002). The intel-
ligent surfer: Probabilistic combination of link and
content information in pagerank. NIPS*14.

40

Topic-Specific Scoring of Documents for Relevant Retrieval

Suomela, S., & Kekäläinen, J. (2005). Ontology as a
search-tool: A study of real users’ query formulation
with and without conceptual support. ECIR 2005
(pp. 315–329).

Zhai, C. (2001). Notes on the Lemur TFIDF model
(note with Lemur 1.9 documentation). School of
CS, CMU.

41

Evaluating the Robustness of Learning from Implicit Feedback

Filip Radlinski filip@cs.cornell.edu

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Thorsten Joachims tj@cs.cornell.edu

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Abstract

This paper evaluates the robustness of learn-
ing from implicit feedback in web search. In
particular, we create a model of user behavior
by drawing upon user studies in laboratory
and real-world settings. The model is used
to understand the effect of user behavior on
the performance of a learning algorithm for
ranked retrieval. We explore a wide range of
possible user behaviors and find that learning
from implicit feedback can be surprisingly ro-
bust. This complements previous results that
demonstrated our algorithm’s effectiveness in
a real-world search engine application.

1. Introduction

The task of learning ranked retrieval functions has
recently received significant interest in the machine
learning community (Bartell & Cottrell, 1995; Freund
et al., 1998; Joachims, 2002; Kemp & Ramamoha-
narao, 2003). This is largely motivated by a goal of
learning improved retrieval functions for web search.

The two standard approaches for collecting training
data in this setting use explicit and implicit feedback.
Explicit feedback involves actively soliciting relevance
feedback by recording user queries and then explic-
itly judging the relevance of the results (Crammer &
Singer, 2001; Herbrich et al., 2000; Rajaram et al.,
2003). Acquiring explicit relevance judgments is time
consuming and tedious, making large amounts of such
data impractical to obtain. The alternative is to ex-
tract implicit relevance feedback from search engine
log files (Kelly & Teevan, 2003; Cohen et al., 1999;
Joachims, 2002; Kemp & Ramamohanarao, 2003).
This allows virtually unlimited data to be collected

Appearing in W4: Learning in Web Search, at the 22nd

International Conference on Machine Learning, Bonn, Ger-
many, 2005. Copyright 2005 by the author(s)/owner(s).

at very low cost, but this data tends to be noisy and
biased (Joachims et al., 2005; Radlinski & Joachims,
2005). In this paper, we consider a method for learning
from implicit feedback and use modeling to understand
when it is effective.

In contrast to typical learning problems where we have
a fixed dataset, the task of learning to rank from im-
plicit feedback is an interactive process between the
user and learning algorithm. The training data is col-
lected by observing user behavior given a particular
ranking. If an algorithm presents users with a differ-
ent ranking, different training data will be collected.

This type of interactive learning requires that we ei-
ther run systems with real users, or build simulations
to evaluate algorithm performance. The first involves
building a search system to collect training data and
evaluate real user behavior. While providing the most
compelling results, this approach has a number of
drawbacks. First, evaluating with real users is slow
and requires a significant number of different users.
Moreover, if a particular learning method proves in-
effective, users quickly switch to other search engines.
Finally, when we only collect the behavior of real users,
the behavior is determined by the user base. Such re-
sults do not allow us to study the robustness of learn-
ing algorithms and feedback mechanisms. It is this
issue that is our primary concern in this paper.

The alternative, often used in reinforcement learning,
is to build a simulation environment. Obviously this
has the drawback that it is merely a simulation, but it
also has significant advantages. It allows more rapid
testing of algorithms than by relying on user partic-
ipation. It also allows exploration of the parameters
of user behavior. In particular, we can use a model
to explore the robustness of a learning algorithm to
noise in the training data. We cannot have such con-
trol when real users are involved, and unlike the usual
learning problem setting we are unaware of any way to
inject realistic implicit feedback noise into real-world

42

Evaluating the Robustness of Learning from Implicit Feedback

training data and evaluate its effect.

In this paper, we present a user model to analyze the
robustness of the Osmot search engine (Radlinski &
Joachims, 2005). Osmot learns ranked retrieval func-
tions by observing how users reformulate queries and
how they click on results. We first present the learn-
ing algorithm, then the user model where we draw on
the results of an eye-tracking study (Granka et al.,
2004). We next demonstrate our algorithm’s tolerance
to noise in user behavior, having previously shown it
to be effective in a real-world search engine (Radlinski
& Joachims, 2005). We find Osmot to tolerate a strong
user preference to click on higher ranked documents,
and that it is able to learn despite most users only look-
ing at the top few results. Our approach is generally
interesting because it provides a practical method to
evaluate the robustness of learning from implicit feed-
back. We plan to publicly release Osmot, including
our model implementation.

2. Learning to Rank

Before we present our simulation model, we describe
how Osmot learns from implicit feedback. For this, we
assume a standard web search setting.

Our method relies on implicit feedback collected from
log files. We record the queries users run as well as the
documents they click on in the results. In these log
files, we assume that documents clicked on are likely
more relevant than documents seen earlier by the user,
but not clicked on. This allows us to extract implicit
relevance judgments according to a given set of feed-
back strategies. Within each search session, we assume
each user runs a sequence, or chain, of queries while
looking for information on some topic. We segment
the log data into query chains using a simple heuristic
(Radlinski & Joachims, 2005).

2.1. Implicit Feedback Strategies

We generate preference feedback using the six strate-
gies illustrated in Figure 1. They are validated and dis-
cussed more in (Radlinski & Joachims, 2005). The first
two strategies show single query preferences. “Click
>q Skip Above” proposes that given a clicked-on doc-
ument, any higher ranked document that was not
clicked on is less relevant. The preference is indicated
by an arrow labeled with the query, to show that the
preference is with respect to that query. Note that
these preferences are not stating that the clicked-on
document is relevant, rather that it is more likely to
be relevant than the ones not clicked on. The second
strategy, “Click 1st >q No-Click 2nd” assumes that
users typically view both of the top two results be-

Click >q Skip Above Click 1st >q No-Click 2nd

Click >q′ Skip Above Click 1st >q′ No-Click 2nd

Click >q′
Skip Earlier

Query
Click >q′

Top Two
Earlier Query

Figure 1. Feedback strategies. The user has run query q′

followed by q. Each dot represents a result and an x indi-
cates it was clicked on. We generate a constraint for each
arrow shown, with respect to the query marked.

fore clicking, as suggested by an eye-tracking study
described below (Joachims et al., 2005). It states that
if the first document is clicked on, but the second is
not, the first is likely more relevant than the second.

The next two strategies are identical to the first two
except that they generate feedback with respect to
the earlier query. The intuition is that since the two
queries belong to the same query chain, the user is
looking for the same information with both. Had the
user been presented with the later results for the earlier
query, she would have preferred the clicked-on docu-
ment over those skipped over.

The last two strategies make the most use of query
chains. They state that a clicked-on result is pre-
ferred over any result not clicked on in an earlier query
(within the same query chain). This judgment is made
with respect to the earlier query. We assume the user
looked at all the documents in the earlier query up
to one past the last one clicked on. In the event that
no documents were clicked on in the earlier query, we
assume the user looked at the top two results.

