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Computational linguistics aims to develop computational models of human lan-
guage. Research in computational linguistics ranges from the theoretical (e.g., asking
what kind of formal automaton the human language faculty might be) to the practical
(e.g., building systems to translate massive collections of text), but across the board,
two recurring themes of computational linguistics are structure and ambiguity.

The structure of language is hierarchical. Though it appears on the surface to
be a stream of symbols, a writing or conversation is organized into sentences, the
sentences into phrases, the phrases into smaller phrases, the phrases into words,
and the words into morphemes:
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A complete account of language would have to take all these levels of structure into
consideration. Because this structure is not always overt, we are constantly facedwith
the possibility of ambiguity, that is, a text having more than one possible structure.
And because structure is hierarchical, the number of possible structures we have to
work with is typically exponential.

I think there are two broad areas where computational linguistics can be helpful
for computational stemmatology. First, although computational stemmatology has
drawn on ideas from computational biology with great success, based on an anal-
ogy between genes and language, nevertheless, in order to model transmission of
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natural-language texts one must be attentive to the structure of natural language.
Computational linguistics may provide useful insights into improving models of tex-
tual change. Second, natural-language-processing algorithms routinely deal with ex-
ponentially sized spaces of possible tree structures. Many tricks of the computational
linguistics trade are focused on managing this complexity. These techniques may also
prove useful for searching through the space of tree topologies.

1 Modeling textual change
A common assumption in reconstruction of evolutionary trees is to partition a se-
quence into segments and assume that the segments change independently of one
another. For example, a line from Chaucer might be partitioned as:

In pacience she ladde a symple lyf
In pacience ladde a ful symple lyf
In pacience ladde a symple lyf
In pacience ladde she a ful symple lyf
In pacience hadde a ful symple lyf
In pacience ladde she hur lyf
In pacience ladde a ful mery lyf

and the space of all possible hypothesized texts is formed by taking one chunk from
each column (in computational linguistics, this is known as a sausage lattice).

But this partitioning somewhat lacks flexibility. For example, the change ladde ↔
hadde only involves a single letter, ladde ↔ she ladde a single word, and she ladde ↔
ladde she, multiple words. We would like the model to handle each in an appropri-
ate manner, and to make appropriate generalizations from each. By working at the
grapheme level, the model can learn whether l ↔ h is a likely or unlikely change; by
working at the word level, it can learn whether insertion/deletion of pronouns is likely
or unlikely; and by working at the syntactic level, it can learn whether inversion of
subjects and verbs is likely or unlikely.

All this requires careful modeling of linguistic structure, which computational lin-
guistics can provide. In particular, the subfield of machine translation specializes in
modeling transformations of natural language text, and recent progress in this area
has yieldedmodels which are ever more sensitive to linguistic structure [1, 4]. Though
these models were designed for transformations across languages, they can also be
applied to transformations within a single language.

As an aside, the use of machine-translation models suggests the more ambitious
goal of incorporating evidence from early translations of a text. The utility of such
evidence seems to be an open question, and it would be significant if computer models
could help integrate this evidence more effectively.

2 Searching the space of trees
The biggest algorithmic challenge in phylogeny reconstruction is dealing with the
space of all possible tree topologies: searching for the optimal tree, or, in some learn-
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ing algorithms, calculating the expected value of some variable over all possible trees.
If we keep the topology of the tree fixed, it is easy to search or calculate expecta-

tions over all the interior node labels (the unobserved ancestor texts). For example,
the classic model of Felsenstein [2] uses Expectation-Maximization (EM) to learn a
model in such a setting. Conversely, it turns out that if we keep the number of nodes
and their labels fixed, it is also easy to search for an optimal tree topology, using the
Chu-Liu-Edmonds algorithm [9] to find a maximum spanning tree on a directed graph,
or to calculate expectations, using Kirchhoff’s Matrix-Tree Theorem [10]. This insight
has recently been applied to nonprojective dependency parsing, which is a search for
an optimal tree whose nodes are the words of a sentence, in any order [6, 8, 5].

But the real algorithmic challenge is simultaneously considering all possible trees
and all possible labels for the interior nodes. In dependency parsing, we encounter
this problem when, for example, doing simultaneous parsing and part-of-speech tag-
ging. We think an extension of Friedman et al.’s approximate EM algorithm [3] along
the lines of Smith and Eisner’s approach to dependency parsing using loopy belief
propagation [7] may provide a good solution to this problem.
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