Ultimately, given some query chain, we make use of all
six strategies as illustrated in the example in Figure 2.

2.2. Learning ranking functions

We define the relevance of di to q as a linear function,

rel(di, q) := w · Φ(di, q) (1)

43

Evaluating the Robustness of Learning from Implicit Feedback

q1 q2
d1 d4 x
d2 x d5
d3 d6

d2 >q1 d1 d4 >q2 d5 d4 >q1 d5

d4 >q1 d1 d4 >q1 d3

Figure 2. Sample query chain and the feedback that would
be generated. Two queries were run, each returning three
results of which one was clicked on. di >q dj means that
di is preferred over dj with respect to the query q.

where Φ(di, q) maps documents and queries to a fea-
ture vector. Intuitively, Φ can be though of as describ-
ing the quality of the match between di and the query
q. w is a weight vector that assigns weights to each of
the features in Φ, giving a real valued retrieval func-
tion where a higher score indicates di is estimated to
be more relevant to q. The task of learning a ranking
function becomes one of learning w.

The definition of Φ(di, q) is key in determining the
class of ranking functions we can learn. We define
two types of features: rank features, φrank(di, q), and
term/document features, φterms(di, q). Rank features
serve to exploit an existing static retrieval function
rel0, while term/document features allow us to learn
fine-grained relationships between particular query
terms and specific documents. Note that rel0 is the
only ranking function we have before any learning has
occurred and is thus used to generate the original rank-
ing of documents. In our case, we use a simple TFIDF
weighted cosine similarity metric as rel0.

Let W := {t1, . . . , tN} be all the terms in our dic-
tionary. A query q is a set of terms q := {t′1, . . . , t′n}
where t′i ∈ W . Let D := {d1, . . . , dM} be the set of
all documents. We also define r0(q) as the ordered set
of results as ranked by rel0 given query q. Now,

Φ(d, q) =
[

φrank(d, q)
φterms(d, q)

]

φrank(d, q) =

⎡

⎢
⎣

1(Rank(d in r0(q)) ≤ 1)
...

1(Rank(d in r0(q)) ≤ 100)

⎤

⎥
⎦

φterms(d, q) =

⎡

⎢
⎣

1(d = d1 ∧ t1 ∈ q)
...

1(d = dM ∧ tN ∈ q)

⎤

⎥
⎦

where 1 is the indicator function.

Before looking at the term features φterms(d, q), con-
sider the rank features φrank(d, q). We have 28 rank
features (for ranks 1,2,..,10,15,20,..,100), with each set
to 1 if document d in r0(q) is at or above the specified

rank. The rank features allow us to make use of the
original ranking function.

The term features, φterms(d, q), are each of the form
φ

ti,dj

term(d, q), set to either 0 or 1. There is one for every
(term, document) pair in W × D. These features al-
low the ranking function to learn associations between
specific query words and documents. This is usually
a very large number of features, although most never
appear in the training data. Furthermore, the feature
vector φterms(d, q) is very sparse. For any particular
document d, given a query with |q| terms, only |q| of
the φ

ti,dj

term(d, q) features are set to 1.

We use a modified ranking SVM (Joachims, 2002) to
learn w from Equation 1. Let di be more relevant than
dj to query q: rel(di, q) > rel(dj , q). We can rewrite
this, adding margin and non-negative slack variables:

w · Φ(di, q) ≥ w · Φ(dj , q) + 1 − ξij (2)

We also have additional prior knowledge that absent
any other information, documents with a higher rank
in r0(q) should be ranked higher in the learned ranking
system. There are both intuitive and practical reasons
for these constraints (Radlinski & Joachims, 2005).

This gives the following optimization problem that we
solve using SV M light (Joachims, 1999) with C = 0.1:

minw,ξij

1
2w · w + C

∑
ij ξij subject to

∀(q, i, j) : w · (Φ(di, q) − Φ(dj , q)) ≥ 1 − ξij

∀i ∈ [1, 28] : wi ≥ 0.01
∀i, j : ξij ≥ 0

(3)

We have shown that this algorithm works in a real-
world setting in the Cornell University library web
search engine (Radlinski & Joachims, 2005). Due to
space constraints we do not repeat those results here.

3. Model Description

We now present a model of user behavior when search-
ing. This model will allow us to measure the ro-
bustness of Osmot to changes in user behavior. One
part generates documents, and another simulates users
searching the collection. After presenting the model,
we support it by drawing on user behavior studies. Al-
though it is clearly a simplification of reality, we show
that this model is nonetheless useful.

3.1. Document Generation

Documents are generated as described in Table 1. The
set of words is W , with word frequencies obeying a Zipf
law. We define a set of topics T by uniformly picking N
words from W for each topic. Some topics thus include

44

Evaluating the Robustness of Learning from Implicit Feedback

3
T2

T1 T

d1

W

d1

Figure 3. Document generation illustration. T1, T2 and T3

are topics. Document d1 is picked as relevant to two topics
(kd = 2), T1 and T3, although in selecting words from T1,
we also happened to select some words in T2.

Table 1. Document Generation Model.

1. Let W be the set of all words. Let T be the set of
topics, with each topic described by Ti ⊂ W .

2. Let each document d be generated as follows:

2.1. ∀Ti ∈ T : rel(d, Ti) = 0
2.2. Pick kd binomially from [0, MAXT].
2.3. If kd = 0 Then

Pick L words from W .
2.4. Otherwise, do the following kd times

a. Pick t from [1, |T |].
b. Pick L/kd words from Tt.
c. rel(d, Tt) = rel(d, Tt) + 1/kd.

more common words than others (for example consider
two topics, basketball and machine learning). This
construct is illustrated in Figure 3. In our experiments,
each word is on average in two topics.

Next, we generate each document d with L words one
at a time. We pick kd, which specifies how many dif-
ferent topics d is relevant to, as described in Table 1.
Topics are picked according to a Zipf law to account
for some topics being much more popular than others
(again consider basketball versus machine learning).
We set the relevance of the document to each topic to
be proportional to the number of times the topic was
picked with the sum of the relevances normalized to 1.

3.2. User Model

The process each user goes through as they search the
web is specified in Table 2. This is a simple model, but
as we will show it is reasonable and useful. Assume
the user has a question q and wants to find the most
relevant documents to the related topic Tq ∈ T . Users
differ in their patience p and relevance threshold r.
The patience determines how many results the user is
likely to look at, while the relevance threshold specifies

Table 2. User Behavior Model

1. Let q be the user’s question, and p and r the
user’s patience and relevance thresholds respec-
tively. They are sampled uniformly from (0,5] and
[0.375,0.875] respectively.

2. While question q is unanswered

2.1. Generate a query for question q. Let d1 . . . dn

be the results for this query.
2.2. Let i = 1, pq = p.
2.3. While pq > 0

a. If obsRel(di, q) > r Then
If obsRel(di+1, q) > obsRel(di, q) + c

Go to step (c)
Otherwise

Click on di.
pq = pq − 0.5 − (1 − rel(di, q)).
If rel(di, q) = 1 the user is done.

b. Otherwise
pq = pq − (r − obsRel(di, q))

c. i = i + 1.
2.4. With 50% probability, the user gives up.

how relevant a document must appear to be (according
to the abstract shown by the search engine) before the
user clicks on it.

Given a question, the user generates a query. We
implement this by sampling words from the question
topic with a Zipf law. This query returns a set of
results and the user considers each in order. When
the user observes a result, she estimates it’s rele-
vance to her question given a short abstract, observ-
ing obsRel(di, q). The real relevance of di to query
q is rel(di, q). obsRel(di, q) is drawn from an incom-
plete Beta distribution with α dependent on the level

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
pr

ob
ab

ili
ty

Observed relevance

rel=0.33, low noise
rel=0.33, medium noise
rel=1.00, low noise
rel=1.00, medium noise
any relevance, maximum noise

Figure 4. Probability of observing different perceived rele-
vance as a function of the actual relevance.

45

Evaluating the Robustness of Learning from Implicit Feedback

0%

20%

40%

60%

80%

100%

 10 9 8 7 6 5 4 3 2 1

P
er

ce
nt

ag
e

Rank of Abstract

% looked at

% clicked on

Figure 5. Percentage of time an abstract was viewed and
clicked on depending on the rank of the result.

of noise and β selected so that the mode is at rel(di, q)
(unless rel(di, q) = 0, when the mode is at 0.05) as
shown in Figure 4. This ensures the observed rele-
vance is in the range [0,1] and has a level of noise that
can be controlled.

If obsRel(di, q) > r, the user’s relevance threshold, the
user intends to click on di. However, the eye tracking
study described below showed that users typically look
at the next document below any they click on. Hence
before clicking, the user looks at the next document,
and moves on to it if it appears substantially more rel-
evant. Otherwise, if obsRel(di, q) ≤ r, the user moves
on and her patience is reduced. The patience is re-
duced more for documents that appear less relevant
because if she sees a document that appears to be com-
pletely irrelevant, she is more discouraged than if she
sees a document that appears somewhat relevant.

When the user clicks on a document, she sees rel(di, q).
If she finds a document with maximum relevance, she
stops searching. Otherwise, she returns to the search
results and continues looking until her patience runs
out, and then runs a new query with 50% probability.

3.3. Model Justification

We base our usage model on results obtained in an
eye tracking study (Granka, 2004; Granka et al., 2004;
Joachims et al., 2005). The study aimed to observe
how users formulate queries, assess the results returned
by the search engine and select the links they click on.
Thirty six student volunteers were asked to search for
the answers to ten queries. The subjects were asked
to start from the Google search page and find the an-
swers. There were no restrictions on what queries they
may choose, how and when to reformulate queries, or
which links to follow. All clicks and the results re-
turned by Google were recorded by an HTTP proxy.
Movement of the eyes was recorded using a commer-
cial eye tracker. Details of the study are provided in
(Granka et al., 2004).

Figure 5 shows the fraction of time users looked at,

0%

20%

40%

60%

80%

100%

 10 9 8 7 6 5 4 3 2 1

P
er

ce
nt

ag
e

Rank of Abstract

% looked at

% clicked on

Figure 6. Percentage of time an abstract was viewed and
clicked on in model depending on the rank of the result.

Table 3. Behavioral dimensions explored

Short Name Description
noise Accuracy of relevance estimates.
ambiguity Topic and word ambiguity.
trust User’s trust in presented ranking.
threshold User selectivity over results.
patience Number of results looked at.
reformulation How often users reformulate.
improvement Query improvement over time.

and clicked on, each of the top 10 search results after
running a query. It tells us that users usually look at
the top two result abstracts, and are much more likely
to click on the first result than any other. Addition-
ally, (Joachims et al., 2005) show that users usually
look sequentially at the results from the top to the
one below the last one clicked on.

We observe in Figure 6 that the looks and clicks gen-
erated by this model resemble those seen in the user
study. The most significant difference is in where users
looked. Some of the time in the eye tracking study,
the results show that users did not look at any results.
We believe that this is partly due to errors in the eye
tracker, and partly due to queries that did not return
any results (such as spelling errors). For simplicity, we
ignore these cases here.

We also measured the fraction of users who click on
each of the top ten results in the Cornell University
library search engine. The results confirmed that the
distribution of clicks seen in Figures 5 and 6 is typical.

4. Learning Experiments

In this section, we explore the effect of different aspects
of user behavior on the performance of Osmot. There
are a number dimensions along which we assume user
behavior may vary. These are listed in Table 3. For
each, we present the effect of a change on our learning
results and draw conclusions. Where possible, we re-
late the modeled results to real-world results to verify
that the modeled results are realistic.

46

Evaluating the Robustness of Learning from Implicit Feedback

70%

75%

80%

85%

90%

95%

100%

 0 1 2 3 4 5 6

E
xp

ec
te

d
R

el
ev

an
ce

Learning iterations

Low noise
Medium noise

High noise
Maximum noise

Figure 7. Ranking function performance for various noise
levels.

4.1. High Level Parameters

We first consider the effect of two high level parame-
ters: the level of difficulty users have in obtaining ac-
curate relevance estimates from result abstracts, and
the ambiguity in words appearing in documents and
queries.

4.1.1. Accuracy of relevance estimates

After running a query, users select where to click by
estimating the relevance of results from the abstracts
presented. We now vary the noise in the user relevance
estimate and examine the effect.

Figure 7 shows the mean relevance of the most rele-
vant document in the top five results for various noise
levels for the first query in each query chain. This rele-
vance is known because the evaluation is on a synthetic
dataset. Consider the first set of points, at iteration 0.
We used rel0 as a ranking function and modeled 4,000
users running queries and clicking on results. This
gave about 75% mean highest top-5 relevance. Each
curve shows the performance of the learning algorithm
for different levels of noise in users’ estimates of doc-
ument relevance. For each noise level, using the data
generated we learned a new ranking function. These
results are shown at iteration 1. We see that in each
case performance improves and this improvement is
smaller with more noise.

Using the learned ranking function, we collect more
training data. We then use the training data to learn
a second ranking function, re-evaluate (the results are
shown at iteration 2) and so forth. The noise levels
correspond to setting α to 4, 2, 1.4 and 1 in the in-
complete Beta distribution.

We see that most of the improvement occurs in the first
two learning iterations, although it keeps accruing. We
also see that the decay in improvement as more noise
is introduced is gradual, which tells us that the Osmot
algorithm can be decays gracefully with more noise.

Given that the preferences are generated over a known
document collection, we can measure the error in the

constraints generated according to the real document
relevance. In this analysis, we ignore all preferences
that indicate a preference over documents that have
the same true relevance to a query. The fraction of
constraints indicating that two documents should be
ranked one way while the reverse is true for the four
noise levels considered are 5%, 11%, 18% and 48%.
These percentages show the mismatch between the
generated preferences and the known ground truth on
the 0th iteration. They measure how often a prefer-
ence indicates that di >q dj when di <∗

q dj in reality.

In order to measure the level of noise in real data,
we collected explicit relevance judgments for the data
recorded during the eye tracking study. Five judges
were asked to (weakly) order all result documents
encountered during each query chain according to
their relevance to the question (Radlinski & Joachims,
2005). From this data, we found that the inter-judge
disagreement in real preference constraints generated
according to Figure 1 is about 14%. Note that this is
a different measure than above because we are com-
paring the preferences of two judges rather than pref-
erences of one judge to a ground truth. This means
that the error rate between the ground truth and a
human judge is in the range 7-14%, depending on the
level of independence between the judgments of the
two judges. These results tell us that the error rate in
the medium noise setting is likely to be realistic.

The maximum noise case is special because in this case
the users effectively ignore the document abstracts
when deciding whether to click. Despite this, we still
observe improved performance as we run the learning
algorithm. How can this be explained? As mentioned
above, the error rate in these constraints is 48%, mean-
ing that 52% of the constraints correctly state a valid
preference over documents. This comes about because
users still start from the top result and stop searching
after finding (clicking on) a completely relevant docu-
ment, producing some bias. Also note that we generate
the most preferences for the last (and often completely
relevant) document clicked on within a query chain.
While some of this effect may be an artifact of our
setup, we still find it interesting that this learning ap-
proach appears to be effective with such a small signal
to noise ratio.

4.1.2. Topic and word ambiguity

In the dataset used above, each word is on average in
two topics. We also created collections where words
were never in more than one topic, and where each
word is on average in three topics. Figure 8 shows the
results for the three collections. We see that with un-
ambiguous words the ranking algorithm learns faster

47

Evaluating the Robustness of Learning from Implicit Feedback

70%

75%

80%

85%

90%

95%

100%

 0 1 2 3 4 5 6

E
xp

ec
te

d
R

el
ev

an
ce

Learning iterations

No ambiguous words

Words somewhat ambiguous

Words more ambiguous

Figure 8. Ranking function performance for document col-
lections with different levels of word ambiguity.

70%

75%

80%

85%

90%

95%

100%

 0 1 2 3 4 5 6

E
xp

ec
te

d
R

el
ev

an
ce

Learning iterations

No additional trust

Low level of trust

Medium level of trust

High level of trust

Figure 9. Ranking function performance versus the addi-
tional trust users place in the search engine.

and that even with more word ambiguity, our learning
algorithm performs well.

4.2. Lower Level Parameters

The remainder of the behavioral dimensions are at a
lower level, determining individual user behavior. We
next explore the effect of these parameters.

4.2.1. User trust in ranking presented

We saw earlier that users click surprisingly often on the
top link. In fact, users appear to have inherent trust
in Google that is not correlated to the relevance of the
result abstracts (Joachims et al., 2005). We tested if
such trust affects Osmot. Figure 9 shows that addi-
tional trust (implemented by increasing obsRel pro-
portionally to the inverse of the rank of each result)
has no lasting effect. This is interesting because it
demonstrates that even when click-through feedback
is strongly biased, it still provides useful training data.

An alternative explanation for users clicking predom-
inantly on the top few results is that some users are
more selective than others. Many may click on the first
partially relevant result, i.e. the top one while others
may only click on results that appear highly relevant.
To test this, we added a constant to the threshold value
picked in the user model. We found that performance
was very similar over a reasonable range of values.

70%

75%

80%

85%

90%

95%

100%

 0 1 2 3 4 5 6

E
xp

ec
te

d
R

el
ev

an
ce

Learning iterations

25% Give-up probability

50% Give-up probability

75% Give-up probability

100% Give-up probability

Figure 10. Ranking function performance for various prob-
abilities that unsuccessful users will reformulate their
query.

4.2.2. Number of results looked at

Figure 5 also showed us that users look at surprisingly
few of the search results. In order to explore the effect
of this on the effectiveness of our learning approach, we
changed the range of patience levels that users have.
In the four settings tested, about 3%, 7%, 15% and
23% of users looked past the top 5 abstracts. The re-
sults showed that this has no significant effect on the
performance for the first few iterations of learning, al-
though the improvement in expected relevance tapers
out faster in the case where users view fewer results.
We omit the full results due to space constraints.

4.2.3. How, and how often users reformulate

Previous work studying web search behavior (Lau &
Horvitz, 1999; Silverstein et al., 1998) observed that
users rarely run only one query and immediately find
suitable results. Rather, users tend to perform a se-
quence of queries. Such query chains are also observed
in the eye tracking study and our real-world search en-
gine. Given Osmot’s dependence on query chains, we
wished to measure the effect of the probability of re-
formulation on the ranking function performance. The
results are shown in Figure 10.

We see that the reformulation probability has a small
but visible effect on ranking performance. While these
results agree with our real-world experience that the
presence of query chains makes a difference in al-
gorithm performance (Radlinski & Joachims, 2005),
we conjecture that in practice the difference is larger
than seen here. In particular, unlike the model of
user behavior presented in this paper, we suspect that
later queries are not identically distributed to earlier
queries. Rather we hypothesize that later queries are
better and that this accounts for an additional im-
provement in performance when users chain multiple
queries.

Using the relevance judgments of the five judges on the
data gathered in the eye tracking study, we tested this
hypothesis. Indeed, when a strict preference judgment

48

Evaluating the Robustness of Learning from Implicit Feedback

is made by a human judge comparing the top result of
two queries in a query chain, 70% of the time the top
result of the later query is judged more relevant. We
see a similar result when comparing the second ranked
documents. We attempted to add such an effect to
our model by making later queries progressively longer,
but this did not end up having any discernible effect.
We intend to explore this question more in the future.

5. Conclusions and Future Work

In this paper we have presented a simple model for
simulating user behavior in a web search setting. We
used this model to study the robustness of an algo-
rithm for learning to rank that we previously found to
be effective in a real-world search engine. We demon-
strated that the learning method is robust to noise in
user behavior for a number of document collections
with different levels of word ambiguity. Our results
are important because they show that modeling al-
lows fast explorations of the properties of algorithms
for learning to rank. Although a more realistic model
of user search behavior can be constructed, we have
presented a reasonable starting model.

The model currently has a number of limitations that
we intend to improve upon in the future. However,
we believe that even in its present state it provides
a valuable tool for understanding the performance of
algorithms for learning to rank. We plan to make our
implementation available to the research community.

6. Acknowledgments

We would like to thank Laura Granka, Bing Pang, He-
lene Hembrooke and Geri Gay for their collaboration
in the eye tracking study. We also thank the subjects
of the eye tracking study and the relevance judges.
This work was funded under NSF CAREER Award
IIS-0237381 and the KD-D grant.

References

Bartell, B., & Cottrell, G. W. (1995). Learning to re-
trieve information. Proceedings of the Swedish Con-
ference on Connectionism.

Cohen, W. W., Shapire, R. E., & Singer, Y. (1999).
Learning to order things. Journal of Artificial Intel-
ligence Research, 10, 243–270.

Crammer, K., & Singer, Y. (2001). Pranking with
ranking. Proceedings of the conference on Neural
Information Processing Systems (NIPS).

Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y.

(1998). An efficient boosting algorithm for combin-
ing preferences. International Conference on Ma-
chine Learning (ICML).

Granka, L. (2004). Eye tracking analysis of user be-
haviors in online search. Master’s thesis, Cornell
University.

Granka, L., Joachims, T., & Gay, G. (2004). Eye-
tracking analysis of user behavior in www search.
Poster Abstract, Proceedings of the Conference on
Research and Development in Information Retrieval
(SIGIR).

Herbrich, R., Graepel, T., & Obermayer, K. (2000).
Large margin rank boundaries for ordinal regression.
Advances in Large Margin Classifiers (pp. 115–132).

Joachims, T. (1999). Making large-scale SVM learning
practical. In B. Schlkopf, C. Burges and A. Smola
(Eds.), Advances in kernel methods – support vector
machines. MIT Press.

Joachims, T. (2002). Optimizing search engines using
clickthrough data. Proceedings of the ACM Con-
ference on Knowledge Discovery and Data Mining
(KDD).

Joachims, T., Granka, L., Pang, B., Hembrooke, H.,
& Gay, G. (2005). Accurately interpreting click-
through data as implicit feedback. Annual ACM
Conference on Research and Development in Infor-
mation Retrieval (SIGIR).

Kelly, D., & Teevan, J. (2003). Implicit feedback for
inferring user preference: A bibliography. SIGIR
Forum, 32.

Kemp, C., & Ramamohanarao, K. (2003). Long-term
learning for web search engines. PKDD (pp. 263–
274).

Lau, T., & Horvitz, E. (1999). Patterns of search: An-
alyzing and modelling web query refinement. Pro-
ceedings of the 7th International Conference on User
Modeling.

Radlinski, F., & Joachims, T. (2005). Query chains:
Learning to rank from implicit feedback. Proceed-
ings of the ACM Conference on Knowledge Discov-
ery and Data Mining (KDD).

Rajaram, S., Garg, A., Zhou, Z. S., & Huang, T. S.
(2003). Classification approach towards ranking and
sorting problems. Lecture Notes in Artificial Intel-
ligence (pp. 301–312).

Silverstein, C., Henzinger, M., Marais, H., & Moricz,
M. (1998). Analysis of a very large AltaVista query
log (Technical Report 1998-014). Digital SRC.

49

Type-enabled Keyword Searches
with Uncertain Schema

(Invited Talk)

Soumen Chakrabarti

Department of Computer Science, Indian Institute of Technology, Bombay, India

Abstract: Web search is beginning to exploit powerful machine learning tools
that annotate the corpus with entities and relationships. Such annotations, to-
gether with techniques for disambiguation and linkage resolution, will lead to
graphical models that capture flexible type information, as well as represent the
inherent uncertainty in the extracted structure. The next piece in the puzzle is
a schema-agnostic query language that enables embedding type constraints in
a user-friendly way; alternatively, machine learning techniques can extract type
specs from unstructured queries. The final challenge is to devise a model for
matching, scoring, and top-k search that naturally handles the uncertainty in
the graph structure, and leads to manageable indices, scalable query execution
algorithms, and user satisfaction.

50

Pipelets: A Framework for Distributed Computation

John Carnahan CARNAHAJ@YAHOO-INC.COM

Dennis DeCoste DECOSTED@YAHOO-INC.COM

Yahoo! Research Labs, 210 S. De Lacey Ave. Suite 105, CA 91105 USA

Abstract

The Pipelet framework provides a standards-
based approach to the parallel processing of large
data sets on clusters of machines. Pipelets are
small interdependent computational units that
can be assembled using a simple declarative
language. In this framework both data and
computational units can be dynamically
distributed across a large group of machines in
order to optimize the flow of data between
components. The Pipelet framework presents a
programming model for both simple and
complex tasks in machine learning and
information retrieval.

1. Introduction

Many problems in machine learning and information
retrieval can be easily parallelized in order to distribute
computation across a cluster of machines. For example
pattern matching can be performed on a large set of text
documents by dividing the documents into subsets,
mapping a grep function to each subset on a separate
machine and then combining the results from each
machine (the reduction step) (1). More complex
operations can performed by combining such map and
reduce pairs serially to form a pipeline of serial
operations. There are limits to this model for distributed
computing. More complex problems require other
constructs applied to the entire data set. For example
performing web page classifications may include crawling
a large set of documents, extracting text features from
each document and identifying named entities. Such
problems may require higher order language constructs to
be performed on the entire data set. In order to exploit a
cluster of machines such problems must be expressed as a
single task made up of different components that can and
cannot be parallelized. In this way parallelization and data
flow can also be optimized for the entire problem.

The Pipelet framework provides a programming model to
define a computational problem as a set of processing

—————
 Appearing in W4: Learning in Web Search, at the 22nd

International Conference on Machine Learning, Bonn,
Germany, 2005. Copyright 2005 by the author(s)/owner(s).

components in a pipeline. Our framework uses a standard
declarative language for modeling the relationships
between components. It also includes an implementation
for executing such a pipeline on a single machine or a
group of machines. In this way tasks can be optimized to
increase the flow of data between components. Our
framework includes an API for creating components
within the pipeline that resembles popular related
standards. The intent of this framework is to provide a
standard means of describing both experiments and
solutions in machine learning and information retrieval.

2. Pipeline Language

Pipelines in this framework are defined using the XML
Pipeline Definition Language (XPDL) from W3C (2). The
XPDL provides a simple vocabulary for describing
processing relationships between a set of components.
Using this language inputs and outputs for each
component can be declared that can be linked to other
components in the same pipeline. Pipeline components
are defined within a single dependency graph with inputs
of one component linked to one or more outputs from
other components. Indirectly this language provides
higher order language constructs such as loops and
conditionals using recursive dependencies and arbitrary
numbers of inputs. All pipeline processes or components
are managed by a single pipeline controller. In this way
the controller can manage how and when data is
transferred between components as well as how the
computational components are distributed in a cluster.
Controllers can optimize the execution of all components
in order to maximize the flow of data among components
on a single or multiple machines.

3. Implementation

Our framework includes several pipeline controllers that
comply with the XPDL specification version 1.0 (2002).
Pipelines defined in our framework are intended to be
used a variety of computing environments. We have
created controllers that are optimized for executing
pipelines on a single machine and others suited to cluster
environments. Our implementation includes aggressive
memoization and persistence for complex and large-scale
tasks. We have also built software components that allow

51

Pipelets: A Framework for Distributed Computation

targets within individual pipelines to be invoked as
individual web services.

4. Pipelet API

Our Pipelet framework includes a Java API for authoring
individual components within a pipeline. This is a novel
software API but is similar in many ways to Sun
Microsystem’s Servlet API (3). This API provides a
stream interface for reading and writing to other
components within the pipeline. The Pipelet API also
includes a Service-Provider Interface (SPI) for extending
the capabilities of pipelets and the creation of new
controllers.

References

Dean, J & Ghemawat S (2004). MapReduce:
Simplified Data Processing on Large Clusters. OSDI
2004

Walsh, N & Maler E (2002). XML Pipeline Definition
Language V 1.0. http://www.w3.org/TR/2002/NOTE-
xml-pipeline-20020228/

Java Servlet API v.2.4 (JSR-000154). Sun
Microsystems http://java.sun.com/products/servlet/

52

Sailing the Web with Captain Nemo:
a Personalized Metasearch Engine

Stefanos Souldatos stef@dblab.ece.ntua.gr
Theodore Dalamagas dalamag@dblab.ece.ntua.gr
Timos Sellis timos@dblab.ece.ntua.gr

School of Electrical and Computer Engineering, National Technical University of Athens, Athens, GR, 157 73

Abstract

Personalization on the Web is an issue that
has gained a lot of interest lately. Web
sites have already started providing services
such as preferences for the interface, the lay-
out and the functionality of the applications.
Personalization services have also been intro-
duced in Web search and metasearch engines,
i.e. tools that retrieve Web pages relevant
to keywords given by the users. However,
those services deal mostly with the presenta-
tion style and ignore issues like the retrieval
model, the ranking algorithm and topic pref-
erences. In this paper, we present Cap-
tain Nemo, a fully-functionable metasearch
engine that exploits personal user search
spaces. Users can define their personal re-
trieval model and presentation style. They
can also define topics of interest. Captain
Nemo exploits several popular Web search
engines to retrieve Web pages relevant to key-
words given by the users. The resulting pages
are presented according to the defined pre-
sentation style and retrieval model. For every
page, Captain Nemo can recommend a rele-
vant topic of interest to classify the page, ex-
ploiting nearest-neighbour classification tech-
niques.

1. Introduction

Nowadays, huge volumes of data are available on the
Web. Searching for information is extremely difficult,
due to the large number of information sources and
their diversity in organizing data. Users should not

Appearing in W4: Learning in Web Search, at the 22nd

International Conference on Machine Learning, Bonn, Ger-
many, 2005. Copyright 2005 by the author(s)/owner(s).

only identify these sources, but also determine those
containing the most relevant information to satisfy
their information need.

Search and metasearch engines are tools that help the
user identify such relevant information. Search engines
retrieve Web pages that contain information relevant
to a specific subject described with a set of keywords
given by the user. Metasearch engines work at a higher
level. They retrieve Web pages relevant to a set of key-
words, exploiting other already existing search engines.

Personalization on the Web is an issue that has gained
a lot of interest lately. Web sites have already started
providing services such as preferences for the interface,
the layout and the functionality of the applications.
Personalization services have also been introduced in
Web search and metasearch engines. However, those
services deal mostly with the presentation style and
ignore issues like the retrieval model, the ranking al-
gorithm and topic preferences.

In this paper, we present Captain Nemo, a fully-
functionable metasearch engine that creates personal
user search spaces. Users can define their personal re-
trieval model. For example, they can select the search
engines to be used and their weight for the ranking of
the retrieved pages, the number of pages retrieved by
each engine, etc. Users can also define topics of inter-
est. For every retrieved Web page, Captain Nemo can
recommend a relevant topic of interest to classify the
page, exploiting nearest-neighbour classification tech-
niques. The presentation style is also customizable, as
far as the grouping and the appearance of the retrieved
pages is concerned.

A typical application scenario for Captain Nemo starts
with a set of keywords given by the user. Captain
Nemo exploits several popular Web search engines to
retrieve Web pages relevant to those keywords. The
resulting pages are presented according to the user-
defined presentation style and retrieval model. We

53

Sailing the Web with Captain Nemo: a Personalized Metasearch Engine

note that users can maintain more than one differ-
ent profiles which result to different presentation styles
and retrieval models. For every retrieved Web page,
Captain Nemo can recommend relevant topics of inter-
est to classify the retrieved pages, exploiting nearest-
neighbour classification techniques. User can option-
ally save the retrieved pages to certain folders that
correspond to topics of interest for future use.

Contribution. The main contributions of our work
are:

• We present personalization techniques for
metasearch engines. These techniques do not
only deal with the presentation style but also
with the retrieval model and the ranking of the
retrieved pages.

• We suggest semi-automatic classification tech-
niques in order to recommend relevant topics of
interest to classify the retrieved Web pages.

• We present a fully-functionable metasearch en-
gine, called Captain Nemo1, that implements the
above framework.

Related Work. The need for Web information per-
sonalization has been discussed in (Shahabi & Chen,
2003; Sahami et al., 2004). Following this, several Web
search and metasearch engines2 offer personalization
services. For example, Alltheweb offers the option to
use personal stylesheets to customize the look and feel
of its search page. Altavista provides styles to present
the retrieved Web pages with high or low detail. The
metasearch engines WebCrawler, MetaCrawler, Dog-
pile can group the Web pages according to the search
engine that actually retrieves them. Regarding the
retrieval model, several metasearch engines let the
user define the search engines to be used (e.g. Query
Server, Profusion, Infogrid, Mamma, Search, Ixquick).
Some of them (e.g. Query Server, Profusion, Infogrid,
Mamma) have a timeout option (i.e. time to wait for
Web pages to be retrieved). Also, Query Server and
Profusion offer the option of setting the number of Web
pages retrieved by each engine. To the best of our
knowledge, there is not any metasearch engine that
offers the option of setting the weights of the search
engines for the ranking of the retrieved pages.

Concerning the topics of interest, Buntine et al. (2004)
claim that topic-based search will be necessary for the
next generation of information retrieval tools. The

1http://www.dbnet.ece.ntua.gr/˜stef/nemo/
2Google, Alltheweb, Yahoo, AltaVista, WebCrawler,

MetaCrawler, Dogpile, etc.

search engine Northern Light3 has an approach called
custom folders that organizes search results into cate-
gories. Inquirus2 (Glover et al., 2001) uses a classifier
to recognize web pages of a specific category and learn
modifications to queries that bias results toward docu-
ments in that category. Chakrabarti et al. (1998) pro-
poses statistical models for hypertext categorization
by exploiting link information in a small neibourhood
around documents.

Outline. The rest of this paper is organized as fol-
lows. The personalization features of Captain Nemo
are discussed in Section 2. Section 3 presents the clas-
sification algorithm that recommends relevant topics
of interest to classify retrieved Web pages. The archi-
tecture of Captain Nemo and several implementation
issues are discussed in Section 4. Finally, Section 5
concludes this paper.

2. Maintenance of User Profiles

Captain Nemo maintains user profiles for different pre-
sentation styles and retrieval models. A user can have
more than one different profiles which result to differ-
ent presentation styles and retrieval models. Figure 1
illustrates the personal search space offered to users by
Captain Nemo. We next discuss the available person-
alization options for the retrieval model, the presenta-
tion style and the topics of interest.

Personal Retrieval Model

USER
PROFILE

Personal Presentation Style

Topics of Personal Interest

Figure 1. Personal search space offered by Captain Nemo.

2.1. Retrieval Model

As seen before, most of the existing metasearch engines
employ a standard retrieval model. In Captain Nemo,
this restriction is eliminated and users can create their
own retrieval model, by setting certain parameters in
the system. These parameters are described below:

Participating Search Engines. Users can declare
the search engines they trust, so that only these en-

3http://www.northernlight.com/index.html

54

Sailing the Web with Captain Nemo: a Personalized Metasearch Engine

gines are used by the metasearch engine.

Search Engine Weights. In a metasearch engine,
retrieved Web pages may be ranked according to their
ranking in every individual search engine that is ex-
ploited. In Captain Nemo (as shown in Section 4),
the search engines can participate in the ranking al-
gorithm with different weights. For example, a lower
weight for a search engine indicates low reliability and
importance for that particular engine. Users have the
option to set their own weights for every search engine
exploited by Captain Nemo.

Number of Results. A recent research (iProspect,
2004) has shown that the majority of search engine
users (81.7%) rarely read beyond the third page of
search results. Users can define the number of re-
trieved Web pages per search engine.

Search Engine Timeout. Delays in the retrieval
task of a search engine can dramatically deteriorate the
response time of any metasearch engine that exploits
the particular search engine. In Captain Nemo, users
can set a timeout option, i.e. time to wait for Web
pages to be retrieved for each search engine. Results
from delaying search engines are ingored.

2.2. Presentation Style.

Users of Captain Nemo can customize the look and
feel for the presentation of the retrieved Web pages,
having the following options:

Grouping. In a typical metasearch engine, the re-
sults returned by search engines are merged, ranked
and presented as a single list. Beside this typical pre-
sentation style, Captain Nemo can group the retrieved
Web pages (a) by search engine or (b) topic of inter-
est pre-defined by the user. The latter is based on a
semi-automatic classification technique which will be
described in Sections 4. Figure 2 illustrates an exam-
ple where retrieved Web pages are grouped by topic of
interest.

Content. The results retrieved by Captain Nemo in-
clude the page title, page description and page URL.
The user can declare which of these parts should be
displayed.

Look and Feel. Users can customize the general
look and feel of the applications. They can select
among color themes and page layouts to define dif-
ferent ways of presenting results. Figure 3 shows the
available options for customizing the look and feel of

Figure 2. Grouping of retrieved Web pages by topic of in-
terest.

Figure 3. Editing set of preferences.

the application.

2.3. Topics of Interest

In Captain Nemo, the retrieved Web pages are pre-
sented according to the user-defined presentation style
and retrieval model. For every retrieved Web page,
Captain Nemo can recommend relevant topics of inter-
est to classify the retrieved pages. Users can optionally
save the retrieved pages to certain folders that corre-
spond to topics of interest for future use.

Users can define and edit topics of interests (i.e. the-
matic categories). For each topic of interest, a set
of keywords that describe its content should be pro-
vided. Topics and keyword descriptions can be altered
anytime. The retrieved Web pages can be saved for fu-
ture reference in folders that correspond to the defined
topics of interest. Those folders have a role similar to
Favorites or Bookmarks in Web browsers.

Figure 4 shows the administration options for manag-

55

Sailing the Web with Captain Nemo: a Personalized Metasearch Engine

Figure 4. Administrating topics of interest.

ing topics of interest.

3. Automatic Classification of
Retrieved Web pages

Captain Nemo recommends relevant topics of inter-
est to classify the retrieved pages, exploiting nearest-
neighbour classification techniques. The description of
a retrieved Web page includes its title and a part of
its content (which is usually its first few lines). The
description of a topic of interest includes a set of key-
words given by the user. The classification algorithm
identifies the most relevant topic of interest for all re-
trieved pages, considering the description of retrieved
Web pages and pre-defined topics of interest.

Classification Algorithm. Captain Nemo exploits
Nearest Neighbor (Witten et al., 1999) as its main clas-
sification algorithm. The algorithm needs to calculate
similarity measures between the description of each re-
trieved Web page and the description of every topic of
interest. The similarity measure employed is a tf−idf
one (Witten et al., 1999). Let D be the description of
a topic of interest and R the description of a retrieved
Web page. The similarity between the topic of interest
and the retrieved Web page, Sim(R, D), is defined as
follows:

Sim(R, D) =

∑

tεR∩D

wR,t × wD,t

√ ∑

tεR∩D

w2
R,t ×

√ ∑

tεR∩D

w2
D,t

(1)

where t is a term, wR,t and wD,t are the weights of
term t in R and D respectively. These weights are:

wR,t = log
(

1 +
C

Ct

)

(2)

wD,t = 1 + log fD,t (3)

where C is the total number of topics of interest, Ct

is the number of topics of interest including term t in
their description and fD,t is the frequency of occurence
of t in description D.

Having a new, retrieved Web page, we rank the topics
of interest according to their similarity with the page
(the topic of interest with the highest similarity will
be on the top). Then the top-ranked topic of interest
is selected as the most appropriate for the retrieved
page.

Example. Let us assume that a user has the follow-
ing three topics of interest: (t1) Sports: sports foot-
ball basketball baseball swimming tennis soccer game,
(t2) Science: science scientific mathematics physics
computer technology and (t3) Arts: arts art painting
sculpture poetry music decorating.

The result ”Alen Computer Co. can teach you
the art of programming...Technology is just a game
now...computer science for beginners” receives the fol-
lowing similarity scores for each topic of interest:

Sim(x, t1) = 0.287

Sim(x, t2) = 0.892

Sim(x, t3) = 0.368

The highest score corresponds to t2. Consequently,
the most relevant topic of interest is ”Science”.

4. System Implementation

This section presents the architecture of our applica-
tion and discusses various interesting implementation
issues. Figure 5 describes the main modules of Captain
Nemo.

Search Module. It implements the main function-
ality of the metasearch engine, providing connections
to the search engines specified by the users. It re-
trieves the relevant Web pages according to the re-
trieval model defined by the user. The results are sent
to the ranking module for further processing.

Ranking Module. The retrieved Web pages are
ranked and grouped according to the retrieval model
defined by the user. The ranking algorithm is pre-
sented in the next section. For every retrieved Web
page, a matching topic of interest is determined.

56

Sailing the Web with Captain Nemo: a Personalized Metasearch Engine

Search
Module

Ranking
Module

Presentation
Module

Preference
Manager

Category
Manager

USER
PROFILE

DATABASE

XSL Files

Category
Folders

Figure 5. System architecture.

Presentation Module. It maintains several XSL
filters that construct the resulting pages (wrapped as
XML documents) according to the look and feel set-
tings determined by the user.

Preference Manager. It provides the connection
between the three aforementioned modules (i.e. search
module, ranking module, presentation module) and
the information stored in user profiles. It is also re-
sponsible for updating user profiles and the used XSL
files.

Category Manager. It manages the topics of in-
terests, keeps the appropriate folders on disk in ac-
cordance with the user profiles and provides all the
necessary information for the automatic classification
of results to those folders.

Our application is implemented on top of the Post-
greSQL database system4, exploiting Perl CGI scripts
to wrap the results of search engines5.

The next subsection discusses in detail the ranking
mechanisms used in our application.

4.1. Ranking

Given a query, a typical metasearch engine sends it to
several search engines, ranks the retrieved Web pages
and merges them in a single list. After the merge,
the most relevant retrieved pages should be on top.
There are two approaches used to implement such a
ranking task. The first one assumes that the initial
scores assigned to the retrieved pages by each one of
the search engines are known. The other one does not
have any information about those scores.

4http://www.postgresql.org/
5http://search.cpan.org/dist/WWW-

Search/lib/WWW/Search.pm

In Rasolofo et al. (2001), it is pointed out that the
scale used in the similarity measure in several search
engines may be different. Therefore, normalization is
required in order to achieve a common measure of com-
parison. Moreover, the reliability of each search en-
gine must be incorporated in the ranking algorithm
through a weight factor. This factor is calculated sep-
arately during each search. Search engines that return
more Web pages should receive higher weight. This is
due of the perception that the number of relevant Web
pages retrieved is proportional to the total number of
Web pages retrieved as relevant for all search engines
exploited by the metasearch engine.

On the other hand, Dumais (1994), Gravano and Pa-
pakonstantinou (1998) and Towell et al. (1995) stress
that the scores of various search engines are not com-
patible and comparable even when normalized. For
example, Towell et al. (1995) notes that the same
document receives different scores in various search
engines and Dumais (1994) concludes that the score
depends on the document collection used by a search
engine. In addition, Gravano and Papakonstantinou
(1998) points out that the comparison is not feasible
not even among engines using the same ranking algo-
rithm and claims that search engines should provide
statistical elements together with the results.

In Aslam and Montague (2001), ranking algorithms
are proposed which completely ignore the scores as-
signed by the search engines to the retrieved Web
pages: bayes-fuse uses probabilistic theory to calcu-
late the probability of a result to be relevant to the
query, while borda-fuse is based on democratic vot-
ing. The latter considers that each search engine gives
votes in the results it returns, giving N votes in the
first result, N − 1 in the second, etc. The metasearch
engine gathers the votes for the retrieved Web pages
from all search engines and the ranking is determined

57

Sailing the Web with Captain Nemo: a Personalized Metasearch Engine

democratically by summing up the votes.

The algorithm adopted by Captain Nemo is the
weighted alternative of Borda-fuse. In this algorithm,
search engines are not treated equally, but their votes
are considered with weights depending on the reliabil-
ity of each search engine. These weights are set by the
users in their profiles. Thus, the votes that the i result
of the j search engine receives are:

V (ri,j) = wj ∗ (maxk(rk) − i + 1) (4)

where wj is the weight of the j search engine and rk

is the number of results rendered by search engine k.
Retrieved pages that appear in more than one search
engines receive the sum of their votes.

4.2. Application Examples

The main page of Captain Nemo is illustrated in Fig-
ure 6. It includes the results of query ’perl’, present-
ing only titles in compact format according to the user
profile defined.

Figure 6. Captain Nemo.

Figure 7 shows the same results formatted by another
presentation style. According to the preferences set,
the results are merged in one list. For each retrieved
Web page, we can see (a) the title, the description and
the URL, (b) the names of search engines that have
retrieved this particular page and (c) the absolute and
relative similarity score calculated by the ranking mod-
ule. A topic of interest is suggested for each retreived
Web page.

Figure 8 shows the results for keywords ’java sql’,
grouped by topic of interest.

Figure 7. Retrieved Web pages for the keyword ’perl’.

Figure 8. Retrieved Web pages grouped by topic of inter-
est.

5. Conclusion

In this paper we presented Captain Nemo, a fully-
functionable metasearch engine that exploits personal
user search spaces. Users can define their personal re-
trieval model and presentation style. They can also
define topics of interest. Captain Nemo exploits sev-
eral popular Web search engines to retrieve Web pages
relevant to keywords given by the users. The resulting
pages are presented according to the defined presenta-
tion style and retrieval model. For every page, Captain
Nemo can recommend a relevant topic of interest to
classify the page, exploiting nearest-neighbour classi-
fication techniques.

For future work, we plan to replace the flat model of
topics of interest by a hierarchy of topics in the spirit
of Kunz and Botsch (2002). Also, we will improve the
classification process, exploiting background knowl-

58

Sailing the Web with Captain Nemo: a Personalized Metasearch Engine

edge in the form of ontologies (Bloehdorn & Hotho,
2004).

References

Aslam, J. A., & Montague, M. (2001). Models for
metasearch. Proceedings of the 24th ACM SIGIR
Conference.

Baker, L. D., & McCallum, A. K. (1998). Distribu-
tional clustering of words for text classification. Pro-
ceedings of the 21st ACM SIGIR Conference (pp.
96–103). Melbourne, Australia: ACM Press.

Bloehdorn, S., & Hotho, A. (2004). Text classification
by boosting weak learners based on terms and con-
cepts. Proceedings of the 4th ICDM Conference (pp.
331–334).

Buntine, W. L., Löfström, J., Perkiö, J., Perttu, S.,
Poroshin, V., Silander, T., Tirri, H., Tuominen,
A. J., & Tuulos, V. H. (2004). A scalable topic-
based open source search engine. Proceedings of the
ACM WI Conference (pp. 228–234).

Chakrabarti, S., Dom, B. E., & Indyk, P. (1998). En-
hanced hypertext categorization using hyperlinks.
Proceedings of the ACM SIGMOD Conference (pp.
307–318). Seattle, US: ACM Press, New York, US.

Cohn, D., & Hofmann, T. (2001). The missing link -
a probabilistic model of document content and hy-
pertext connectivity. Proceedings of the 15th NIPS
Conference.

Dumais, S. T. (1994). Latent semantic indexing (lsi)
and trec-2. Proceedings of the 2nd TREC Confer-
ence.

Glover, E., Flake, G., Lawrence, S., Birmingham,
W. P., Kruger, A., Giles, C. L., & Pennock, D.
(2001). Improving category specific web search by
learning query modifications. Proceedings of the
SAINT Symposium (pp. 23–31). San Diego, CA:
IEEE Computer Society, Los Alamitos, CA.

Gravano, L., & Papakonstantinou, Y. (1998). Mediat-
ing and metasearching on the internet. IEEE Data
Engineering Bulletin, 21.

iProspect (2004). iProspect search engine user at-
titudes. http://www.iprospect.com/premiumPDFs
/iProspectSurveyComplete.pdf.

Kunz, C., & Botsch, V. (2002). Visual representation
and contextualization of search results-list and ma-
trix browser. Proceedings of the ICDC Conference
(pp. 229–234).

Liu, F., Yu, C., & Meng, W. (2002). Personalized
web search by mapping user queries to categories.
Proceedings of the 11th CIKM Conference (pp. 558–
565). McLean, Virginia, USA: ACM Press.

Rasolofo, Y., Abbaci, F., & Savoy, J. (2001). Ap-
proaches to collection selection and results merging
for distributed information retrieval. Proceedings of
the 10th ACM CIMK Conference.

Sahami, M., Mittal, V. O., Baluja, S., & Rowley, H. A.
(2004). The happy searcher: Challenges in web in-
formation retrieval. Proceedings of the 8th PRICAI
Conference (pp. 3–12).

Shahabi, C., & Chen, Y.-S. (2003). Web information
personalization: Challenges and approaches. Pro-
ceedings of the 3rd DNIS Workshop.

Towell, G., Voorhees, E. M., Gupta, N. K., & Johnson-
Laird, B. (1995). Learning collection fusion strate-
gies for information retrieval. Proceedings of the 12th
ICML Conference.

Witten, I. H., Moffat, A., & Bell, T. C. (1999). Manag-
ing gigabytes: Compressing and indexing documents
and images. Morgan Kaufmann Publishers. 2nd edi-
tion.

59

